Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of cell therapy in the treatment of virus-associated cancers

Abstract

A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein–Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.

Key points

  • Viruses can contribute to the development of cancer via inflammation, disruption of the cell cycle by viral oncoproteins, direct integration into the genome, and genomic instability and are often required for the proliferation of malignant cells.

  • Virus-specific T cell (VST) therapies have demonstrated a favourable safety profile and can be manufactured from autologous, allogeneic donor and third-party sources.

  • Although historically costly and time-consuming to manufacture, novel rapid manufacturing techniques promise to reduce the costs of and increase accessibility to VST therapies.

  • VSTs targeting Epstein–Barr virus (EBV) have the most substantial evidence of efficacy, with few adverse events, leading to the first regulatory approval of VSTs for use in oncology practice.

  • Adoptive cell therapy has not yet achieved success in the treatment of all virus-associated cancers owing to multiple barriers, including the immunosuppressive tumour microenvironment, tumour heterogeneity and viral immune evasion mechanisms.

  • Combinatorial treatment strategies might expand the clinical utility of VST therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Virus-associated oncogenesis.
Fig. 2: Manufacturing of VST therapies.

Similar content being viewed by others

References

  1. Plummer, M. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob. Health 4, e609-16 (2016).

    Article  PubMed  Google Scholar 

  2. Volesky-Avellaneda, K. D. et al. Cancers attributable to infections in the US in 2017: a meta-analysis. JAMA Oncol. 9, 1678–1687 (2023).

    Article  PubMed  Google Scholar 

  3. Farrell, P. J. Epstein-Barr virus and cancer. Annu. Rev. Pathol. 14, 29–53 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Chowdhary, S. et al. Recent updates on viral oncogenesis: available preventive and therapeutic entities. Mol. Pharm. 20, 3698–3740 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krump, N. A. & You, J. Molecular mechanisms of viral oncogenesis in humans. Nat. Rev. Microbiol. 16, 684–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skolnik, J. M. & Morrow, M. P. Vaccines for HPV-associated diseases. Mol. Aspects Med. 94, 101224 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Balfour, H. H. Jr., Schmeling, D. O. & Grimm-Geris, J. M. The promise of a prophylactic Epstein-Barr virus vaccine. Pediatr. Res. 87, 345–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Cohen, J. I. Vaccine development for Epstein-Barr virus. Adv. Exp. Med. Biol. 1045, 477–493 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hont, A. B. et al. The generation and application of antigen-specific T cell therapies for cancer and viral-associated disease. Mol. Ther. 30, 2130–2152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toner, K. & Bollard, C. M. EBV+ lymphoproliferative diseases: opportunities for leveraging EBV as a therapeutic target. Blood 139, 983–994 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Papadopoulou, A., Alvanou, M., Karavalakis, G., Tzannou, I. & Yannaki, E. Pathogen-specific T cells: targeting old enemies and new invaders in transplantation and beyond. Hemasphere 7, e809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martinov, T. & Greenberg, P. D. Targeting driver oncogenes and other public neoantigens using T cell receptor-based cellular therapy. Annu. Rev. Cancer Biol. 7, 331–351 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. McLaughlin, L. P., Gottschalk, S., Rooney, C. M. & Bollard, C. M. EBV-directed T cell therapeutics for EBV-associated lymphomas. Methods Mol. Biol. 1532, 255–265 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Keam, S. J. Tabelecleucel: first approval. Mol. Diagn. Ther. 27, 425–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Keller, M. D. et al. T-cell receptor sequencing demonstrates persistence of virus-specific T cells after antiviral immunotherapy. Br. J. Haematol. 187, 206–218 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galati, L., Chiantore, M. V., Marinaro, M. & Di Bonito, P. Human oncogenic viruses: characteristics and prevention strategies-lessons learned from human papillomaviruses. Viruses 16, 416 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cesarman, E. et al. Kaposi sarcoma. Nat. Rev. Dis. Prim. 5, 9 (2019).

    Article  PubMed  Google Scholar 

  18. Vasudevan, H. N. & Yom, S. S. Nasopharyngeal carcinoma and its association with epstein-barr virus. Hematol. Oncol. Clin. North Am. 35, 963–971 (2021).

    Article  PubMed  Google Scholar 

  19. Cohen, J. I., Bollard, C. M., Khanna, R. & Pittaluga, S. Current understanding of the role of Epstein-Barr virus in lymphomagenesis and therapeutic approaches to EBV-associated lymphomas. Leuk. Lymphoma 49, 27–34 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Latour, S. & Fischer, A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: lessons from genetic diseases. Immunol. Rev. 291, 174–189 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Schiller, J. T. & Lowy, D. R. An introduction to virus infections and human cancer. Recent. Results Cancer Res. 217, 1–11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian, Z. et al. HBV integrations reshaping genomic structures promote hepatocellular carcinoma. Gut 73, 1169–1182 (2024).

    Article  PubMed  Google Scholar 

  23. Jia, Y. et al. HBV DNA polymerase upregulates the transcription of PD-L1 and suppresses T cell activity in hepatocellular carcinoma. J. Transl. Med. 22, 272 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dong, W., Wang, H., Li, M., Li, P. & Ji, S. Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis. Front. Cell Infect. Microbiol. 14, 1359766 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zoulim, F., Chen, P. J., Dandri, M., Kennedy, P. & Seeger, C. Hepatitis B virus DNA integration: implications for diagnostics, therapy, and outcome. J. Hepatol. https://doi.org/10.1016/j.jhep.2024.06.037 (2024).

    Article  PubMed  Google Scholar 

  26. Vallejo-Ruiz, V., Gutiérrez-Xicotencatl, L., Medina-Contreras, O. & Lizano, M. Molecular aspects of cervical cancer: a pathogenesis update. Front. Oncol. 14, 1356581 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, W. et al. The characteristics of HPV integration in cervical intraepithelial cells. J. Cancer 10, 2783–2787 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, R. et al. Risk stratification of cervical lesions using capture sequencing and machine learning method based on HPV and human integrated genomic profiles. Carcinogenesis 40, 1220–1228 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, L. et al. Epstein-Barr virus episome physically interacts with active regions of the host genome in lymphoblastoid cells. J. Virol. 94, e01390-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alcami, A. & Koszinowski, U. H. Viral mechanisms of immune evasion. Trends Microbiol. 8, 410–418 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sabourirad, S., Dimitriadis, E. & Mantamadiotis, T. Viruses exploit growth factor mechanisms to achieve augmented pathogenicity and promote tumorigenesis. Arch. Microbiol. 206, 193 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, B. Epstein-barr virus B cell growth transformation: the nuclear events. Viruses 15, 832 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Medhat, A., Arzumanyan, A. & Feitelson, M. A. Hepatitis B x antigen (HBx) is an important therapeutic target in the pathogenesis of hepatocellular carcinoma. Oncotarget 12, 2421–2433 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mittal, S. & Banks, L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Rev. Mutat. Res. 772, 23–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Mueller, S. N. & Rouse, B. T. in Clinical Immunology 3rd edn (eds Robert. R. R. et al.) 421–431 (Mosby, 2008).

  36. Latour, S. & Winter, S. Inherited immunodeficiencies with high predisposition to Epstein-Barr virus-driven lymphoproliferative diseases. Front. Immunol. 9, 1103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cohen, J. I. Primary immunodeficiencies associated with EBV disease. Curr. Top. Microbiol. Immunol. 390, 241–265 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sacco, K. A., Notarangelo, L. D. & Delmonte, O. M. When to suspect inborn errors of immunity in Epstein-Barr virus-related lymphoproliferative disorders. Clin. Microbiol. Infect. 29, 457–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Cohen, J. I. Epstein-Barr virus infection. N. Engl. J. Med. 343, 481–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Aggarwal, S., Agarwal, P. & Singh, A. K. Human papilloma virus vaccines: a comprehensive narrative review. Cancer Treat. Res. Commun. 37, 100780 (2023).

    Article  PubMed  Google Scholar 

  41. Davies, S. I. et al. Robust production of Merkel cell polyomavirus oncogene specific t cells from healthy donors for adoptive transfer. Front. Immunol. 11, 592721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chapuis, A. G. et al. Regression of metastatic Merkel cell carcinoma following transfer of polyomavirus-specific T cells and therapies capable of re-inducing HLA class-I. Cancer Immunol. Res. 2, 27–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Mohanty, S. & Harhaj, E. W. Mechanisms of innate immune sensing of HTLV-1 and viral immune evasion. Pathogens 12, 735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagarsheth, N. B. et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27, 419–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kahan, S. M., Wherry, E. J. & Zajac, A. J. T cell exhaustion during persistent viral infections. Virology 479-480, 180–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Bollard, C. M. et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J. Clin. Oncol. 36, 1128–1139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bell, M. & Gottschalk, S. Engineered cytokine signaling to improve CAR T cell effector function. Front. Immunol. 12, 684642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rooney, C. M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345, 9–13 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Harris, K. M., Davila, B. J., Bollard, C. M. & Keller, M. D. Virus-specific T cells: current and future use in primary immunodeficiency disorders. J. Allergy Clin. Immunol. Pract. 7, 809–818 (2019).

    Article  PubMed  Google Scholar 

  51. Gustafson, M. P. et al. Emerging frontiers in immuno- and gene therapy for cancer. Cytotherapy 25, 20–32 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Qian, C. et al. Viral-specific T-cell transfer from HSCT donor for the treatment of viral infections or diseases after HSCT. Bone Marrow Transpl. 53, 114–122 (2018).

    Article  CAS  Google Scholar 

  53. Wehler, T. C. et al. Rapid identification and sorting of viable virus-reactive CD4+ and CD8+ T cells based on antigen-triggered CD137 expression. J. Immunol. Methods 339, 23–37 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Frentsch, M. et al. Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat. Med. 11, 1118–1124 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Thomas, S. et al. Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nat. Commun. 10, 4451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rosenberg, S. A. et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 319, 1676–1680 (1988).

    Article  CAS  PubMed  Google Scholar 

  57. Kazemi, M. H. et al. Tumor-infiltrating lymphocytes for treatment of solid tumors: it takes two to tango? Front. Immunol. 13, 1018962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stevanovic, S. et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J. Clin. Oncol. 33, 1543–1550 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal. Transduct. Target. Ther. 8, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Munz, C. Redirecting T cells against epstein-barr virus infection and associated oncogenesis. Cells 9, 1400 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bollard, C. M. et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Chua, D. et al. Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int. J. Cancer 94, 73–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Heslop, H. E., Savoldo, B. & Rooney, C. M. Cellular therapy of Epstein-Barr-virus-associated post-transplant lymphoproliferative disease. Best Pract. Res. Clin. Haematol. 17, 401–413 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Lucas, K. G., Small, T. N., Heller, G., Dupont, B. & O’Reilly, R. J. The development of cellular immunity to Epstein-Barr virus after allogeneic bone marrow transplantation. Blood 87, 2594–2603 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Papadopoulos, E. B. et al. Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation. N. Engl. J. Med. 330, 1185–1191 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Bollard, C. M. & Heslop, H. E. T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood 127, 3331–3340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Doubrovina, E. et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119, 2644–2656 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heslop, H. E. et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115, 925–935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McLaughlin, L. P. et al. EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 132, 2351–2361 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prockop, S. E. & Vatsayan, A. Epstein-Barr virus lymphoproliferative disease after solid organ transplantation. Cytotherapy 19, 1270–1283 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Rubinstein, J., Toner, K., Gross, T. & Wistinghausen, B. Diagnosis and management of post-transplant lymphoproliferative disease following solid organ transplantation in children, adolescents, and young adults. Best Pract. Res. Clin. Haematol. 36, 101446 (2023).

    Article  PubMed  Google Scholar 

  72. Wistinghausen, B., Gross, T. G. & Bollard, C. Post-transplant lymphoproliferative disease in pediatric solid organ transplant recipients. Pediatr. Hematol. Oncol. 30, 520–531 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Haque, T. et al. Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J. Immunol. 160, 6204–6209 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Khanna, R. et al. Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc. Natl Acad. Sci. USA 96, 10391–10396 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Comoli, P. et al. Treatment of EBV-related post-renal transplant lymphoproliferative disease with a tailored regimen including EBV-specific T cells. Am. J. Transpl. 5, 1415–1422 (2005).

    Article  Google Scholar 

  76. Savoldo, B. et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 108, 2942–2949 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Prockop, S. et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplantation. J. Clin. Invest. 130, 733–747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barker, J. N. et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood 116, 5045–5049 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wistinghausen, B. et al. ANHL1522: durable immunity to EBV post rituximab and third party LMP-specific T-cells: a children’s oncology group study. Blood Adv. 12, 1116–1127 (2024).

    Article  Google Scholar 

  80. Bollard, C. M. et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood 110, 2838–2845 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, W. S. et al. Autologous EBV-specific T cell treatment results in sustained responses in patients with advanced extranodal NK/T lymphoma: results of a multicenter study. Ann. Hematol. 100, 2529–2539 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Comoli, P. et al. Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J. Clin. Oncol. 23, 8942–8949 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Chia, W. K. et al. Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Mol. Ther. 22, 132–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Secondino, S. et al. Long-lasting responses with chemotherapy followed by T-cell therapy in recurrent or metastatic EBV-related nasopharyngeal carcinoma. Front. Immunol. 14, 1208475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Toh, H. C. et al. 652O Randomized phase III VANCE study: gemcitabine and carboplatin (GC) followed by Epstein Barr virus-specific autologous cytotoxic T lymphocytes (EBV-CTL) versus the same chemotherapy as first-line treatment for advanced nasopharyngeal carcinoma (NPC). Ann. Oncol. 33, S840 (2022).

    Article  Google Scholar 

  86. Haque, T. et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood 110, 1123–1131 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Keller, M. D. et al. Secondary bone marrow graft loss after third-party virus-specific T cell infusion: case report of a rare complication. Nat. Commun. 15, 2749 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leen, A. M. et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121, 5113–5123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tzannou, I. et al. Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein-Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J. Clin. Oncol. 35, 3547–3557 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Withers, B. et al. Establishment and operation of a third-party virus-specific T cell bank within an allogeneic stem cell transplant program. Biol. Blood Marrow Transpl. 24, 2433–2442 (2018).

    Article  CAS  Google Scholar 

  91. Kazi, S. et al. Long-term follow up after third-party viral-specific cytotoxic lymphocytes for immunosuppression- and Epstein-Barr virus-associated lymphoproliferative disease. Haematologica 104, e356–e359 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mahadeo, K. M. et al. Tabelecleucel for allogeneic haematopoietic stem-cell or solid organ transplant recipients with Epstein-Barr virus-positive post-transplant lymphoproliferative disease after failure of rituximab or rituximab and chemotherapy (ALLELE): a phase 3, multicentre, open-label trial. Lancet Oncol. 25, 376–387 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Bonifacius, A. et al. Patient-tailored adoptive immunotherapy with EBV-specific T cells from related and unrelated donors. J. Clin. Invest. 133, e163548 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bollard, C. M. et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood 99, 3179–3187 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Foster, A. E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J. Immunother. 31, 500–505 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cruz, C. R. et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122, 2965–2973 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McKenna, M. et al. Real-world evidence of the safety and survival with CD19 CAR-T cell therapy for relapsed/refractory solid organ transplant-related PTLD. Br. J. Haematol. 202, 248–255 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Harputluoglu, M. & Carr, B. I. Hepatitis B before and after hepatocellular carcinoma. J. Gastrointest. Cancer 52, 1206–1210 (2021).

    Article  PubMed  Google Scholar 

  99. Thomas, D. L. Global elimination of chronic hepatitis. N. Engl. J. Med. 380, 2041–2050 (2019).

    Article  PubMed  Google Scholar 

  100. Shen, C., Jiang, X., Li, M. & Luo, Y. Hepatitis virus and hepatocellular carcinoma: recent advances. Cancers 15, 533 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Luna-Cuadros, M. A. et al. Risk of hepatocellular carcinoma after hepatitis C virus cure. World J. Gastroenterol. 28, 96–107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Finn, R. S. et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 382, 1894–1905 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Tan, A. T. & Bertoletti, A. HBV-HCC treatment with mRNA electroporated HBV-TCR T cells. Immunother. Adv. 2, ltab026 (2022).

    Article  PubMed  Google Scholar 

  104. Ozer, M., Goksu, S. Y., Akagunduz, B., George, A. & Sahin, I. Adoptive cell therapy in hepatocellular carcinoma: a review of clinical trials. Cancers 15, 1808 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bertoletti, A. et al. T cell receptor-therapy in HBV-related hepatocellularcarcinoma. Oncoimmunology 4, e1008354 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bertoletti, A. & Tan, A. T. HBV as a target for CAR or TCR-T cell therapy. Curr. Opin. Immunol. 66, 35–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Qasim, W. et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol. 62, 486–491 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Tan, A. T. et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T cells for immunotherapy. Gastroenterology 156, 1862–1876.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Meng, F. et al. Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial. Hepatol. Int. 15, 1402–1412 (2021).

    Article  PubMed  Google Scholar 

  110. Yang, F. et al. Messenger RNA electroporated hepatitis B virus (HBV) antigen-specific T cell receptor (TCR) redirected T cell therapy is well-tolerated in patients with recurrent HBV-related hepatocellular carcinoma post-liver transplantation: results from a phase I trial. Hepatol. Int. 17, 850–859 (2023).

    Article  PubMed  Google Scholar 

  111. Bohne, F. et al. T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes. Gastroenterology 134, 239–247 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Malagón, T., Franco, E. L., Tejada, R. & Vaccarella, S. Epidemiology of HPV-associated cancers past, present and future: towards prevention and elimination. Nat. Rev. Clin. Oncol. 21, 522–538 (2024).

    Article  PubMed  Google Scholar 

  113. Doran, S. L. et al. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase I/II study. J. Clin. Oncol. 37, 2759–2768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eskander, R. N. & Tewari, K. S. Immunotherapy: an evolving paradigm in the treatment of advanced cervical cancer. Clin. Ther. 37, 20–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Huang, H. et al. Phase I study of adjuvant immunotherapy with autologous tumor-infiltrating lymphocytes in locally advanced cervical cancer. J. Clin. Invest. 132, e157726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu, W., MacDonald, M. & You, J. Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr. Opin. Virol. 20, 20–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Veatch, J. et al. Merkel polyoma virus specific T-cell receptor transgenic T-cell therapy in PD-1 inhibitor refractory Merkel cell carcinoma. J. Clin. Oncol. 40, 9549 (2022).

    Article  Google Scholar 

  118. Bangham, C. R. M. HTLV-1 persistence and the oncogenesis of adult T-cell leukemia/lymphoma. Blood 141, 2299–2306 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sampaio, G. C. L. et al. Human T cell lymphotropic virus type 1 global prevalence associated with the human development index: systematic review with meta-analysis. AIDS Res. Hum. Retroviruses 39, 145–165 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Gessain, A. & Cassar, O. Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3, 388 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shimoyama, M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemia-lymphoma. A report from the Lymphoma Study Group (1984-87). Br. J. Haematol. 79, 428–437 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Bangham, C. R. & Osame, M. Cellular immune response to HTLV-1. Oncogene 24, 6035–6046 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Hishizawa, M. et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. Blood 116, 1369–1376 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Bazarbachi, A. H. et al. Outcome of stem cell transplantation in HTLV-1-associated North American adult T-cell leukemia/lymphoma. Clin. Hematol. Int. 5, 78–91 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Harashima, N. et al. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res. 64, 391–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Harashima, N. et al. Identification of two new HLA-A*1101-restricted tax epitopes recognized by cytotoxic T lymphocytes in an adult T-cell leukemia patient after hematopoietic stem cell transplantation. J. Virol. 79, 10088–10092 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Suehiro, Y. et al. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study. Br. J. Haematol. 169, 356–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Kannagi, M. et al. Maintenance of long remission in adult T-cell leukemia by Tax-targeted vaccine: a hope for disease-preventive therapy. Cancer Sci. 110, 849–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Suehiro, Y. Tax-targeted dendritic cell vaccine therapy for long-term remission of adult T-cell leukemia-lymphoma [Japanese]. Rinsho Ketsueki 64, 670–677 (2023).

    PubMed  Google Scholar 

  130. Takeda, S. et al. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int. J. Cancer 109, 559–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Miura, M. et al. Kinetics of HTLV-1 reactivation from latency quantified by single-molecule RNA FISH and stochastic modelling. PLoS Pathog. 15, e1008164 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gaudray, G. et al. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J. Virol. 76, 12813–12822 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266, 1865–1869 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W. & Knowles, D. M. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Soulier, J. et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86, 1276–1280 (1995).

    Article  CAS  PubMed  Google Scholar 

  136. Broussard, G. & Damania, B. KSHV: immune modulation and immunotherapy. Front. Immunol. 10, 3084 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Goncalves, P. H., Uldrick, T. S. & Yarchoan, R. HIV-associated Kaposi sarcoma and related diseases. AIDS 31, 1903–1916 (2017).

    Article  PubMed  Google Scholar 

  138. Bihl, F. et al. Cellular immune responses and disease control in acute AIDS-associated Kaposi’s sarcoma. AIDS 23, 1918–1922 (2009).

    Article  PubMed  Google Scholar 

  139. Naimo, E., Zischke, J. & Schulz, T. F. Recent advances in developing treatments of Kaposi’s sarcoma herpesvirus-related diseases. Viruses 13, 1797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Keller, M. D. et al. Antiviral cellular therapy for enhancing T-cell reconstitution before or after hematopoietic stem cell transplantation (ACES): a two-arm, open label phase II interventional trial of pediatric patients with risk factor assessment. Nat. Commun. 15, 3258 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gay, C. L. et al. The effects of human immunodeficiency virus type 1 (HIV-1) antigen-expanded specific T-cell therapy and vorinostat on persistent HIV-1 infection in people with HIV on antiretroviral therapy. J. Infect. Dis. 229, 743–752 (2024).

    Article  PubMed  Google Scholar 

  142. Bekker, L.-G. et al. HIV infection. Nat. Rev. Dis. Prim. 9, 42 (2023).

    Article  PubMed  Google Scholar 

  143. Grulich, A. E., van Leeuwen, M. T., Falster, M. O. & Vajdic, C. M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370, 59–67 (2007).

    Article  PubMed  Google Scholar 

  144. Yarchoan, R. & Uldrick, T. S. HIV-associated cancers and related diseases. N. Engl. J. Med. 378, 2145 (2018).

    Article  PubMed  Google Scholar 

  145. Morlat, P. et al. Causes of death among HIV-infected patients in France in 2010 (national survey): trends since 2000. AIDS 28, 1181–1191 (2014).

    Article  PubMed  Google Scholar 

  146. Kim, Y. et al. Trends of cause of death among human immunodeficiency virus patients and the impact of low CD4 counts on diagnosis to death: a retrospective cohort study. J. Korean Med. Sci. 35, e355 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Walker, R. E. et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 96, 467–474 (2000).

    CAS  PubMed  Google Scholar 

  148. Mitsuyasu, R. T. et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects. Blood 96, 785–793 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Van Gulck, E. et al. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS 26, F1–12 (2012).

    Article  PubMed  Google Scholar 

  150. Allard, S. D. et al. A phase I/IIa immunotherapy trial of HIV-1-infected patients with Tat, Rev and Nef expressing dendritic cells followed by treatment interruption. Clin. Immunol. 142, 252–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Sung, J. A. et al. HIV-specific, ex vivo expanded T cell therapy: feasibility, safety, and efficacy in ART-suppressed HIV-infected individuals. Mol. Ther. 26, 2496–2506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Article  PubMed  Google Scholar 

  153. Gupta, R. K. et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 568, 244–248 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jensen, B. O. et al. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat. Med. 29, 583–587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hsu, J. et al. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell 186, 1115–1126.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Dickter, J. K. et al. HIV-1 remission after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 390, 669–671 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Xu, L. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 381, 1240–1247 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Sáez-Cirión, A. et al. Absence of viral rebound for 18 months without antiretrovirals after allogeneic hematopoietic stem cell transplantation with wild-type CCR5 donor cells to treat a biphenotypic sarcoma. ias2023.org, https://programme.ias2023.org/Abstract/Abstract/?abstractid=5819 (2023).

  159. Ondondo, B. et al. Novel conserved-region T-cell mosaic vaccine with high global HIV-1 coverage is recognized by protective responses in untreated infection. Mol. Ther. 24, 832–842 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Patel, S. et al. HIV-specific T cells can be generated against non-escaped T cell epitopes with a GMP-compliant manufacturing platform. Mol. Ther. Methods Clin. Dev. 16, 11–20 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Conarty, J. P. & Wieland, A. The tumor-specific immune landscape in HPV+ head and neck cancer.Viruses 15, 1296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Verma, N. K. et al. Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 83, 104216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Rossetti, R. et al. Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer. Immunother. Adv. 2, ltac005 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Siu, L. L. et al. Tabelecleucel in combination with pembrolizumab (Pembro) in platinum-pretreated, recurrent/metastatic Epstein-Barr virus (EBV)-positive nasopharyngeal carcinoma (EBV+NPC). J. Clin. Oncol. 37, TPS6092 (2019).

    Article  Google Scholar 

  167. Park, J., Thomas, S. & Munster, P. N. Epigenetic modulation with histone deacetylase inhibitors in combination with immunotherapy. Epigenomics 7, 641–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Ghosh, S. K., Perrine, S. P., Williams, R. M. & Faller, D. V. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood 119, 1008–1017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lam, S. et al. Broadly-specific cytotoxic T cells targeting multiple HIV antigens are expanded from HIV+ patients: implications for immunotherapy. Mol. Ther. 23, 387–395 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Lee, P. H., Keller, M. D., Hanley, P. J. & Bollard, C. M. Virus-specific T cell therapies for HIV: lessons learned from hematopoietic stem cell transplantation. Front. Cell Infect. Microbiol. 10, 298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Lam, S. & Bollard, C. T-cell therapies for HIV. Immunotherapy 5, 407–414 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Zhang, J., Guo, Y., Fang, H., Guo, X. & Zhao, L. Oncolytic virus oHSV2 combined with PD-1/PD-L1 inhibitors exert antitumor activity by mediating CD4+ T and CD8+ T cell infiltration in the lymphoma tumor microenvironment. Autoimmunity 56, 2259126 (2023).

    Article  PubMed  Google Scholar 

  173. Bollard, C. M. et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus+ Hodgkin’s disease. J. Exp. Med. 200, 1623–1633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gallot, G. et al. T-cell therapy using a bank of EBV-specific cytotoxic T cells: lessons from a phase I/II feasibility and safety study. J. Immunother. 37, 170–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Haque, T. et al. Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. Lancet 360, 436–442 (2002).

    Article  PubMed  Google Scholar 

  176. Vickers, M. A. et al. Establishment and operation of a good manufacturing practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br. J. Haematol. 167, 402–410 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pfeiffer, T. et al. Posoleucel, an allogeneic, off-the-shelf multivirus-specific T-cell therapy, for the treatment of refractory viral infections in the post-HCT setting. Clin. Cancer Res. 29, 324–330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Louis, C. U. et al. Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients. Blood 113, 2442–2450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Huang, J. et al. Epstein-Barr virus-specific adoptive immunotherapy for recurrent, metastatic nasopharyngeal carcinoma. Cancer 123, 2642–2650 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the US National Institutes of Health National Cancer Institute (Award Numbers 5P01 CA148600-09 and 1P01 CA225618-01A1 to C.M.B.); a Leukaemia and Lymphoma Society Translational Research Program award (to C.M.B.); and a Hyundai Hope on Wheels Scholar Grant (to K.T.).

Author information

Authors and Affiliations

Authors

Contributions

K.T. and C.D.M. researched data for the article. All authors contributed substantially to discussions of content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Catherine M. Bollard.

Ethics declarations

Competing interests

C.M.B. is on the Board of Directors of Cabaletta Bio and is a scientific co-founder and scientific advisory board member of Catamaran Bio, holds stock in Repertoire Immune Medicines and Neximmune, and serves on the data and safety monitoring board of Swedish Orphan Biovitrum (Sobi). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks B. Eiz-Vesper, who co-reviewed with A. Bonifacius; A. Bertoletti; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toner, K., McCann, C.D. & Bollard, C.M. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 21, 709–724 (2024). https://doi.org/10.1038/s41571-024-00930-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-024-00930-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer