Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The changing treatment landscape of EGFR-mutant non-small-cell lung cancer

Abstract

The discovery of the association between EGFR mutations and the efficacy of EGFR tyrosine-kinase inhibitors (TKIs) has revolutionized the treatment paradigm for patients with non-small-cell lung cancer (NSCLC). Currently, third-generation EGFR TKIs, which are often characterized by potent central nervous system penetrance, are the standard-of-care first-line treatment for advanced-stage EGFR-mutant NSCLC. Rational combinations of third-generation EGFR TKIs with anti-angiogenic drugs, chemotherapy, the EGFR–MET bispecific antibody amivantamab or local tumour ablation are being investigated as strategies to delay drug resistance and increase clinical benefit. Furthermore, EGFR TKIs are being evaluated in patients with early stage or locally advanced EGFR-mutant NSCLC, with the ambitious aim of achieving cancer cure. Despite the inevitable challenge of acquired resistance, emerging treatments such as new TKIs, antibody–drug conjugates, new immunotherapeutic approaches and targeted protein degraders have shown considerable promise in patients with progression of EGFR-mutant NSCLC on or after treatment with EGFR TKIs. In this Review, we describe the current first-line treatment options for EGFR-mutant NSCLC, provide an overview of the mechanisms of acquired resistance to third-generation EGFR TKIs and explore novel promising treatment strategies. We also highlight potential avenues for future research that are aimed at improving the survival outcomes of patients with this disease.

Key points

  • Third-generation EGFR tyrosine-kinase inhibitors (TKIs) have become the standard-of-care first-line treatment for advanced-stage EGFR-mutant non-small-cell lung cancer (NSCLC). However, their efficacy appears to have plateaued, with the median progression-free survival duration not exceeding 2 years in pivotal trials for any approved third-generation EGFR TKI.

  • Rational combinations of third-generation EGFR TKIs with anti-angiogenic drugs, chemotherapy, the EGFR–MET bispecific antibody amivantamab or local tumour ablation are under investigation as strategies to delay resistance, prolong the duration of response and maximize treatment efficacy.

  • The therapeutic scope of EGFR TKIs has been expanded to include patients with resectable early stage and inoperable locally advanced NSCLC, marking a crucial milestone in the precision management of EGFR-mutant NSCLC.

  • At present, no biomarker-driven strategies have been approved for patients with NSCLC that is progressing on third-generation EGFR TKIs. By contrast, several chemotherapy-based, biomarker-agnostic approaches have been approved for clinical use, including chemotherapy plus amivantamab or ivonescimab, offering new avenues for addressing this critical unmet medical need.

  • Manipulating drug-resistant cells (including drug-tolerant persister cells, dormant cancer cells and cancer stem cells) could reduce the likelihood of resistance following effective EGFR TKI treatment. Although the mechanisms behind the persistence of these cells are not fully understood, local ablation of residual lesions (aimed at their elimination) has yielded promising results.

  • Circulating tumour DNA-guided analysis of molecular residual disease might provide valuable guidance for adaptive therapy in patients with EGFR-mutant NSCLC. Well-designed, prospective randomized clinical trials are needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major advances in the use of EGFR tyrosine-kinase inhibitors to treat patients with non-small-cell lung cancer.
Fig. 2: Mechanisms of resistance to third-generation EGFR tyrosine-kinase inhibitors and potential treatment strategies.
Fig. 3: Potential strategies for the eradication of residual disease and persister cell populations.
Fig. 4: Integrating circulating tumour DNA into the management of EGFR-mutant non-small-cell lung cancer.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  2. Wang, M., Herbst, R. S. & Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 27, 1345–1356 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F. & Wong, K. K. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat. Rev. Cancer 14, 535–546, (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D’Angelo, S. P. et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J. Clin. Oncol. 29, 2066–2070 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shi, Y. et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J. Thorac. Oncol. 9, 154–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skoulidis, F. & Heymach, J. V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 19, 495–509 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cooper, A. J., Sequist, L. V. & Lin, J. J. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 19, 499–514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Passaro, A., Janne, P. A., Mok, T. & Peters, S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat. Cancer 2, 377–391 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Chmielecki, J. et al. Candidate mechanisms of acquired resistance to first-line osimertinib in EGFR-mutated advanced non-small cell lung cancer. Nat. Commun. 14, 1070 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chmielecki, J. et al. Analysis of acquired resistance mechanisms to osimertinib in patients with EGFR-mutated advanced non-small cell lung cancer from the AURA3 trial. Nat. Commun. 14, 1071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Borgeaud, M. et al. Unveiling the landscape of uncommon EGFR mutations in NSCLC — a systematic review. J. Thorac. Oncol. 19, 973–983 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Castellanos, E., Feld, E. & Horn, L. Driven by mutations: the predictive value of mutation subtype in EGFR-mutated non-small cell lung cancer. J. Thorac. Oncol. 12, 612–623 (2017).

    Article  PubMed  Google Scholar 

  16. Robichaux, J. P. et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature 597, 732–737 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, C. C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Shi, Y. K. et al. First-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation-positive lung adenocarcinoma (CONVINCE): a phase 3, open-label, randomized study. Ann. Oncol. 28, 2443–2450 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, Y. L. et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 15, 213–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Y. L. et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 18, 1454–1466 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Ou, S. H. & Soo, R. A. Dacomitinib in lung cancer: a “lost generation” EGFR tyrosine-kinase inhibitor from a bygone era? Drug Des. Dev. Ther. 9, 5641–5653, (2015).

    Article  Google Scholar 

  27. Soria, J. C. et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N. Engl. J. Med. 378, 113–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4, 1046–1061 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, S. et al. AENEAS: a randomized phase III trial of aumolertinib versus gefitinib as first-line therapy for locally advanced or metastatic non-small-cell lung cancer with EGFR exon 19 deletion or L858R mutations. J. Clin. Oncol. 40, 3162–3171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi, Y. et al. Furmonertinib (AST2818) versus gefitinib as first-line therapy for Chinese patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer (FURLONG): a multicentre, double-blind, randomised phase 3 study. Lancet Respir. Med. 10, 1019–1028 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Lu, S. et al. Befotertinib (D-0316) versus icotinib as first-line therapy for patients with EGFR-mutated locally advanced or metastatic non-small-cell lung cancer: a multicentre, open-label, randomised phase 3 study. Lancet Respir. Med. 11, 905–915 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Cho, B. C. et al. Lazertinib versus gefitinib as first-line treatment in patients with EGFR-mutated advanced non-small-cell lung cancer: results from LASER301. J. Clin. Oncol. 41, 4208–4217 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Yang, J. C. H. et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 16, 830–838 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Miura, S. et al. LBA66 Afatinib versus chemotherapy for treatment-naïve non-small cell lung cancer with a sensitizing uncommon epidermal growth factor receptor mutation: a phase III study (ACHILLES/TORG1834). Ann. Oncol. 34, S1310–S1311 (2023).

    Article  Google Scholar 

  35. Okuma, Y. et al. First-line osimertinib for previously untreated patients with NSCLC and uncommon EGFR mutations: the UNICORN phase 2 nonrandomized clinical trial. JAMA Oncol. 10, 43–51 (2024).

    Article  PubMed  Google Scholar 

  36. Cho, J. H. et al. Osimertinib for patients with non-small-cell lung cancer harboring uncommon EGFR mutations: a multicenter, open-label, phase II trial (KCSG-LU15-09). J. Clin. Oncol. 38, 488–495 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Le, X. N. et al. FURTHER: a global, randomized study of firmonertinib at two dose levels in TKI-naive, advanced NSCLC with EGFR PACC mutations. World Conference on Lung Cancer. abstr. PL04.07 (2024).

  38. Cho, B. C. et al. Amivantamab plus lazertinib in atypical EGFR-mutated advanced non-small cell lung cancer (NSCLC): results from CHRYSALIS-2. J. Clin. Oncol. 42, 8516–8516 (2024).

    Article  Google Scholar 

  39. Friedlaender, A. et al. EGFR and HER2 exon 20 insertions in solid tumours: from biology to treatment. Nat. Rev. Clin. Oncol. 19, 51–69 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Elamin, Y. Y. et al. Poziotinib for EGFR exon 20-mutant NSCLC: Clinical efficacy, resistance mechanisms, and impact of insertion location on drug sensitivity. Cancer Cell 40, 754–767.e756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riely, G. J. et al. Activity and safety of mobocertinib (TAK-788) in previously treated non-small cell lung cancer with EGFR exon 20 insertion mutations from a phase I/II trial. Cancer Discov. 11, 1688–1699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gonzalvez, F. et al. Mobocertinib (TAK-788): a targeted inhibitor of EGFR exon 20 insertion mutants in non-small cell lung cancer. Cancer Discov. 11, 1672–1687 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, C. et al. Treatment outcomes and safety of mobocertinib in platinum-pretreated patients with EGFR exon 20 insertion-positive metastatic non-small cell lung cancer: a phase 1/2 open-label nonrandomized clinical trial. JAMA Oncol. 7, e214761 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jänne, P. A. et al. 507O EXCLAIM-2: phase III trial of first-line (1L) mobocertinib versus platinum-based chemotherapy in patients (pts) with epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins)+ locally advanced/metastatic NSCLC. Ann. Oncol. 34, S1663–S1664 (2023).

    Article  Google Scholar 

  45. Wang, M. et al. Sunvozertinib for patients in China with platinum-pretreated locally advanced or metastatic non-small-cell lung cancer and EGFR exon 20 insertion mutation (WU-KONG6): single-arm, open-label, multicentre, phase 2 trial. Lancet Respir. Med. 12, 217–224 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Piotrowska, Z. et al. Safety, tolerability, and antitumor activity of zipalertinib among patients with non-small-cell lung cancer harboring epidermal growth factor receptor exon 20 insertions. J. Clin. Oncol. 41, 4218–4225 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Duan, J. et al. Safety, tolerability, pharmacokinetics, and preliminary efficacy of YK-029A in treatment-naive patients with advanced NSCLC harboring EGFR exon 20 insertion mutations: a phase 1 trial. J. Thorac. Oncol. 19, 314–324 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Han, B. et al. OA03.04 a phase 1b study of furmonertinib, an oral, brain penetrant, selective EGFR inhibitor, in patients with advanced NSCLC with EGFR exon 20 insertions. J. Thorac. Oncol. 18, S49 (2023).

    Article  Google Scholar 

  49. Ou, S. I. et al. Distribution and detectability of EGFR exon 20 insertion variants in NSCLC. J. Thorac. Oncol. 18, 744–754 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Moores, S. L. et al. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res. 76, 3942–3953 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Grugan, K. D. et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs 9, 114–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Neijssen, J. et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J. Biol. Chem. 296, 100641 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vijayaraghavan, S. et al. Amivantamab (JNJ-61186372), an Fc enhanced EGFR/cMet bispecific antibody, induces receptor downmodulation and antitumor activity by monocyte/macrophage trogocytosis. Mol. Cancer Ther. 19, 2044–2056 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Haura, E. B. et al. JNJ-61186372 (JNJ-372), an EGFR-cMet bispecific antibody, in EGFR-driven advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 37, 9009–9009 (2019).

    Article  Google Scholar 

  55. Yun, J. et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of EGFR exon 20 insertion-driven NSCLC. Cancer Discov. 10, 1194–1209 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Park, K. et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J. Clin. Oncol. 39, 3391–3402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, C. et al. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N. Engl. J. Med. 389, 2039–2051 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, S. et al. Phase 1b trial of anti-EGFR antibody JMT101 and Osimertinib in EGFR exon 20 insertion-positive non-small-cell lung cancer. Nat. Commun. 14, 3468 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cho, B. C. et al. Amivantamab plus lazertinib in previously untreated EGFR-mutated advanced NSCLC. N. Engl. J. Med. 391, 1486–1498 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Ramalingam, S. S. et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 382, 41–50 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Hosomi, Y. et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J. Clin. Oncol. 38, 115–123 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Noronha, V. et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J. Clin. Oncol. 38, 124–136 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. La Monica, S. et al. Combination of gefitinib and pemetrexed prevents the acquisition of TKI resistance in NSCLC cell lines carrying EGFR-activating mutation. J. Thorac. Oncol. 11, 1051–1063 (2016).

    Article  PubMed  Google Scholar 

  64. Miyauchi, E. et al. Updated analysis of NEJ009: gefitinib-alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated EGFR. J. Clin. Oncol. 40, 3587–3592 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Planchard, D. et al. Osimertinib with or without chemotherapy in EGFR-mutated advanced NSCLC. N. Engl. J. Med. 389, 1935–1948 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Janne, P. A. et al. CNS efficacy of osimertinib with or without chemotherapy in epidermal growth factor receptor-mutated advanced non-small-cell lung cancer. J. Clin. Oncol. 42, 808–820 (2024).

    Article  PubMed  Google Scholar 

  67. Valdiviezo, N. et al. 4O First-line (1L) osimertinib (osi) ± platinum-pemetrexed in EGFR-mutated (EGFRm) advanced NSCLC: FLAURA2 post-progression outcomes. ESMO Open 9, 102583 (2024).

    Article  Google Scholar 

  68. Lee, S.-H. et al. Amivantamab and lazertinib in treatment-naïve EGFR-mutated advanced non-small-cell lung cancer (NSCLC): long-term follow-up and ctDNA results from CHRYSALIS. J. Clin. Oncol. 41, 9134–9134 (2023).

    Article  Google Scholar 

  69. Felip, E. et al. Amivantamab plus lazertinib versus osimertinib in first-line EGFR-mutant advanced non-small-cell lung cancer with biomarkers of high-risk disease: a secondary analysis from MARIPOSA. Ann. Oncol. 35, 805–816 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Besse, B. et al. LBA55 Mechanisms of acquired resistance to first-line amivantamab plus lazertinib versus osimertinib in patients with EGFR-mutant advanced non-small cell lung cancer: an early analysis from the phase III MARIPOSA study. Ann. Oncol. 35, S1245–S1246 (2024).

    Article  Google Scholar 

  71. Cho, B. C. et al. Amivantamab plus lazertinib in osimertinib-relapsed EGFR-mutant advanced non-small cell lung cancer: a phase 1 trial. Nat. Med. 29, 2577–2585 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leighl, N. B. et al. Subcutaneous versus intravenous amivantamab, both in combination with lazertinib, in refractory EGFR-mutated NSCLC: primary results from the phase 3 PALOMA-3 study. J. Clin. Oncol. 42, 3593–3605 (2024).

    Article  PubMed  Google Scholar 

  73. Pakkala, S. & Ramalingam, S. S. Combined inhibition of vascular endothelial growth factor and epidermal growth factor signaling in non-small-cell lung cancer therapy. Clin. Lung Cancer 10, S17–S23 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Seto, T. et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 15, 1236–1244 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Saito, H. et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 20, 625–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, Q. et al. Bevacizumab plus erlotinib in Chinese patients with untreated, EGFR-mutated, advanced NSCLC (ARTEMIS-CTONG1509): a multicenter phase 3 study. Cancer Cell 39, 1279–1291.e1273 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Nakagawa, K. et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 20, 1655–1669 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Piccirillo, M. C. et al. Addition of bevacizumab to erlotinib as first-line treatment of patients with EGFR-mutated advanced nonsquamous NSCLC: the BEVERLY multicenter randomized phase 3 trial. J. Thorac. Oncol. 17, 1086–1097 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Zhao, H. et al. Apatinib plus gefitinib as first-line treatment in advanced EGFR-mutant NSCLC: the phase III ACTIVE study (CTONG1706). J. Thorac. Oncol. 16, 1533–1546 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Kawashima, Y. et al. Bevacizumab plus erlotinib versus erlotinib alone in Japanese patients with advanced, metastatic, EGFR-mutant non-small-cell lung cancer (NEJ026): overall survival analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Respir. Med. 10, 72–82 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Yamamoto, N. et al. Erlotinib plus bevacizumab vs erlotinib monotherapy as first-line treatment for advanced EGFR mutation-positive non-squamous non-small-cell lung cancer: survival follow-up results of the randomized JO25567 study. Lung Cancer 151, 20–24 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Kenmotsu, H. et al. Randomized phase 2 study of osimertinib plus bevacizumab versus osimertinib for untreated patients with nonsquamous NSCLC harboring EGFR mutations: WJOG9717L study. J. Thorac. Oncol. 17, 1098–1108 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Soo, R. A. et al. A randomised phase II study of osimertinib and bevacizumab versus osimertinib alone as second-line targeted treatment in advanced NSCLC with confirmed EGFR and acquired T790M mutations: the European Thoracic Oncology Platform (ETOP 10-16) BOOSTER trial. Ann. Oncol. 33, 181–192 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Akamatsu, H. et al. Efficacy of osimertinib plus bevacizumab vs osimertinib in patients with EGFR T790M-mutated non-small cell lung cancer previously treated with epidermal growth factor receptor-tyrosine kinase inhibitor: West Japan Oncology Group 8715L phase 2 randomized clinical trial. JAMA Oncol. 7, 386–394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang, X. S. et al. Randomized trial of first-line tyrosine kinase inhibitor with or without radiotherapy for synchronous oligometastatic EGFR-mutated non-small cell lung Cancer. J. Natl Cancer Inst. 115, 742–748 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Rashdan, S. et al. Safety and efficacy of osimertinib plus consolidative stereotactic ablative radiation (SABR) in advanced EGFR mutant non-small cell lung cancer (NSCLC): results from a multi-center phase II trial. J. Clin. Oncol. 42, 8518–8518 (2024).

    Article  Google Scholar 

  87. Xu, Q. et al. Consolidative local ablative therapy improves the survival of patients with synchronous oligometastatic NSCLC harboring EGFR activating mutation treated with first-line EGFR-TKIs. J. Thorac. Oncol. 13, 1383–1392 (2018).

    Article  PubMed  Google Scholar 

  88. Paz-Ares, L. et al. 1314MO TROPION-Lung05: datopotamab deruxtecan (Dato-DXd) in previously treated non-small cell lung cancer (NSCLC) with actionable genomic alterations (AGAs). Ann. Oncol. 34, S755–S756 (2023).

    Article  Google Scholar 

  89. Janne, P. A. et al. Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 12, 74–89 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Yu, H. A. et al. HERTHENA-Lung01, a phase II trial of patritumab deruxtecan (HER3-DXd) in epidermal growth factor receptor-mutated non-small-cell lung cancer after epidermal growth factor receptor tyrosine kinase inhibitor therapy and platinum-based chemotherapy. J. Clin. Oncol. 41, 5363–5375 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ma, Y. et al. BL-B01D1, a first-in-class EGFR–HER3 bispecific antibody–drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol. 25, 901–911 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. Haikala, H. M. et al. EGFR inhibition enhances the cellular uptake and antitumor-activity of the HER3 antibody–drug conjugate HER3-DXd. Cancer Res. 82, 130–141 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Zhong, W. Z. et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol. 19, 139–148 (2018).

    Article  CAS  PubMed  Google Scholar 

  94. Yue, D. S. et al. Erlotinib versus vinorelbine plus cisplatin as adjuvant therapy in Chinese patients with stage IIIA EGFR mutation-positive non-small-cell lung cancer (EVAN) a randomised, open-label, phase 2 trial. Lancet Respir. Med. 6, 863–873 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. He, J. et al. Icotinib versus chemotherapy as adjuvant treatment for stage II-IIIA EGFR-mutant non-small-cell lung cancer (EVIDENCE): a randomised, open-label, phase 3 trial. Lancet Respir. Med. 9, 1021–1029 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Zhong, W. Z. et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC: final overall survival analysis of CTONG1104 phase III trial. J. Clin. Oncol. 39, 713–722 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Yue, D. et al. Updated overall survival and exploratory analysis from randomized, phase II EVAN study of erlotinib versus vinorelbine plus cisplatin adjuvant therapy in stage IIIA epidermal growth factor receptor+ non-small-cell lung cancer. J. Clin. Oncol. 40, 3912–3917 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Wu, Y. L. et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 383, 1711–1723 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Tsuboi, M. et al. Overall survival with osimertinib in resected EGFR-mutated NSCLC. N. Engl. J. Med. 389, 137–147 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Herbst, R. S. et al. Adjuvant osimertinib for resected EGFR-mutated stage IB-IIIA non-small-cell lung cancer: updated results from the phase III randomized ADAURA trial. J. Clin. Oncol. 41, 1830–1840 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhong, W. Z. et al. Erlotinib versus gemcitabine plus cisplatin as neoadjuvant treatment of stage IIIA-N2 EGFR-mutant non-small-cell lung cancer (EMERGING-CTONG 1103): a randomized phase II study. J. Clin. Oncol. 37, 2235–2245 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Zhong, W. Z. et al. Erlotinib versus gemcitabine plus cisplatin as neoadjuvant treatment of stage IIIA-N2 EGFR-mutant non-small-cell lung cancer: final overall survival analysis of the EMERGING-CTONG 1103 randomised phase II trial. Signal. Transduct. Target. Ther. 8, 76 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bian, D. et al. Neoadjuvant Afatinib for stage III EGFR-mutant non-small cell lung cancer: a phase II study. Nat. Commun. 14, 4655 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lv, C. et al. Osimertinib as neoadjuvant therapy in patients with EGFR-mutant resectable stage II-IIIB lung adenocarcinoma (NEOS): a multicenter, single-arm, open-label phase 2b trial. Lung Cancer 178, 151–156 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Blakely, C. M. Neoadjuvant osimertinib for the treatment of stage I-IIIA epidermal growth factor receptor-mutated non-small cell lung cancer: a phase II multicenter study. J. Clin. Oncol. 42, 3105–3114 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Heymach, J. V. et al. Perioperative durvalumab for resectable non-small-cell lung cancer. N. Engl. J. Med. 389, 1672–1684 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Wakelee, H. et al. Perioperative pembrolizumab for early-stage non-small-cell lung cancer. N. Engl. J. Med. 389, 491–503 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lu, S. et al. Perioperative toripalimab plus chemotherapy for patients with resectable non-small cell lung cancer: the Neotorch randomized clinical trial. JAMA 331, 201–211 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cascone, T. et al. Perioperative nivolumab in resectable lung cancer. N. Engl. J. Med. 390, 1756–1769 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, C. et al. Neoadjuvant sintilimab plus chemotherapy in EGFR-mutant NSCLC: phase 2 trial interim results (NEOTIDE/CTONG2104).Cell Rep. Med. 5, 101615 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bernstein, M. B., Krishnan, S., Hodge, J. W. & Chang, J. Y. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat. Rev. Clin. Oncol. 13, 516–524, (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chang, J. Y. et al. Stereotactic ablative radiotherapy with or without immunotherapy for early-stage or isolated lung parenchymal recurrent node-negative non-small-cell lung cancer: an open-label, randomised, phase 2 trial. Lancet 402, 871–881 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Zhao, Z. R. et al. Stereotactic body radiotherapy with sequential tislelizumab and chemotherapy as neoadjuvant therapy in patients with resectable non-small-cell lung cancer in China (SACTION01): a single-arm, single-centre, phase 2 trial. Lancet Respir. Med. https://doi.org/10.1016/S2213-2600(24)00215-7 (2024).

    Article  PubMed  Google Scholar 

  116. Spigel, D. R. et al. Five-year survival outcomes from the PACIFIC trial: durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 1301–1311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Naidoo, J. et al. Brief report: Durvalumab after chemoradiotherapy in unresectable stage III EGFR-mutant NSCLC: a post hoc subgroup analysis from PACIFIC. J. Thorac. Oncol. 18, 657–663 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Lu, S. et al. Osimertinib after chemoradiotherapy in stage III EGFR-mutated NSCLC. N. Engl. J. Med. 391, 585–597 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Lu, S. et al. Osimertinib after definitive chemoradiotherapy in unresectable stage III epidermal growth factor receptor-mutated non-small-cell lung cancer: analyses of central nervous system efficacy and distant progression from the phase III LAURA study. Ann. Oncol. https://doi.org/10.1016/j.annonc.2024.08.2243 (2024).

    Article  PubMed  Google Scholar 

  120. Yang, J. C. et al. FLAURA2: resistance, and impact of baseline TP53 alterations in patients treated with 1L osimertinib ± platinum-pemetrexed. World Conference on Lung Cancer. abstr. MA12.03 (2024).

  121. Uchibori, K. et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat. Commun. 8, 14768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, Y. et al. Effective treatment of lung adenocarcinoma harboring EGFR-activating mutation, T790M, and cis-C797S triple mutations by brigatinib and cetuximab combination therapy. J. Thorac. Oncol. 15, 1369–1375 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, Z. et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J. Thorac. Oncol. 12, 1723–1727 (2017).

    Article  PubMed  Google Scholar 

  124. Zhou, Z. et al. Durable clinical response of lung adenocarcinoma harboring EGFR 19Del/T790M/in trans-C797S to combination therapy of first- and third-generation EGFR tyrosine kinase inhibitors. J. Thorac. Oncol. 14, e157–e159 (2019).

    Article  PubMed  Google Scholar 

  125. Tan, L. et al. A phase II trial of alternating osimertinib and gefitinib therapy in advanced EGFR-T790M positive non-small cell lung cancer: OSCILLATE. Nat. Commun. 15, 1823 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jia, Y. et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534, 129–132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Patel, H. M., Ahmad, I., Pawara, R., Shaikh, M. & Surana, S. In silico search of triple mutant T790M/C797S allosteric inhibitors to conquer acquired resistance problem in non-small cell lung cancer (NSCLC): a combined approach of structure-based virtual screening and molecular dynamics simulation. J. Biomol. Struct. Dyn. 39, 1491–1505 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. To, C. et al. An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nat. Cancer 3, 402–417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Elamin, Y. Y. et al. BLU-945 monotherapy and in combination with osimertinib (OSI) in previously treated patients with advanced EGFR-mutant (EGFRm) NSCLC in the phase 1/2 SYMPHONY study. J. Clin. Oncol. 41, 9011–9011 (2023).

    Article  Google Scholar 

  130. Fassunke, J. et al. Overcoming EGFR(G724S)-mediated osimertinib resistance through unique binding characteristics of second-generation EGFR inhibitors. Nat. Commun. 9, 4655 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yang, Z. et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin. Cancer Res. 24, 3097–3107 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Camidge, D. R., Pao, W. & Sequist, L. V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11, 473–481, (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Nukaga, S. et al. Amplification of EGFR wild type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res. 77, 2078 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Wu, S., Luo, M., To, K. K. W., Zhang, J. & Fu, L. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer. Mol Cancer. https://doi.org/10.1186/s12943-021-01307-9 (2021).

  135. Tan, D. S.-W. et al. Tepotinib + osimertinib for EGFR mutant (EGFRm) NSCLC with MET amplification (METamp) after first-line (1L) osimertinib. J. Clin. Oncol. 41, 9021–9021 (2023).

    Article  Google Scholar 

  136. Sequist, L. V. et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 21, 373–386 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Yu, H. A. et al. 1239P ORCHARD osimertinib + savolitinib interim analysis: a biomarker-directed phase II platform study in patients (pts) with advanced non-small cell lung cancer (NSCLC) whose disease has progressed on first-line (1L) osimertinib. Ann. Oncol. 32, S978–S979 (2021).

    Article  Google Scholar 

  138. Ahn, M. J. et al. EP08.02-140 MET biomarker-based preliminary efficacy analysis in SAVANNAH: savolitinib+osimertinib in EGFRm NSCLC Post-Osimertinib. J. Thorac. Oncol. 17, S469–S470 (2022).

    Article  Google Scholar 

  139. Liam, C. K. et al. Randomized trial of tepotinib plus gefitinib versus chemotherapy in EGFR-mutant NSCLC with EGFR inhibitor resistance due to MET amplification: INSIGHT final analysis. Clin. Cancer Res. 29, 1879–1886 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu, Y. L. et al. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J. Clin. Oncol. 36, 3101–3109 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, J. J. et al. Osimertinib with or without savolitinib as 1L in de novo MET aberrant, EGFRm advanced NSCLC (CTONG 2008, FLOWERS): a phase II trial. World Conference on Lung Cancer. abstr. PL04-10 (2024).

  142. Li, B. T. et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N. Engl. J. Med. 386, 241–251 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Song, Z. et al. Pyrotinib in patients with HER2-amplified advanced non-small cell lung cancer: a prospective, multicenter, single-arm trial. Clin. Cancer Res. 28, 461–467 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Oxnard, G. R. et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4, 1527–1534 (2018).

    Article  PubMed  Google Scholar 

  145. Zeng, L., Yang, N. & Zhang, Y. GOPC-ROS1 rearrangement as an acquired resistance mechanism to osimertinib and responding to crizotinib combined treatments in lung adenocarcinoma. J. Thorac. Oncol. 13, e114–e116 (2018).

    Article  PubMed  Google Scholar 

  146. Enrico, D. et al. Oncogenic fusions may be frequently present at resistance of EGFR tyrosine kinase inhibitors in patients with NSCLC: a brief report. JTO Clin. Res. Rep. 1, 100023 (2020).

    PubMed  PubMed Central  Google Scholar 

  147. Chen, J. et al. Single-cell DNA-seq depicts clonal evolution of multiple driver alterations in osimertinib-resistant patients. Ann. Oncol. 33, 434–444 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Raphael, A. et al. FGFR fusions as an acquired resistance mechanism following treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) and a suggested novel target in advanced non-small cell lung cancer (aNSCLC). J. Clin. Med. https://doi.org/10.3390/jcm11092475 (2022).

  149. Rotow, J. et al. Osimertinib and selpercatinib efficacy, safety, and resistance in a multicenter, prospectively treated cohort of EGFR-mutant and RET fusion-positive lung cancers. Clin. Cancer Res. 29, 2979–2987 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Piotrowska, Z. et al. Landscape of acquired resistance to osimertinib in EGFR-mutant NSCLC and clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov. 8, 1529–1539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Offin, M. et al. Acquired ALK and RET gene fusions as mechanisms of resistance to osimertinib in EGFR-mutant lung cancers. JCO Precis. Oncol. 2, PO.18.00126 (2018).

  152. Dagogo-Jack, I. et al. Response to the combination of osimertinib and trametinib in a patient with EGFR-mutant NSCLC harboring an acquired BRAF fusion. J. Thorac. Oncol. 14, e226–e228 (2019).

    Article  PubMed  Google Scholar 

  153. Haura, E. B., Hicks, J. K. & Boyle, T. A. Erdafitinib overcomes FGFR3-TACC3-mediated resistance to osimertinib. J. Thorac. Oncol. 15, e154–e156 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Leonetti, A. et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121, 725–737 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Qin, Q. et al. CDK4/6 inhibitor palbociclib overcomes acquired resistance to third-generation EGFR inhibitor osimertinib in non-small cell lung cancer (NSCLC). Thorac. Cancer 11, 2389–2397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. La Monica, S. et al. Efficacy of the CDK4/6 dual inhibitor abemaciclib in EGFR-mutated NSCLC cell lines with different resistance mechanisms to osimertinib. Cancers. https://doi.org/10.3390/cancers13010006 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Namba, K. et al. Activation of AXL as a preclinical acquired resistance mechanism against osimertinib treatment in EGFR-mutant non-small cell lung cancer cells. Mol. Cancer Res. 17, 499–507 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Murakami, Y. et al. AXL/CDCP1/SRC axis confers acquired resistance to osimertinib in lung cancer. Sci. Rep. 12, 8983 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Han, R. et al. Brigatinib, a newly discovered AXL inhibitor, suppresses AXL-mediated acquired resistance to osimertinib in EGFR-mutated non-small cell lung cancer. Acta Pharmacol. Sin. 45, 1264–1275 (2024).

    Article  CAS  PubMed  Google Scholar 

  160. Okura, N. et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin. Cancer Res. 26, 2244–2256 (2020).

    Article  CAS  PubMed  Google Scholar 

  161. Kim, D. et al. AXL degradation in combination with EGFR-TKI can delay and overcome acquired resistance in human non-small cell lung cancer cells. Cell Death Dis. 10, 361 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Byers, L. A. et al. Ph I/II study of oral selective AXL inhibitor bemcentinib (BGB324) in combination with erlotinib in patients with advanced EGFRm NSCLC: end of trial update. J. Clin. Oncol. 39, 9110–9110 (2021).

    Article  Google Scholar 

  163. Manabe, T. et al. IGF2 autocrine-mediated IGF1R activation is a clinically relevant mechanism of osimertinib resistance in lung cancer. Mol. Cancer Res. 18, 549–559 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Hayakawa, D. et al. Activation of insulin‐like growth factor‐1 receptor confers acquired resistance to osimertinib in non‐small cell lung cancer with EGFR T790M mutation. Thorac. Cancer 11, 140–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, K. R. et al. Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer. Sci. Transl. Med. 13, eabg6428 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Gu, J. et al. Inhibition of ACK1 delays and overcomes acquired resistance of EGFR mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib. Lung Cancer 150, 26–35 (2020).

    Article  PubMed  Google Scholar 

  167. Quintanal-Villalonga, Á. et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat. Rev. Clin. Oncol. 17, 360–371 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Liu, T. et al. Long non-coding RNAs in lung cancer: implications for lineage plasticity-mediated TKI resistance. Cell Mol. Life Sci. 78, 1983–2000 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Fukuda, K. et al. Glycogen synthase kinase-3 inhibition overcomes epithelial-mesenchymal transition-associated resistance to osimertinib in EGFR-mutant lung cancer. Cancer Sci. 111, 2374–2384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jiang, X. M. et al. TGFβ2-mediated epithelial-mesenchymal transition and NF-κB pathway activation contribute to osimertinib resistance. Acta Pharmacol. Sin. 42, 451–459 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Weng, C. H. et al. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 38, 455–468 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Li, K. et al. M6A associated TSUC7 inhibition contributed to Erlotinib resistance in lung adenocarcinoma through a notch signaling activation dependent way. J. Exp. Clin. Cancer Res. 40, 325 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chen, H. et al. Activation of the Hedgehog pathway mediates resistance to epidermal growth factor receptor inhibitors in non-small cell lung cancer. J. Cancer 13, 987–997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Guerard, M. et al. Nuclear translocation of IGF1R by intracellular amphiregulin contributes to the resistance of lung tumour cells to EGFR-TKI. Cancer Lett. 420, 146–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Patel, S. A. et al. IL6 mediates suppression of T- and NK-cell function in EMT-associated TKI-resistant EGFR-mutant NSCLC. Clin. Cancer Res. 29, 1292–1304 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Choudhury, N. J. et al. Molecular biomarkers of disease outcomes and mechanisms of acquired resistance to first-line osimertinib in advanced EGFR-mutant lung cancers. J. Thorac. Oncol. 18, 463–475 (2023).

    Article  CAS  PubMed  Google Scholar 

  178. Schoenfeld, A. J. et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer. Clin. Cancer Res. 26, 2654–2663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065–3074 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Marcoux, N. et al. EGFR-mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 37, 278–285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gardner, E. E. et al. Lineage-specific intolerance to oncogenic drivers restricts histological transformation. Science 383, eadj1415 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Koba, H. et al. NOTCH alteration in EGFR-mutated lung adenocarcinoma leads to histological small-cell carcinoma transformation under EGFR-TKI treatment. Transl. Lung Cancer Res. 10, 4161–4173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang, C.-Y. et al. A potential treatment option for transformed small-cell lung cancer on PD-L1 inhibitor-based combination therapy improved survival. Lung Cancer 175, 68–78 (2023).

    Article  CAS  PubMed  Google Scholar 

  184. Chen, M. F. et al. Osimertinib, platinum, etoposide as initial treatment for patients with EGFR mutant lung cancers with TP53 and RB1 alterations. J. Clin. Oncol. 42, 8565–8565 (2024).

    Article  Google Scholar 

  185. Gao, Y. et al. YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression. Nat. Commun. 5, 4629 (2014).

    Article  CAS  PubMed  Google Scholar 

  186. Fang, Z. et al. Oxidative stress-triggered Wnt signaling perturbation characterizes the tipping point of lung adeno-to-squamous transdifferentiation. Signal. Transduct. Target. Ther. 8, 16 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Tang, S. et al. Counteracting lineage-specific transcription factor network finely tunes lung adeno-to-squamous transdifferentiation through remodeling tumor immune microenvironment. Natl Sci. Rev. 10, nwad028 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Lim, Z. F. & Ma, P. C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol. 12, 134 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Shi, Z.-D. et al. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal. Transduct. Target. Ther. 8, 113 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Lu, C. et al. Allelic context of EGFR C797X-mutant lung cancer defines four subtypes with heterogeneous genomic landscape and distinct clinical outcomes. J. Thorac. Oncol. 19, 601–612 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Hata, A. et al. Spatiotemporal T790M heterogeneity in individual patients with EGFR-mutant non-small-cell lung cancer after acquired resistance to EGFR-TKI. J. Thorac. Oncol. 10, 1553–1559 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712, (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Durfee, C. et al. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep. Med. 4, 101211 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Caswell, D. R. et al. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. Nat. Genet. 56, 60–73 (2024).

    Article  CAS  PubMed  Google Scholar 

  196. King, J. J. et al. Structure-based design of first-generation small molecule inhibitors targeting the catalytic pockets of AID, APOBEC3A, and APOBEC3B. ACS Pharmacol. Transl. Sci. 4, 1390–1407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Harjes, S. et al. Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. Nat. Commun. 14, 6382 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Pu, Y. et al. Drug-tolerant persister cells in cancer: the cutting edges and future directions. Nat. Rev. Clin. Oncol. 20, 799–813 (2023).

    Article  PubMed  Google Scholar 

  199. Álvarez-Arenas, A., Podolski-Renic, A., Belmonte-Beitia, J., Pesic, M. & Calvo, G. F. Interplay of Darwinian selection, Lamarckian induction and microvesicle transfer on drug resistance in cancer. Sci. Rep. 9, 9332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Vallette, F. M. et al. Dormant, quiescent, tolerant and persister cells: four synonyms for the same target in cancer. Biochem. Pharmacol. 162, 169–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Dhanyamraju, P. K., Schell, T. D., Amin, S. & Robertson, G. P. Drug-tolerant persister cells in cancer therapy resistance. Cancer Res. 82, 2503–2514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shen, S., Vagner, S. & Robert, C. Persistent cancer cells: the deadly survivors. Cell 183, 860–874 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Hadfield, G. The dormant cancer cell. Br. Med. J. 2, 607–610 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Min, H. Y. & Lee, H. Y. Cellular dormancy in cancer: mechanisms and potential targeting strategies. Cancer Res. Treat. 55, 720–736 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Recasens, A. & Munoz, L. Targeting cancer cell dormancy. Trends Pharmacol. Sci. 40, 128–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Phan, T. G. & Croucher, P. I. The dormant cancer cell life cycle. Nat. Rev. Cancer 20, 398–411 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Clara, J. A., Monge, C., Yang, Y. & Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nat. Rev. Clin. Oncol. 17, 204–232 (2020).

    Article  PubMed  Google Scholar 

  208. Ho, M. M., Ng, A. V., Lam, S. & Hung, J. Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67, 4827–4833, (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768, (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Isozaki, H. et al. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 620, 393–401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Nilsson, M. B. et al. CD70 is a therapeutic target upregulated in EMT-associated EGFR tyrosine kinase inhibitor resistance. Cancer Cell 41, 340–355.e346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Criscione, S. W. et al. The landscape of therapeutic vulnerabilities in EGFR inhibitor osimertinib drug tolerant persister cells. NPJ Precis. Oncol. 6, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Haderk, F. et al. Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer. Nat. Commun. 15, 3741 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Baldacci, S. et al. Eradicating drug tolerant persisters (DTPs) in EGFR-mutated non small cell lung cancer (NSCLC) by targeting TROP2. World Conference on Lung Cancer. abstr. MA07.06 (2024).

  215. Naumov, G. N., Akslen, L. A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787, (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Almog, N. Genes and regulatory pathways involved in persistence of dormant micro-tumors. Adv. Exp. Med. Biol. 734, 3–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Zhuang, Y. et al. Hypoxia signaling in cancer: implications for therapeutic interventions. MedComm 4, e203 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Endo, H. et al. The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations. Oncogene 36, 2824–2834 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Huang, C.-P. et al. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett. 328, 144–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  220. Muralikrishnan, V. et al. A novel ALDH1A1 inhibitor blocks platinum-induced senescence and stemness in ovarian cancer. Cancers https://doi.org/10.3390/cancers14143437 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Paul, S. K., Guendouzi, A., Banerjee, A., Guendouzi, A. & Haldar, R. Identification of approved drugs with ALDH1A1 inhibitory potential aimed at enhancing chemotherapy sensitivity in cancer cells: an in-silico drug repurposing approach. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2023.2300127 (2024).

  222. Kumar, V. et al. The role of notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front. Cell Dev. Biol. 9, 650772 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Togashi, Y. et al. Inhibition of beta-Catenin enhances the anticancer effect of irreversible EGFR-TKI in EGFR-mutated non-small-cell lung cancer with a T790M mutation. J. Thorac. Oncol. 10, 93–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  224. Passaro, A. et al. Amivantamab plus chemotherapy with and without lazertinib in EGFR-mutant advanced NSCLC after disease progression on osimertinib: primary results from the phase III MARIPOSA-2 study. Ann. Oncol. 35, 77–90 (2024).

    Article  CAS  PubMed  Google Scholar 

  225. Popat, S. et al. LBA54 Amivantamab plus chemotherapy vs chemotherapy in EGFR-mutated, advanced non-small cell lung cancer after disease progression on osimertinib: second interim overall survival from MARIPOSA-2. Ann. Oncol. 35, S1244–S1245 (2024).

    Article  Google Scholar 

  226. Qiao, M. et al. Immune checkpoint inhibitors in EGFR-mutated NSCLC: dusk or dawn? J. Thorac. Oncol. 16, 1267–1288 (2021).

    Article  CAS  PubMed  Google Scholar 

  227. Mok, T. et al. Nivolumab plus chemotherapy in epidermal growth factor receptor-mutated metastatic non-small-cell lung cancer after disease progression on epidermal growth factor receptor tyrosine kinase inhibitors: final results of CheckMate 722. J. Clin. Oncol. 42, 1252–1264 (2024).

    Article  PubMed  Google Scholar 

  228. Yang, J. C. et al. Phase III KEYNOTE-789 study of pemetrexed and platinum with or without pembrolizumab for tyrosine kinase inhibitor‒resistant, EGFR-mutant, metastatic nonsquamous non-small cell lung cancer. J. Clin. Oncol. https://doi.org/10.1200/JCO.23.02747 (2024).

    Article  PubMed  Google Scholar 

  229. Reck, M. et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 7, 387–401 (2019).

    Article  CAS  PubMed  Google Scholar 

  230. Nogami, N. et al. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain. J. Thorac. Oncol. 17, 309–323 (2022).

    Article  CAS  PubMed  Google Scholar 

  231. Lu, S. et al. Sintilimab plus bevacizumab biosimilar IBI305 and chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): first interim results from a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 23, 1167–1179 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Lu, S. et al. Sintilimab plus chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer with disease progression after EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): second interim analysis from a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 11, 624–636 (2023).

    Article  CAS  PubMed  Google Scholar 

  233. Park, S. et al. Phase III, randomized study of atezolizumab plus bevacizumab and chemotherapy in patients with EGFR- or ALK-mutated non-small-cell lung cancer (ATTLAS, KCSG-LU19-04). J. Clin. Oncol. 42, 1241–1251 (2024).

    Article  CAS  PubMed  Google Scholar 

  234. Zhou, C. et al. OA09.06 IMpower151: phase III study of atezolizumab + bevacizumab + chemotherapy in 1L metastatic nonsquamous NSCLC. J. Thorac. Oncol. 18, S64–S65 (2023).

    Article  Google Scholar 

  235. Zhao, Y. et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial. eClinicalMedicine https://doi.org/10.1016/j.eclinm.2023.102106 (2023).

  236. Fang, W. et al. Ivonescimab plus chemotherapy in non-small cell lung cancer with EGFR variant: a randomized clinical trial. JAMA 332, 561-570 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhao, S. et al. Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. Cancer Immunol. Res. 7, 630–643 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Li, F. et al. Epidermal growth factor receptor-targeted neoantigen peptide vaccination for the treatment of non-small cell lung cancer and glioblastoma. Vaccines https://doi.org/10.3390/vaccines11091460 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Li, F. et al. Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-002531 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Li, F. et al. Rapid tumor regression in an Asian lung cancer patient following personalized neo-epitope peptide vaccination. Oncoimmunology 5, e1238539 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Tarantino, P., Ricciuti, B., Pradhan, S. M. & Tolaney, S. M. Optimizing the safety of antibody–drug conjugates for patients with solid tumours. Nat. Rev. Clin. Oncol. 20, 558–576 (2023).

    Article  CAS  PubMed  Google Scholar 

  242. Tarantino, P. et al. Antibody–drug conjugates: smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 72, 165–182 (2022).

    Article  PubMed  Google Scholar 

  243. Camidge, D. R. et al. Phase Ib study of telisotuzumab vedotin in combination with erlotinib in patients with c-Met protein-expressing non-small-cell lung cancer. J. Clin. Oncol. 41, 1105–1115 (2023).

    Article  CAS  PubMed  Google Scholar 

  244. Shan, Y. et al. 683P preclinical evaluation of HLX42, a novel EGFR-targeting ADC, for cetuximab or TKI resistant cancer. Ann. Oncol. 34, S477–S478 (2023).

    Article  Google Scholar 

  245. Comer, F. et al. Abstract 5736: AZD9592: an EGFR–cMET bispecific antibody–drug conjugate (ADC) targeting key oncogenic drivers in non-small-cell lung cancer (NSCLC) and beyond. Cancer Res. 83, 5736–5736 (2023).

    Article  Google Scholar 

  246. Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic — a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug. Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Du, Y. et al. HJM-561, a potent, selective, and orally bioavailable EGFR PROTAC that overcomes osimertinib-resistant EGFR triple mutations. Mol. Cancer Ther. 21, 1060–1066 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Zhu, Y. et al. Design, synthesis, and biological evaluation of novel EGFR PROTACs targeting C797S mutation. J. Med. Chem. 67, 7283–7300 (2024).

    Article  CAS  PubMed  Google Scholar 

  250. Zhang, H. et al. Design, synthesis, and biological evaluation of novel EGFR PROTACs targeting Del19/T790M/C797S mutation. ACS Med. Chem. Lett. 13, 278–283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Cheng, W. et al. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem. Commun. 57, 12852–12855 (2021).

    Article  CAS  Google Scholar 

  252. Zheng, M. et al. Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP. J. Med. Chem. 64, 7839–7852 (2021).

    Article  CAS  PubMed  Google Scholar 

  253. Fang, Y. et al. Targeted protein degrader development for cancer: advances, challenges, and opportunities. Trends Pharmacol. Sci. 44, 303–317 (2023).

    Article  CAS  PubMed  Google Scholar 

  254. Desai, A. et al. ctDNA for the evaluation and management of EGFR-mutant non-small cell lung cancer. Cancers https://doi.org/10.3390/cancers16050940 (2024).

  255. Wang, Z. et al. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir. Med. 6, 681–690 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Ang, Y. L.E. et al. A phase II study of osimertinib in patients with advanced-stage non-small cell lung cancer following prior epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) therapy with EGFR and T790M mutations detected in plasma circulating tumour DNA (PLASMA study). Cancers https://doi.org/10.3390/cancers15204999 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Gray, J. E. et al. Early clearance of plasma epidermal growth factor receptor mutations as a predictor of outcome on osimertinib in advanced non-small cell lung cancer; exploratory analysis from AURA3 and FLAURA. Clin. Cancer Res. 29, 3340–3351 (2023).

    Article  CAS  PubMed  Google Scholar 

  258. Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7, 1394–1403 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zhang, J. T. et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 12, 1690–1701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Pan, Y. et al. Dynamic circulating tumor DNA during chemoradiotherapy predicts clinical outcomes for locally advanced non-small cell lung cancer patients. Cancer Cell 41, 1763–1773.e1764 (2023).

    Article  CAS  PubMed  Google Scholar 

  261. Dong, S. et al. Circulating tumor DNA-guided de-escalation targeted therapy for advanced non-small cell lung cancer: a nonrandomized controlled trial. JAMA Oncol. 10, 932–940 (2024).

    Article  PubMed  Google Scholar 

  262. Ignatiadis, M., Sledge, G. W. & Jeffrey, S. S. Liquid biopsy enters the clinic — implementation issues and future challenges. Nat. Rev. Clin. Oncol. 18, 297–312 (2021).

    Article  PubMed  Google Scholar 

  263. Hu, Y. et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin. Cancer Res. 24, 4437–4443 (2018).

    Article  CAS  PubMed  Google Scholar 

  264. Razavi, P. et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 25, 1928–1937 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Yu, H. et al. Abstract C022: phase 1 study of BDTX-1535, an oral 4th generation inhibitor, in patients with non-small cell lung cancer and glioblastoma: preliminary dose escalation results. Mol. Cancer Ther. 22, C022–C022 (2023).

    Article  Google Scholar 

  266. Tada, H. et al. Randomized phase III study of gefitinib versus cisplatin plus vinorelbine for patients with resected stage II-IIIA non-small-cell lung cancer with EGFR mutation (IMPACT). J. Clin. Oncol. 40, 231–241 (2022).

    Article  CAS  PubMed  Google Scholar 

  267. Yu, H. A. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240–2247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Wu, S. G. et al. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget 7, 12404–12413 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Massarelli, E., Johnson, F. M., Erickson, H. S., Wistuba, I. I. & Papadimitrakopoulou, V. Uncommon epidermal growth factor receptor mutations in non-small cell lung cancer and their mechanisms of EGFR tyrosine kinase inhibitors sensitivity and resistance. Lung Cancer 80, 235–241, (2013).

    Article  PubMed  Google Scholar 

  270. Watanabe, S. et al. Effectiveness of gefitinib against non-small-cell lung cancer with the uncommon EGFR mutations G719X and L861Q. J. Thorac. Oncol. 9, 189–194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Heigener, D. F. et al. Afatinib in non-small cell lung cancer harboring uncommon EGFR mutations pretreated with reversible EGFR inhibitors. Oncologist 20, 1167–1174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Klughammer, B. et al. Examining treatment outcomes with erlotinib in patients with advanced non-small cell lung cancer whose tumors harbor uncommon EGFR mutations. J. Thorac. Oncol. 11, 545–555 (2016).

    Article  PubMed  Google Scholar 

  273. He, M. et al. EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma. Clin. Cancer Res. 18, 1790–1797 (2012).

    Article  CAS  PubMed  Google Scholar 

  274. Chiba, M. et al. Efficacy of irreversible EGFR-TKIs for the uncommon secondary resistant EGFR mutations L747S, D761Y, and T854A. BMC Cancer 17, 281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Chiu, C. H. et al. Epidermal growth factor receptor tyrosine kinase inhibitor treatment response in advanced lung adenocarcinomas with G719X/L861Q/S768I mutations. J. Thorac. Oncol. 10, 793–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  276. Prim, N. et al. Germ-line exon 21 EGFR mutations, V843I and P848L, in nonsmall cell lung cancer patients. Eur. Respir. Rev. 23, 390–392 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Zhang, L. et al. Molecular characteristics of the uncommon EGFR exon 21 T854A mutation and response to osimertinib in patients with non-small cell lung cancer. Clin. Lung Cancer 23, 311–319 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.Z. is supported in part by the National Natural Science Foundation of China (81703020) and the Natural Science Foundation of Shanghai (23ZR1453500). X.L. is supported by the Damon Runyon Foundation. S.S.R. is supported in part by the US National Cancer Institute and National Institutes of Health (P50CA217691). C.Z. is supported in part by the National Key R&D Program of China (2022YFC2505005) and the National Natural Science Foundation of China (82141101).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Caicun Zhou.

Ethics declarations

Competing interests

S.R.R. works in an institution that receives grant support from AstraZeneca for specific clinical trials. F.Z., H.G., Y.X., X.L., D.S.W.T. and C.Z. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. Passaro and Y-L. Wu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Guo, H., Xia, Y. et al. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat Rev Clin Oncol 22, 95–116 (2025). https://doi.org/10.1038/s41571-024-00971-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-024-00971-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing