Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic lethal strategies for the development of cancer therapeutics

Abstract

Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR–Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.

Key points

  • Clinically approved PARP inhibitors have provided proof-of-concept for the synthetic lethality approach by achieving successful outcomes in patients with cancer.

  • Various hallmarks of cancer might be targetable using a synthetic lethal approach, including the DNA damage response, epigenetic alterations, and changes in cellular metabolism and proliferation.

  • CRISPR–Cas9 technologies have led to the discovery of new druggable signalling pathways and synthetic lethal interactions in cell lines and to the development of novel drugs designed to target these interactions.

  • Multiple novel antitumour therapeutics, including DNA damage response inhibitors, Werner helicase inhibitors, MTA-cooperative PRMT5 inhibitors, MAT2A inhibitors, SMARCA2 degraders, glutaminase inhibitors and enhancer of zeste homologue 2 (EZH2) inhibitors, are currently being tested in early phase trials, either as monotherapies or in combination with other agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic lethality and related genetic interactions in cancer.
Fig. 2: Technology used for the discovery of synthetic lethal interactions.
Fig. 3: Identification of clinical biomarkers for patient selection.

Similar content being viewed by others

References

  1. Hartwell, L. H., Szankasi, P., Roberts, C. J., Murray, A. W. & Friend, S. H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Nijman, S. M. & Friend, S. H. Cancer. Potential of the synthetic lethality principle. Science 342, 809–811 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics 143, 95–102 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rancati, G., Moffat, J., Typas, A. & Pavelka, N. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Puddu, F. et al. Synthetic viability genomic screening defines Sae2 function in DNA repair. EMBO J. 34, 1509–1522 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muller, F. L., Aquilanti, E. A. & DePinho, R. A. Collateral lethality: a new therapeutic strategy in oncology. Trends Cancer 1, 161–173 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Costanzo, M. et al. Global genetic networks and the genotype-to-phenotype relationship. Cell 177, 85–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Mohammadi, S., Saberidokht, B., Subramaniam, S. & Grama, A. Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst. Biol. 9, 96 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chin, L. & Gray, J. W. Translating insights from the cancer genome into clinical practice. Nature 452, 553–563 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Hart, T. et al. Evaluation and design of genome-wide CRISPR/SpCas9 knockout screens. G3 7, 2719–2727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McDonald, E. R. et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Kaelin, W. G. Jr. Molecular biology. Use and abuse of RNAi to study mammalian gene function. Science 337, 421–422 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smith, I. et al. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map. PLoS Biol. 15, e2003213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carette, J. E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pacini, C. et al. Integrated cross-study datasets of genetic dependencies in cancer. Nat. Commun. 12, 1661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gallo, D. et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 604, 749–756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simoneschi, D. et al. CRL4(AMBRA1) is a master regulator of D-type cyclins. Nature 592, 789–793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai, M. et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat. Commun. 12, 3055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corsello, S. M. et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Basu, A. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rees, M. G., Seashore-Ludlow, B. & Clemons, P. A. Computational analyses connect small-molecule sensitivity to cellular features using large panels of cancer cell lines. Methods Mol. Biol. 1888, 233–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu, C. et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat. Biotechnol. 34, 419–423 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adam, S. et al. The CIP2A-TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer. Nat. Cancer 2, 1357–1371 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Alvarez-Quilon, A. et al. Endogenous DNA 3′ blocks are vulnerabilities for BRCA1 and BRCA2 deficiency and are reversed by the APE2 nuclease. Mol. Cell 78, 1152–1165.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mengwasser, K. E. et al. Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets. Mol. Cell 73, 885–899.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oser, M. G. et al. The KDM5A/RBP2 histone demethylase represses NOTCH signaling to sustain neuroendocrine differentiation and promote small cell lung cancer tumorigenesis. Genes Dev. 33, 1718–1738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van der Lelij, P. et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. eLife 6, e26980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. van der Lelij, P. et al. STAG1 vulnerabilities for exploiting cohesin synthetic lethality in STAG2-deficient cancers. Life Sci. Alliance 3, e202000725 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baxter, J. S. et al. Cancer-associated FBXW7 loss is synthetic lethal with pharmacological targeting of CDC7. Mol. Oncol. 18, 369–385 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hustedt, N. et al. A consensus set of genetic vulnerabilities to ATR inhibition. Open Biol. 9, 190156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. MacLeod, G. et al. Genome-wide CRISPR-Cas9 screens expose genetic vulnerabilities and mechanisms of temozolomide sensitivity in glioblastoma stem cells. Cell Rep. 27, 971–986.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Zimmermann, M. et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559, 285–289 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, C. et al. Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene 38, 2451–2463 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Zimmermann, M. et al. Guiding ATR and PARP inhibitor combinationswith chemogenomic screens. Cell Rep. 40, 111081 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF (V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Prahallad, A. et al. PTPN11 is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep. 12, 1978–1985 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Sun, C. et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 7, 86–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Balmus, G. et al. ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat. Commun. 10, 87 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chaikovsky, A. C. et al. The AMBRA1 E3 ligase adaptor regulates the stability of cyclin D. Nature 592, 794–798 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Noordermeer, S. M. & van Attikum, H. PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol. 29, 820–834 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Olivieri, M. et al. A genetic map of the response to DNA damage in human cells. Cell 182, 481–496.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pettitt, S. J. et al. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Nat. Commun. 9, 1849 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pettitt, S. J. & Lord, C. J. Dissecting PARP inhibitor resistance with functional genomics. Curr. Opin. Genet. Dev. 54, 55–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Clements, K. E. et al. Identification of regulators of poly-ADP-ribose polymerase inhibitor response through complementary CRISPR knockout and activation screens. Nat. Commun. 11, 6118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ipsen, M. B. et al. A genome-wide CRISPR-Cas9 knockout screen identifies novel PARP inhibitor resistance genes in prostate cancer. Oncogene 41, 4271–4281 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Lloyd, R. L. et al. Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Res. 49, 8665–8683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang, M. et al. Genome-wide CRISPR screens reveal cyclin C as synthetic survival target of BRCA2. Nucleic Acids Res. 49, 7476–7491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Katti, A., Diaz, B. J., Caragine, C. M., Sanjana, N. E. & Dow, L. E. CRISPR in cancer biology and therapy. Nat. Rev. Cancer 22, 259–279 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Wong, A. S. L. et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl Acad. Sci. USA 113, 2544–2549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, P. et al. A three-way combinatorial CRISPR screen for analyzing interactions among druggable targets. Cell Rep. 32, 108020 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Han, K. et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnol. 35, 463–474 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shen, J. P. et al. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat. Methods 14, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. DeWeirdt, P. C. et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat. Commun. 11, 752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Najm, F. J. et al. Orthologous CRISPR–Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36, 179–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Andersson-Rolf, A. et al. Simultaneous paralogue knockout using a CRISPR-concatemer in mouse small intestinal organoids. Dev. Biol. 420, 271–277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dede, M., McLaughlin, M., Kim, E. & Hart, T. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens. Genome Biol. 21, 262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9–Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Ito, T. et al. Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat. Genet. 53, 1664–1672 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Li, R. et al. Comparative optimization of combinatorial CRISPR screens. Nat. Commun. 13, 2469 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Parrish, P. C. R. et al. Discovery of synthetic lethal and tumor suppressor paralog pairs in the human genome. Cell Rep. 36, 109597 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Thompson, N. A. et al. Combinatorial CRISPR screen identifies fitness effects of gene paralogues. Nat. Commun. 12, 1302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maeder, M. L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10, 973–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e4 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cano-Rodriguez, D. et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7, 12284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B. & Irudayaraj, J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545–46556 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nunez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Petri, K. et al. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nat. Biotechnol. 40, 189–193 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080.e20 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Cuella-Martin, R. et al. Functional interrogation of DNA damage response variants with base editing screens. Cell 184, 1081–1097.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Coelho, M. A. et al. Base editing screens map mutations affecting interferon-gamma signaling in cancer. Cancer Cell 41, 288–303.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sanchez-Rivera, F. J. et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat. Biotechnol. 40, 862–873 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lemay, J. F. et al. A genome-wide screen identifies SCAI as a modulator of the UV-induced replicative stress response. PLoS Biol. 20, e3001543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roidos, P. et al. A scalable CRISPR/Cas9-based fluorescent reporter assay to study DNA double-strand break repair choice. Nat. Commun. 11, 4077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao, Y. et al. Genome-scale mapping of DNA damage suppressors through phenotypic CRISPR-Cas9 screens. Mol. Cell 83, 2792–2809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mezzadra, R. et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549, 106–110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wijdeven, R. H. et al. CRISPR activation screening identifies VGLL3-TEAD1-RUNX1/3 as a transcriptional complex for PD-L1 expression. J. Immunol. 209, 907–915 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Wheeler, E. C. et al. Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors. Nat. Methods 17, 636–642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kanfer, G. et al. Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes. J. Cell Biol. 220, e202006180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yan, X. et al. High-content imaging-based pooled CRISPR screens in mammalian cells. J. Cell. Biol. 220, e202008158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schraivogel, D. et al. High-speed fluorescence image-enabled cell sorting. Science 375, 315–320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559–2575.e28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176, 361–376.e17 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Han, K. et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 580, 136–141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bajaj, J. et al. An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nat. Cancer 1, 410–422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hulton, C. H. et al. Direct genome editing of patient-derived xenografts using CRISPR-Cas9 enables rapid in vivo functional genomics. Nat. Cancer 1, 359–369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Goncalves, E. et al. Minimal genome-wide human CRISPR-Cas9 library. Genome Biol. 22, 40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Buquicchio, F. A. & Satpathy, A. T. Interrogating immune cells and cancer with CRISPR-Cas9. Trends Immunol. 42, 432–446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. LaFleur, M. W. & Sharpe, A. H. CRISPR screens to identify regulators of tumor immunity. Annu. Rev. Cancer Biol. 6, 103–122 (2022).

    Article  PubMed  Google Scholar 

  124. Shi, H., Doench, J. G. & Chi, H. CRISPR screens for functional interrogation of immunity. Nat. Rev. Immunol. 23, 363–380 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. O’Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).

    Article  PubMed  Google Scholar 

  126. Pearl, L. H., Schierz, A. C., Ward, S. E., Al-Lazikani, B. & Pearl, F. M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 15, 166–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Tutt, A. N. J. et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med. 384, 2394–2405 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Golan, T. et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N. Engl. J. Med. 381, 317–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. da Costa, A., Chowdhury, D., Shapiro, G. I., D’Andrea, A. D. & Konstantinopoulos, P. A. Targeting replication stress in cancer therapy. Nat. Rev. Drug Discov. 22, 38–58 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ngoi, N. Y. L. et al. Targeting ATR in patients with cancer. Nat. Rev. Clin. Oncol. 21, 278–293 (2024).

    Article  PubMed  Google Scholar 

  133. Roulston, A. et al. RP-3500: a novel, potent, and selective ATR inhibitor that is effective in preclinical models as a monotherapy and in combination with PARP inhibitors. Mol. Cancer Ther. 21, 245–256 (2022).

    Article  CAS  PubMed  Google Scholar 

  134. Kwok, M. et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127, 582–595 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Min, A. et al. AZD6738, a novel oral inhibitor of ATR, induces synthetic lethality with ATM deficiency in gastric cancer cells. Mol. Cancer Ther. 16, 566–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Dunlop, C. R. et al. Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. Br. J. Cancer 123, 1424–1436 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rafiei, S. et al. ATM loss confers greater sensitivity to ATR inhibition than PARP inhibition in prostate cancer. Cancer Res. 80, 2094–2100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lloyd, R. L. et al. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene 39, 4869–4883 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yap, T. A. et al. First-in-human trial of the oral ataxia telangiectasia and RAD3-related (ATR) inhibitor BAY 1895344 in patients with advanced solid tumors. Cancer Discov. 11, 80–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. Serra, V. et al. Identification of a molecularly-defined subset of breast and ovarian cancer models that respond to WEE1 or ATR inhibition, overcoming PARP inhibitor resistance. Clin. Cancer Res. 28, 4536–4550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Williamson, C. T. et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 7, 13837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Aggarwal, R. S. et al. Interim results from a phase II study of the ATR inhibitor ceralasertib in ARID1A-deficient and ARID1A-intact advanced solid tumor malignancies. Ann. Oncol. 32, S583–S620 (2021).

    Article  Google Scholar 

  143. Gupta, M. et al. BRG1 loss predisposes lung cancers to replicative stress and ATR dependency. Cancer Res. 80, 3841–3854 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kurashima, K. et al. SMARCA4 deficiency-associated heterochromatin induces intrinsic DNA replication stress and susceptibility to ATR inhibition in lung adenocarcinoma. Nar. Cancer 2, zcaa005 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  145. George, E. et al. Improving the efficacy of PARP inhibition with a novel ATR inhibitor, ATRN119, in ovarian high-grade serous cancers. Gynecol. Oncol. 149, 45 (2018).

    Article  Google Scholar 

  146. Setton, J. et al. CDK12 loss leads to replication stress and sensitivity to combinations of the ATR inhibitor camonsertib (RP-3500) with PARP inhibitors. Eur. J. Cancer 174, S99–S100 (2022).

    Article  Google Scholar 

  147. Jo, U. et al. SLFN11 promotes CDT1 degradation by CUL4 in response to replicative DNA damage, while its absence leads to synthetic lethality with ATR/CHK1 inhibitors. Proc. Natl Acad. Sci. USA 118, e2015654118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yap, T. A. et al. 457MO A phase I study of ATR inhibitor M1774 in patients with solid tumours (DDRiver Solid Tumours 301): Part A1 results. Ann. Oncol. 33 (Suppl. 7), S747–S748 (2022).

    Article  Google Scholar 

  149. Yap, T. A. et al. Abstract CT030: genomic and pathologic determinants of response to RP-3500, an ataxia telangiectasia and Rad3-related inhibitor (ATRi), in patients (pts) with DNA damage repair (DDR) loss-of-function (LOF) mutant tumors in the Phase 1/2 TRESR trial. Cancer Res. 82, CT030 (2022).

    Article  Google Scholar 

  150. Yap, T. A. et al. Abstract CT006: phase Ib expansion trial of the safety and efficacy of the oral ataxia telangiectasia and Rad3-related (ATR) inhibitor elimusertib in advanced solid tumors with DNA damage response (DDR) defects. Cancer Res. 82, CT006 (2022).

    Article  Google Scholar 

  151. Yap, T. A. et al. Camonsertib in DNA damage response-deficient advanced solid tumors: phase 1 trial results. Nat. Med. 29, 1400–1411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ngoi, N. Y. L., Pham, M. M., Tan, D. S. P. & Yap, T. A. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends Cancer 7, 930–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Riabinska, A. et al. Therapeutic targeting of a robust non-oncogene addiction to PRKDC in ATM-defective tumors. Sci. Transl. Med. 5, 189ra178 (2013).

    Article  Google Scholar 

  154. Albarakati, N. et al. Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy. Mol. Oncol. 9, 204–217 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Patterson-Fortin, J. et al. Targeting DNA repair with combined inhibition of NHEJ and MMEJ induces synthetic lethality in TP53-mutant cancers. Cancer Res. 82, 3815–3829 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou, Z. et al. Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening. BMC cancer 14, 944 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Al Zubaidi, T. et al. Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Sci. Rep. 11, 3656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. McCabe, N. et al. Mechanistic rationale to target PTEN-deficient tumor cells with inhibitors of the DNA damage response kinase ATM. Cancer Res. 75, 2159–2165 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Yuan, M. et al. Therapeutic vulnerability to ATR inhibition in concurrent NF1 and ATRX-deficient/ALT-positive high-grade solid tumors. Cancers 14, 3015 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Morris, L., Allen, K. E. & La Thangue, N. B. Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators. Nat. Cell Biol. 2, 232–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  161. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Bagheri-Yarmand, R., Biernacka, A., Hunt, K. K. & Keyomarsi, K. Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification. Cancer Res. 70, 5074–5084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Au-Yeung, G. et al. IGNITE: a phase II signal-seeking trial of adavosertib targeting recurrent high-grade, serous ovarian cancer with cyclin E1 overexpression with and without gene amplification. J. Clin. Oncol. 40, 5515 (2022).

    Article  Google Scholar 

  164. Embaby, A. et al. WEE1 inhibitor adavosertib in combination with carboplatin in advanced TP53 mutated ovarian cancer: a biomarker-enriched phase II study. Gynecol. Oncol. 174, 239–246 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Gelderblom, H. et al. Debio 0123-101: a phase 1 trial of Debio 0123 in combination with carboplatin in advanced solid tumors — safety, pharmacokinetic, and preliminary antitumor activity data. J. Clin. Oncol. 41, 3012 (2023).

    Article  Google Scholar 

  166. Liu, J. F. et al. Phase II study of the WEE1 inhibitor adavosertib in recurrent uterine serous carcinoma. J. Clin. Oncol. 39, 1531–1539 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, J. et al. ADAGIO: a phase IIb, open-label, single-arm, multicenter study assessing the efficacy and safety of adavosertib (AZD1775) as treatment for recurrent or persistent uterine serous carcinoma (039). Gynecol. Oncol. 176, S33–S35 (2023).

    Article  Google Scholar 

  168. Pfister, S. X. et al. Inhibiting WEE1 selectively kills histone H3K36me3-deficient cancers by dNTP starvation. Cancer Cell 28, 557–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Maldonado, E. et al. A phase 2 study of the WEE1 inhibitor AZD1775 in SETD2-deficient advanced solid tumor malignancies. J. Clin. Oncol. 41, 3104 (2023).

    Article  Google Scholar 

  170. Chow, J. P. & Poon, R. Y. The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery. Oncogene 32, 4778–4788 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Kok, Y. P. et al. Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors. Oncogenesis 9, 88 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Koepp, D. M. et al. Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294, 173–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  173. Strohmaier, H. et al. Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413, 316–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. O’Brien, S. et al. FBXW7-loss sensitizes cells to ATR inhibition through induced mitotic catastrophe. Cancer Res. Commun. 3, 2596–2607 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Xu, H. et al. Targeting CCNE1 amplified ovarian and endometrial cancers by combined inhibition of PKMYT1 and ATR. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3854682/v1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Gallo, D. et al. Abstract A023: preclinical development of PKMYT1 and WEE1 inhibitor combinations. Mol. Cancer Ther. 22, A023 (2023).

    Article  Google Scholar 

  177. Yap, T. A. et al. Abstract PR008: MYTHIC: First-in-human (FIH) biomarker-driven phase I trial of PKMYT1 inhibitor lunresertib (lunre) alone and with ATR inhibitor camonsertib (cam) in solid tumors with CCNE1 amplification or deleterious alterations in FBXW7 or PPP2R1A. Mol. Cancer Ther. 22, PR008 (2023).

    Article  Google Scholar 

  178. Suski, J. M. et al. CDC7-independent G1/S transition revealed by targeted protein degradation. Nature 605, 357–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Montagnoli, A. et al. Cdc7 inhibition reveals a p53-dependent replication checkpoint that is defective in cancer cells. Cancer Res. 64, 7110–7116 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Yamada, M., Masai, H. & Bartek, J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle 13, 1859–1866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Datta, A. et al. p53 gain-of-function mutations increase Cdc7-dependent replication initiation. EMBO Rep. 18, 2030–2050 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yeow, Z. Y. et al. Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer. Nature 585, 447–452 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Meitinger, F. et al. TRIM37 controls cancer-specific vulnerability to PLK4 inhibition. Nature 585, 440–446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Murai, J. et al. The USP1/UAF1 complex promotes double-strand break repair through homologous recombination. Mol. Cell Biol. 31, 2462–2469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Shenker, S. et al. Abstract 1337: functional genomic characterization of the USP1 inhibitor KSQ-4279 reveals a distinct mechanism of action and resistance profile relative to other DDR targeting drugs. Cancer Res. 81, 1337–1337 (2021).

    Article  Google Scholar 

  187. Schrempf, A., Slyskova, J. & Loizou, J. I. Targeting the DNA repair enzyme polymerase theta in cancer therapy. Trends Cancer 7, 98–111 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Mateos-Gomez, P. A. et al. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518, 258–262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zatreanu, D. et al. Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Brambati, A., Barry, R. M. & Sfeir, A. DNA polymerase theta (Poltheta) — an error-prone polymerase necessary for genome stability. Curr. Opin. Genet. Dev. 60, 119–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhou, J. et al. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nat. Cancer 2, 598–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Oh, G. et al. POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling. J. Clin. Invest. 133, e165934 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Noordermeer, S. M. et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 560, 117–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Garcia-Santisteban, I., Peters, G. J., Giovannetti, E. & Rodriguez, J. A. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol. Cancer 12, 91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lim, K. S. et al. USP1 is required for replication fork protection in BRCA1-deficient tumors. Mol. Cell 72, 925–941.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Simoneau, A. et al. Ubiquitinated PCNA drives USP1 synthetic lethality in cancer. Mol. Cancer Ther. 22, 215–226 (2023).

    Article  CAS  PubMed  Google Scholar 

  198. De Marco Zompit, M. et al. The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis. Nat. Commun. 13, 4143 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hewitt, G. et al. Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Mol. Cell 81, 767–783.e11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kategaya, L., Perumal, S. K., Hager, J. H. & Belmont, L. D. Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability. iScience 13, 488–497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lieb, S. et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. eLife 8, e43333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. van Wietmarschen, N. et al. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586, 292–298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Picco, G. et al. Werner helicase is a synthetic-lethal vulnerability in mismatch repair-deficient colorectal cancer refractory to targeted therapies, chemotherapy, and immunotherapy. Cancer Discov. 11, 1923–1937 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Morales-Juarez, D. A. & Jackson, S. P. Clinical prospects of WRN inhibition as a treatment for MSI tumours. NPJ Precis. Oncol. 6, 85 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cortes-Cros, M. et al. Abstract PR007: discovery of HRO761, a novel, first-in-class clinical stage WRN inhibitor with potent and selective anti-tumor activity in cancers with microsatellite instability. Mol. Cancer Ther. 22, PR007 (2023).

    Article  Google Scholar 

  207. Ferretti, S. et al. Abstract B143: HRO761, a first-in-class, clinical stage WRN inhibitor with potent preclinical anti-tumor activity in MSIhigh models. Mol. Cancer Ther. 22, B143 (2023).

    Article  Google Scholar 

  208. Baltgalvis, K. A. et al. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 629, 435–442 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Vander Heiden, M. G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    Article  Google Scholar 

  210. Kalev, P. et al. MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell 39, 209–224.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Marjon, K. et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 15, 574–587 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Mavrakis, K. J. et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  213. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Han, G. et al. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun. 12, 5606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bezzi, M. et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 27, 1903–1916 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Braun, C. J. et al. Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32, 411–426.e11 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Tanikawa, M., Sanjiv, K., Helleday, T., Herr, P. & Mortusewicz, O. The spliceosome U2 snRNP factors promote genome stability through distinct mechanisms; transcription of repair factors and R-loop processing. Oncogenesis 5, e280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rodon, J. et al. First-in-human study of AMG 193, an MTA-cooperative PRMT5 inhibitor, in patients with MTAP-deleted solid tumors: results from phase I dose exploration. Ann. Oncol. https://doi.org/10.1016/j.annonc.2024.08.2339 (2024).

    Article  PubMed  Google Scholar 

  221. Engstrom, L. D. et al. MRTX1719 is an MTA-cooperative PRMT5 inhibitor that exhibits synthetic lethality in preclinical models and patients with MTAP-deleted cancer. Cancer Discov. 13, 2412–2431 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wu, S. et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat. Cancer 2, 189–200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Bjelosevic, S. et al. Serine biosynthesis is a metabolic vulnerability in FLT3-ITD-driven acute myeloid leukemia. Cancer Discov. 11, 1582–1599 (2021).

    Article  CAS  PubMed  Google Scholar 

  224. Northcott, P. A. et al. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408–1414 (2011).

    Article  PubMed  Google Scholar 

  225. Gwynne, W. D. et al. Cancer-selective metabolic vulnerabilities in MYC-amplified medulloblastoma. Cancer Cell 40, 1488–1502.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. Thomas, D. et al. Dysregulated lipid synthesis by oncogenic IDH1 mutation is a targetable synthetic lethal vulnerability. Cancer Discov. 13, 496–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  227. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012).

    Article  CAS  Google Scholar 

  228. Grassian, A. R. et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 74, 3317–3331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bassal, M. A. et al. Author correction: germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nat. Commun. 13, 4131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gelman, S. J. et al. Consumption of NADPH for 2-HG synthesis increases pentose phosphate pathway flux and sensitizes cells to oxidative stress. Cell Rep. 22, 512–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324, 261–265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fack, F. et al. Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol. Med. 9, 1681–1695 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Lissanu Deribe, Y. et al. Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat. Med. 24, 1047–1057 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).

    Article  CAS  PubMed  Google Scholar 

  235. Yap, T. A. et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat. Med. 29, 115–126 (2023).

    Article  CAS  PubMed  Google Scholar 

  236. Beck, S. et al. A blueprint for an international cancer epigenome consortium. A report from the AACR cancer epigenome task force. Cancer Res. 72, 6319–6324 (2012).

    Article  CAS  PubMed  Google Scholar 

  237. Polak, P. et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Valencia, A. M. & Kadoch, C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat. Cell Biol. 21, 152–161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kadoch, C. & Crabtree, G. R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, e1500447 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Oike, T. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013).

    Article  CAS  PubMed  Google Scholar 

  242. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wilson, B. G. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation. Mol. Cell. Biol. 34, 1136–1144 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wang, X. et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res. 69, 8094–8101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Schick, S. et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat. Genet. 51, 1399–1410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Ehrenhöfer-Wölfer, K. et al. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci. Rep. 9, 11661 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Papillon, J. P. et al. Discovery of orally active inhibitors of brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. J. Med. Chem. 61, 10155–10172 (2018).

    Article  CAS  PubMed  Google Scholar 

  249. Cantley, J. et al. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nat. Commun. 13, 6814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Wiegand, K. C. et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363, 1532–1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Berns, K. et al. ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors. Oncogene 37, 4611–4625 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Gounder, M. et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 21, 1423–1432 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Kim, K. H. et al. SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nat. Med. 21, 1491–1496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Bitler, B. G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  256. Rehman, H. et al. ARID1A-deficient bladder cancer is dependent on PI3K signaling and sensitive to EZH2 and PI3K inhibitors. JCI Insight 7, e155899 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Oruetxebarria, I. et al. P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J. Biol. Chem. 279, 3807–3816 (2004).

    Article  CAS  PubMed  Google Scholar 

  258. Kia, S. K., Gorski, M. M., Giannakopoulos, S. & Verrijzer, C. P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol. Cell. Biol. 28, 3457–3464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Wilson, B. G. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Panditharatna, E. et al. BAF complex maintains glioma stem cells in pediatric H3K27M glioma. Cancer Discov. 12, 2880–2905 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Mo, Y. et al. Epigenome programming by H3. 3K27M mutation creates a dependence of pediatric glioma on SMARCA4. Cancer Discov. 12, 2906–2929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bender, S. et al. Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24, 660–672 (2013).

    Article  CAS  PubMed  Google Scholar 

  263. Chan, K.-M. et al. The histone H3. 3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev. 27, 985–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Venneti, S. et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol. 23, 558–564 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Piunti, A. et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med. 23, 493–500 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Mohammad, F. et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat. Med. 23, 483–492 (2017).

    Article  CAS  PubMed  Google Scholar 

  268. Fang, D. et al. H3. 3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers. eLife 7, e36696 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Skoulidis, F. et al. Sotorasib for lung cancers with KRAS p. G12C mutation. N. Engl. J. Med. 384, 2371–2381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Jänne, P. A. et al. Adagrasib in non-small-cell lung cancer harboring a KRASG12C mutation. N. Engl. J. Med. 387, 120–131 (2022).

    Article  PubMed  Google Scholar 

  271. Kemp, S. B. et al. Efficacy of a small molecule inhibitor of KrasG12D in immunocompetent models of pancreatic cancer. Cancer Discov. 13, 298–311 (2022).

    Article  PubMed Central  Google Scholar 

  272. Aguirre, A. J. & Hahn, W. C. Synthetic lethal vulnerabilities in KRAS-mutant cancers. Cold Spring Harb. Perspect. Med. 8, a031518 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Puyol, M. et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  274. Corcoran, R. B. et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 23, 121–128 (2013).

    Article  CAS  PubMed  Google Scholar 

  275. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Xue, W. et al. Response and resistance to NF-κB inhibitors in mouse models of lung adenocarcinomaNF-κB inhibitors in mouse models of lung cancer. Cancer Discov. 1, 236–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Ku, A. A. et al. Integration of multiple biological contexts reveals principles of synthetic lethality that affect reproducibility. Nat. Commun. 11, 2375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Downward, J. RAS synthetic lethal screens revisited: still seeking the elusive prize? Clin. Cancer Res. 21, 1802–1809 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Goldman, J. W. et al. A randomized phase III study of abemaciclib versus erlotinib in patients with stage IV non-small cell lung cancer with a detectable KRAS mutation who failed prior platinum-based therapy: JUNIPER. Front. Oncol. 10, 578756 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Drilon, A. et al. Exceptional responders with invasive mucinous adenocarcinomas: a phase 2 trial of bortezomib in patients with KRAS G12D-mutant lung cancers. Cold Spring Harb. Mol. Case Stud. 5, a003665 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Corcoran, R. et al. Phase I/II study of combined BCL-XL and MEK inhibition with navitoclax (N) and trametinib (T) in KRAS or NRAS mutant advanced solid tumours. Ann. Oncol. 30, v164 (2019).

    Article  Google Scholar 

  282. Sulahian, R. et al. Synthetic lethal interaction of SHOC2 depletion with MEK inhibition in RAS-driven cancers. Cell Rep. 29, 118–134.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Jones, G. G. et al. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nat. Commun. 10, 2532 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903.e15 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Kwon, J. J. et al. Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex. Nature 609, 408–415 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Xue, Z. et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 28, 719–729 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Jansen, R. A. et al. Small-molecule inhibition of MAP2K4 is synergistic with RAS inhibitors in KRAS-mutant cancers. Proc. Natl Acad. Sci. USA 121, e2319492121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Monk, B. J. et al. A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J. Clin. Oncol. 40, 3952–3964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. González-Martín, A. et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 381, 2391–2402 (2019).

    Article  PubMed  Google Scholar 

  290. Feng, W. & Jasin, M. BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nat. Commun. 8, 525 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Moynahan, M. E., Cui, T. Y. & Jasin, M. Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res. 61, 4842–4850 (2001).

    CAS  PubMed  Google Scholar 

  292. Wang, Y. et al. A preclinical trial and molecularly annotated patient cohort identify predictive biomarkers in homologous recombination-deficient pancreatic cancer. Clin. Cancer Res. 26, 5462–5476 (2020).

    Article  CAS  PubMed  Google Scholar 

  293. Deshpande, M. et al. Error-prone repair of stalled replication forks drives mutagenesis and loss of heterozygosity in haploinsufficient BRCA1 cells. Mol. Cell 82, 3781–3793.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  294. Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Gruber, J. J. et al. A phase II study of talazoparib monotherapy in patients with wild-type BRCA1 and BRCA2 with a mutation in other homologous recombination genes. Nat. Cancer 3, 1181–1191 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Mutter, R. W. et al. Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer. J. Pathol. 242, 165–177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Polak, P. et al. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49, 1476–1486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Riaz, N. et al. Pan-cancer analysis of bi-allelic alterations in homologous recombination DNA repair genes. Nat. Commun. 8, 857 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Abida, W. et al. Rucaparib in men with metastatic castration-resistant prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J. Clin. Oncol. 38, 3763–3772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. van der Wijngaart, H. et al. Patients with biallelic BRCA1/2 inactivation respond to olaparib treatment across histologic tumor types. Clin. Cancer Res. 27, 6106–6114 (2021).

    Article  PubMed  Google Scholar 

  301. Setton, J. et al. Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 11, 1626–1635 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Popova, T. et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 72, 5454–5462 (2012).

    Article  CAS  PubMed  Google Scholar 

  304. Reijns, M. A. M. et al. Publisher correction: signatures of TOP1 transcription-associated mutagenesis in cancer and germline. Nature 605, E7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Zou, X. et al. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Nat. Cancer 2, 643–657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Batalini, F. et al. Mutational signature 3 detected from clinical panel sequencing is associated with responses to olaparib in breast and ovarian cancers. Clin. Cancer Res. 28, 4714–4723 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Chun, J., Buechelmaier, E. S. & Powell, S. N. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol. Cell Biol. 33, 387–395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Graeser, M. et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 16, 6159–6168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Castroviejo-Bermejo, M. et al. A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation. EMBO Mol. Med. 10, e9172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  310. Cruz, C. et al. RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer. Ann. Oncol. 29, 1203–1210 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Pellegrino, B. et al. Preclinical in vivo validation of the RAD51 test for identification of homologous recombination-deficient tumors and patient stratification. Cancer Res. 82, 1646–1657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Carreira, S. et al. Biomarkers associating with PARP inhibitor benefit in prostate cancer in the TOPARP-B trial. Cancer Discov. 11, 2812–2827 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Chopra, N. et al. Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat. Commun. 11, 2662 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Eikesdal, H. P. et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann. Oncol. 32, 240–249 (2021).

    Article  CAS  PubMed  Google Scholar 

  315. Llop-Guevara, A. et al. Association of RAD51 with homologous recombination deficiency (HRD) and clinical outcomes in untreated triple-negative breast cancer (TNBC): analysis of the GeparSixto randomized clinical trial. Ann. Oncol. 32, 1590–1596 (2021).

    Article  CAS  PubMed  Google Scholar 

  316. Compadre, A. J. et al. RAD51 foci as a biomarker predictive of platinum chemotherapy response in ovarian cancer. Clin. Cancer Res. 29, 2466–2479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Dreyer, S. B. et al. Targeting DNA damage response and replication stress in pancreatic cancer. Gastroenterology 160, 362–377.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  318. Guerrero Llobet, S. et al. An mRNA expression-based signature for oncogene-induced replication-stress. Oncogene 41, 1216–1224 (2022).

    Article  CAS  PubMed  Google Scholar 

  319. Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Fu, S. et al. Multicenter phase II trial of the WEE1 inhibitor adavosertib in refractory solid tumors harboring CCNE1 amplification. J. Clin. Oncol. 41, 1725–1734 (2023).

    Article  CAS  PubMed  Google Scholar 

  321. Ryan, C. J., Devakumar, L. P. S., Pettitt, S. J. & Lord, C. J. Complex synthetic lethality in cancer. Nat. Genet. 55, 2039–2048 (2023).

    Article  CAS  PubMed  Google Scholar 

  322. Jonsson, P. et al. Tumour lineage shapes BRCA-mediated phenotypes. Nature 571, 576–579 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Meric-Bernstam, F. et al. Abstract CT029: safety and clinical activity of single-agent ZN-c3, an oral WEE1 inhibitor, in a phase 1 trial in subjects with recurrent or advanced uterine serous carcinoma (USC). Cancer Res. 82, CT029 (2022).

    Article  Google Scholar 

  324. Liu, J. F. et al. Correlation of cyclin E1 expression and clinical outcomes in a phase 1b dose-escalation study of azenosertib (ZN-c3), a WEE1 inhibitor, in combination with chemotherapy (CT) in patients (pts) with platinum-resistant or refractory (R/R) epithelial ovarian, peritoneal, or fallopian tube cancer (EOC). J. Clin. Oncol. 41, 5513 (2023).

    Article  Google Scholar 

  325. Veitch, Z. W. et al. Safety and tolerability of CFI-400945, a first-in-class, selective PLK4 inhibitor in advanced solid tumours: a phase 1 dose-escalation trial. Br. J. Cancer 121, 318–324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Heist, R. S. et al. Abstract PR03: a phase 1 trial of AG-270 in patients with advanced solid tumors or lymphoma with homozygous MTAP deletion. Mol. Cancer Ther. 18, PR03 (2019).

    Article  Google Scholar 

  327. Fan, Z. et al. Abstract CT105: preliminary results from the phase I part of a first-in-human phase I/II study of HH2853, an EZH1/2 inhibitor, in patients with relapsed/refractory non-Hodgkin lymphomas or advanced solid tumors. Cancer Res. 83, CT105 (2023).

    Article  Google Scholar 

  328. Fan, Z. et al. HH2853, an EZH1/2 inhibitor, in patients with epithelioid sarcoma: preliminary results from the phase 1 part of a first-in-human phase I/II study. J. Clin. Oncol. 41, 11562 (2023).

    Article  Google Scholar 

  329. Chi, S. N. et al. Tazemetostat in patients with tumors with alterations in EZH2 or the SWI/SNF complex: results from NCI-COG Pediatric MATCH trial Arm C (APEC1621C). J. Clin. Oncol. 40, 10009 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Timothy A. Yap.

Ethics declarations

Competing interests

D.G. is an employee of and holds shares in Repare Therapeutics. D.D. holds shares in Repare Therapeutics and Induxion Therapeutics. T.A.Y. is an employee of the University of Texas MD Anderson Cancer Center as Vice President and Head of Clinical Development in the Therapeutics Discovery Division, which has a commercial interest in DDR and other inhibitors (for example IACS30380/ART0380 was licensed to Artios); has acted as a consultant of AbbVie, AstraZeneca, Acrivon, Adagene, Almac, Aduro, Amphista, Artios, Athena, Atrin, Avoro, Axiom, Baptist Health Systems, Bayer, Beigene, Boxer, Bristol Myers Squibb, C4 Therapeutics, Calithera, Cancer Research UK, Clovis, Cybrexa, Diffusion, EMD Serono, F-Star, Genmab, Glenmark, GLG, Globe Life Sciences, GSK, Guidepoint, Idience, Ignyta, I-Mab, ImmuneSensor, Impact, Institut Gustave Roussy, Intellisphere, Jansen, Kyn, MEI pharma, Mereo, Merck, Natera, Nexys, Novocure, OHSU, OncoSec, Ono Pharma, Pegascy, PER, Pfizer, Piper-Sandler, Prolynx, Repare, resTORbio, Roche, Schrodinger, Theragnostics, Varian, Versant, Vibliome, Xinthera, Zai Labs and ZielBio; is stockholder in Seagen; and has received institutional research funding from Acrivon, Artios, AstraZeneca, Bayer, Beigene, BioNTech, Blueprint, BMS, Clovis, Constellation, Cyteir, Eli Lilly, EMD Serono, Forbius, F-Star, Artios, GlaxoSmithKline, Genentech, Haihe, Ideaya, ImmuneSensor, Ionis, Ipsen, Jounce, Karyopharm, KSQ, Kyowa, Merck, Mirati, Novartis, Pfizer, Ribon Therapeutics, Regeneron, Repare, Rubius, Sanofi, Scholar Rock, Seattle Genetics, Tesaro, Vivace and Zenith. N.Y.L.N., C.T. and M.N. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoi, N.Y.L., Gallo, D., Torrado, C. et al. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 22, 46–64 (2025). https://doi.org/10.1038/s41571-024-00966-z

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-024-00966-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing