Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

EMT and cancer: what clinicians should know

Abstract

Cell plasticity is a crucial trait for cancer progression towards metastasis and treatment resistance. Research efforts from the past 20–30 years have revealed that the dynamic flux of the epithelial–mesenchymal transition (EMT) programme is one of the major underlying processes enabling cancer cell plasticity and greatly facilitates these major causes of cancer mortality. The spectrum of evidence ranges from extensive data from cell line and animal model studies across multiple cancer types through a rapidly expanding body of work demonstrating associations between EMT biomarkers and disease progression and mortality in patients. EMT is also implicated in resistance to most of the major treatment modalities, yet our efforts to harness this knowledge to improve therapeutic outcomes are currently in their early stages. In this Review, we describe clinical evidence supporting a role of EMT and the associated epithelial–mesenchymal plasticity in various stages of cancer in patients and discuss the subsequent clinical opportunities and challenges associated with attempts to implement this knowledge as novel therapies or clinical management approaches.

Key points

  • Cell plasticity is a crucial trait that supports the progression of a tumour towards metastatic dissemination and treatment resistance.

  • Partial and transient activation of the epithelial–mesenchymal transition (EMT) programme has an important role in enabling cancer cell plasticity.

  • Clinical data and analyses of human tumour tissue samples support a role of EMT and epithelial–mesenchymal plasticity (EMP) in many human cancer types.

  • EMT and EMP can influence all stages of cancer progression, from tumour initiation to the development of treatment resistance and metastases.

  • Interference with EMT and EMP is anticipated to offer various clinical opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Central mediators, properties and functions in EMP.
Fig. 2: Strategies to target EMP in cancer.

Similar content being viewed by others

References

  1. Yang, J. et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hay, E. D. An overview of epithelio-mesenchymal transformation. Acta Anat. 154, 8–20 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Haerinck, J., Goossens, S. & Berx, G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat. Rev. Genet. 24, 590–609 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Brabletz, S., Schuhwerk, H., Brabletz, T. & Stemmler, M. P. Dynamic EMT: a multi-tool for tumor progression. EMBO J. 40, e108647 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant functions of EMT transcription factors. Nat. Cell Biol. 21, 102–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Perelli, L. et al. Evolutionary fingerprints of epithelial-to-mesenchymal transition. Nature https://doi.org/10.1038/s41586-025-08671-2 (2025).

    Article  PubMed  Google Scholar 

  8. Celia-Terrassa, T. & Kang, Y. How important is EMT for cancer metastasis? PLoS Biol. 22, e3002487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fontana, R., Mestre-Farrera, A. & Yang, J. Update on epithelial-mesenchymal plasticity in cancer progression. Annu. Rev. Pathol. 19, 133–156 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Jonckheere, S. et al. Epithelial-mesenchymal transition (EMT) as a therapeutic target. Cell Tissues Organs 211, 157–182 (2022).

    Article  CAS  Google Scholar 

  11. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Redfern, A. D., Spalding, L. J. & Thompson, E. W. The Kraken wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin. Exp. Metastasis 35, 285–308 (2018).

    Article  PubMed  Google Scholar 

  13. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Youssef, K. K. & Nieto, M. A. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat. Rev. Mol. Cell Biol. 25, 720–739 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Lambert, A. W., Zhang, Y. & Weinberg, R. A. Cell-intrinsic and microenvironmental determinants of metastatic colonization. Nat. Cell Biol. 26, 687–697 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Tan, E. J., Olsson, A. K. & Moustakas, A. Reprogramming during epithelial to mesenchymal transition under the control of TGFβ. Cell Adh. Migr. 9, 233–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Tan, T. Z. et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol. Med. 6, 1279–1293 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshimura, A. et al. Epithelial-mesenchymal transition status is a remarkable biomarker for the combination treatment with avutometinib and defactinib in KRAS-mutated non-small cell lung cancer. Br. J. Cancer https://doi.org/10.1038/s41416-024-02727-2 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barkley, D. et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 54, 1192–1201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cook, D. P. & Vanderhyden, B. C. Transcriptional census of epithelial-mesenchymal plasticity in cancer. Sci. Adv. 8, eabi7640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gavish, A. et al. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 618, 598–606 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E. & Secrier, M. Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nat. Commun. 14, 789 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, J. R. et al. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell 186, 363–381.e19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jolly, M. K. et al. Measuring and modelling the epithelial- mesenchymal hybrid state in cancer: clinical implications. Cell Tissues Organs 211, 110–133 (2022).

    Article  CAS  Google Scholar 

  25. Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hosseini, H. et al. Early dissemination seeds metastasis in breast cancer. Nature 540, 552–558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishay-Ronen, D. et al. Gain fat-lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell 35, 17–32.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Lambert, A. W. et al. ΔNp63/p73 drive metastatic colonization by controlling a regenerative epithelial stem cell program in quasi-mesenchymal cancer stem cells. Dev. Cell 57, 2714–2730.e8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luond, F. et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev. Cell 56, 3203–3221.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Aiello, N. M. et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45, 681–695.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Reichert, M. et al. Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer. Dev. Cell 45, 696–711.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verstappe, J. et al. ZEB2 drives intra-tumor heterogeneity and skin squamous cell carcinoma formation with distinct EMP transition states. iScience 27, 111169 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells — an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5, 744–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morel, A. P. et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3, e2888 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. De Craene, B. et al. Epidermal snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 21, 310–320 (2014).

    Article  PubMed  Google Scholar 

  43. Schuhwerk, H. & Brabletz, T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin. Cancer Biol. 97, 86–103 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Fujiwara, S. et al. Expression of SNAIL in accompanying PanIN is a key prognostic indicator in pancreatic ductal adenocarcinomas. Cancer Med. 8, 1671–1678 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goebel, L. et al. CD4+ T cells potently induce epithelial-mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells-novel implications of CD4+ T cells in pancreatic cancer development. Oncoimmunology 4, e1000083 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karamitopoulou, E. et al. Loss of Raf-1 kinase inhibitor protein (RKIP) is strongly associated with high-grade tumor budding and correlates with an aggressive phenotype in pancreatic ductal adenocarcinoma (PDAC). J. Transl. Med. 11, 311 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuvendjiska, J. et al. Circulating epithelial cells in patients with intraductal papillary mucinous neoplasm of the pancreas. Life 13, 1570 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morris, H. T., Bamlet, W. R., Razidlo, G. L. & Machesky, L. M. FSCN1 and epithelial mesenchymal transformation transcription factor expression in human pancreatic intraepithelial neoplasia and ductal adenocarcinoma. Pathol. Res. Pract. 251, 154836 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wartenberg, M. et al. Accumulation of FOXP3+T-cells in the tumor microenvironment is associated with an epithelial-mesenchymal-transition-type tumor budding phenotype and is an independent prognostic factor in surgically resected pancreatic ductal adenocarcinoma. Oncotarget 6, 4190–4201 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jun, Y. K. et al. Molecular activity of inflammation and epithelial-mesenchymal transition in the microenvironment of ulcerative colitis. Gut Liver 18, 1037–1047 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, X. et al. Mobilization of epithelial mesenchymal transition genes distinguishes active from inactive lesional tissue in patients with ulcerative colitis. Hum. Mol. Genet. 24, 4615–4624 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Kroepil, F. et al. Down-regulation of CDH1 is associated with expression of SNAI1 in colorectal adenomas. PLoS ONE 7, e46665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kurmyshkina, O., Kovchur, P., Schegoleva, L. & Volkova, T. Markers of angiogenesis, lymphangiogenesis, and epithelial-mesenchymal transition (plasticity) in CIN and early invasive carcinoma of the cervix: exploring putative molecular mechanisms involved in early tumor invasion. Int. J. Mol. Sci. 21, 6515 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, Y. et al. The indicative function of Twist2 and E-cadherin in HPV oncogene-induced epithelial-mesenchymal transition of cervical cancer cells. Oncol. Rep. 33, 639–650 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Popiel-Kopaczyk, A. et al. The immunohistochemical expression of epithelial-mesenchymal transition markers in precancerous lesions and cervical cancer. Int. J. Mol. Sci. 24, 8063 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Smith, C. M. et al. miR-200 family expression is downregulated upon neoplastic progression of Barrett’s esophagus. World J. Gastroenterol. 17, 1036–1044 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. De, A. et al. Forkhead box F1 induces columnar phenotype and epithelial-to-mesenchymal transition in esophageal squamous cells to initiate Barrett’s like metaplasia. Lab. Invest. 101, 745–759 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei, L. et al. Overexpression and oncogenic function of HMGA2 in endometrial serous carcinogenesis. Am. J. Cancer Res. 6, 249–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuhkanen, H. et al. Nuclear expression of Snail1 in borderline and malignant epithelial ovarian tumours is associated with tumour progression. BMC Cancer 9, 289 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li, H. et al. The tumor microenvironment: an irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis. Cell Adh. Migr. 10, 434–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fluegen, G. et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol. 19, 120–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grigore, A. D., Jolly, M. K., Jia, D., Farach-Carson, M. C. & Levine, H. Tumor budding: the name is EMT. Partial EMT. J. Clin. Med. 5, https://doi.org/10.3390/jcm5050051 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kohler, I. et al. Detailed analysis of epithelial-mesenchymal transition and tumor budding identifies predictors of long-term survival in pancreatic ductal adenocarcinoma. J. Gastroenterol. Hepatol. 30, 78–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Rees, J. R., Onwuegbusi, B. A., Save, V. E., Alderson, D. & Fitzgerald, R. C. In vivo and in vitro evidence for transforming growth factor-β1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res. 66, 9583–9590 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Krstic, M. et al. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG. J. Pathol. 248, 191–203 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Volinia, S. et al. Levels of miR-126 and miR-218 are elevated in ductal carcinoma in situ (DCIS) and inhibit malignant potential of DCIS derived cells. Oncotarget 9, 23543–23553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Szynglarewicz, B. et al. Biological aggressiveness of subclinical no-mass ductal carcinoma in situ (DCIS) can be reflected by the expression profiles of epithelial-mesenchymal transition triggers. Int. J. Mol. Sci. 19, 3941 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lo, P. K. et al. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFβ signaling. J. Biol. Chem. 292, 11466–11484 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Makki, J., Myint, O., Wynn, A. A., Samsudin, A. T. & John, D. V. Expression distribution of cancer stem cells, epithelial to mesenchymal transition, and telomerase activity in breast cancer and their association with clinicopathologic characteristics. Clin. Med. Insights Pathol. 8, 1–16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schulte, J. et al. Expression of the E-cadherin repressors Snail, Slug and Zeb1 in urothelial carcinoma of the urinary bladder: relation to stromal fibroblast activation and invasive behaviour of carcinoma cells. Histochem. Cell Biol. 138, 847–860 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Morelli, M. B. et al. Correlation between High PD-L1 and EMT/invasive genes expression and reduced recurrence-free survival in blood-circulating tumor cells from patients with non-muscle-invasive bladder cancer. Cancers 13, 5989 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jethwa, P. et al. Overexpression of slug is associated with malignant progression of esophageal adenocarcinoma. World J. Gastroenterol. 14, 1044–1052 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jang, T. J. Epithelial to mesenchymal transition in cutaneous squamous cell carcinoma is correlated with COX-2 expression but not with the presence of stromal macrophages or CD10-expressing cells. Virchows Arch. 460, 481–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Verneuil, L. et al. Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients. Oncotarget 6, 41497–41507 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Murata, M. et al. OVOL2-mediated ZEB1 downregulation may prevent promotion of actinic keratosis to cutaneous squamous cell carcinoma. J. Clin. Med. 9, 618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Youssef, K. K. et al. Two distinct epithelial-to-mesenchymal transition programs control invasion and inflammation in segregated tumor cell populations. Nat. Cancer 5, 1660–1680 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, Y. et al. Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nat. Cell Biol. 24, 554–564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Aceto, N., Toner, M., Maheswaran, S. & Haber, D. A. En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer 1, 44–52 (2015).

    Article  PubMed  Google Scholar 

  80. Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Sinha, D., Saha, P., Samanta, A. & Bishayee, A. Emerging concepts of hybrid epithelial-to-mesenchymal transition in cancer progression. Biomolecules 10, 1561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Douma, S. et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430, 1034–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Smit, M. A. & Peeper, D. S. Zeb1 is required for TrkB-induced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene 30, 3735–3744 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Raimondi, C. et al. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res. Treat. 130, 449–455 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Kallergi, G. et al. Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 13, R59 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Armstrong, A. J. et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 9, 997–1007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hassan, S., Blick, T., Wood, J., Thompson, E. W. & Williams, E. D. Circulating tumour cells indicate the presence of residual disease post-castration in prostate cancer patient-derived xenograft models. Front. Cell Dev. Biol. 10, 858013 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tachtsidis, A. et al. Human-specific RNA analysis shows uncoupled epithelial-mesenchymal plasticity in circulating and disseminated tumour cells from human breast cancer xenografts. Clin. Exp. Metastasis 36, 393–409 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Han, M. et al. Lymph liquid biopsy for detection of cancer stem cells. Cytom. A 99, 496–502 (2021).

    Article  CAS  Google Scholar 

  91. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cohen, E. N. et al. Phenotypic plasticity in circulating tumor cells is associated with poor response to therapy in metastatic breast cancer patients. Cancers 15, 1616 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun, Y. F. et al. Dissecting spatial heterogeneity and the immune-evasion mechanism of CTCs by single-cell RNA-seq in hepatocellular carcinoma. Nat. Commun. 12, 4091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Balcik-Ercin, P., Cayrefourcq, L., Soundararajan, R., Mani, S. A. & Alix-Panabières, C. Epithelial-to-mesenchymal plasticity in circulating tumor cell lines sequentially derived from a patient with colorectal cancer. Cancers 13, 5408 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grillet, F. et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut 66, 1802–1810 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Hassan, S., Blick, T., Thompson, E. W. & Williams, E. D. Diversity of epithelial-mesenchymal phenotypes in circulating tumour cells from prostate cancer patient-derived xenograft models. Cancers 13, 2750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, X. et al. μ-opioid receptor agonist facilitates circulating tumor cell formation in bladder cancer via the MOR/AKT/slug pathway: a comprehensive study including randomized controlled trial. Cancer Commun. 43, 365–386 (2023).

    Article  Google Scholar 

  99. Hamilton, G., Hochmair, M., Rath, B., Klameth, L. & Zeillinger, R. Small cell lung cancer: circulating tumor cells of extended stage patients express a mesenchymal-epithelial transition phenotype. Cell Adh. Migr. 10, 360–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, Q. et al. Prognostic value of stem-like circulating tumor cells in patients with cancer: a systematic review and meta-analysis. Clin. Exp. Med. 23, 1933–1944 (2023).

    Article  PubMed  Google Scholar 

  101. Aouad, P., Quinn, H. M., Berger, A. & Brisken, C. Tumor dormancy: EMT beyond invasion and metastasis. Genesis 62, e23552 (2024).

    Article  CAS  PubMed  Google Scholar 

  102. So, K. W. L., Su, Z., Cheung, J. P. Y. & Choi, S. W. Single-cell analysis of bone-marrow-disseminated tumour cells. Diagnostics 14, 2172 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Aouad, P. et al. Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence. Nat. Commun. 13, 4975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nobre, A. R. et al. ZFP281 drives a mesenchymal-like dormancy program in early disseminated breast cancer cells that prevents metastatic outgrowth in the lung. Nat. Cancer 3, 1165–1180 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Lawson, D. A. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526, 131–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Francescangeli, F. et al. A pre-existing population of ZEB2+ quiescent cells with stemness and mesenchymal features dictate chemoresistance in colorectal cancer. J. Exp. Clin. Cancer Res. 39, 2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Conzelmann, M., Linnemann, U. & Berger, M. R. Detection of disseminated tumour cells in the liver of cancer patients. Eur. J. Surg. Oncol. 31, 977–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Pantel, K. & Alix-Panabières, C. Bone marrow as a reservoir for disseminated tumor cells: a special source for liquid biopsy in cancer patients. BoneKEy Rep. 3, 584 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Yang, Y. et al. Comprehensive analysis of EMT-related genes and lncRNAs in the prognosis, immunity, and drug treatment of colorectal cancer. J. Transl. Med. 19, 391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lawlor, R. T. et al. Prognostic role of high-grade tumor budding in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis with a focus on epithelial to mesenchymal transition. Cancers 11, 113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pal, A., Barrett, T. F., Paolini, R., Parikh, A. & Puram, S. V. Partial EMT in head and neck cancer biology: a spectrum instead of a switch. Oncogene 40, 5049–5065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kolijn, K., Verhoef, E. I. & van Leenders, G. J. Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget 6, 24488–24498 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Grosse-Wilde, A. et al. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS ONE 10, e0126522 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Xue, W. et al. Establishment and analysis of an individualized EMT-related gene signature for the prognosis of breast cancer in female patients. Dis. Markers 2022, 1289445 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tao, H. et al. Identification of an EMT-related lncRNA signature and LINC01116 as an immune-related oncogene in hepatocellular carcinoma. Aging 14, 1473–1491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song, J., Wei, R., Huo, S., Gao, J. & Liu, X. Metastasis related epithelial-mesenchymal transition signature predicts prognosis and response to immunotherapy in gastric cancer. Front. Immunol. 13, 920512 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gibbons, D. L. & Creighton, C. J. Pan-cancer survey of epithelial-mesenchymal transition markers across the cancer genome atlas. Dev. Dyn. 247, 555–564 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Spaderna, S. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131, 830–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Ueno, H. et al. Predictors of extrahepatic recurrence after resection of colorectal liver metastases. Br. J. Surg. 91, 327–333 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Ueno, H., Murphy, J., Jass, J. R., Mochizuki, H. & Talbot, I. C. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology 40, 127–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Imani, S., Hosseinifard, H., Cheng, J., Wei, C. & Fu, J. Prognostic value of EMT-inducing transcription factors (EMT-TFs) in metastatic breast cancer: a systematic review and meta-analysis. Sci. Rep. 6, 28587 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chen, Z. et al. Clinical value of octamer-binding transcription factor 4 as a prognostic marker in patients with digestive system cancers: a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 32, 567–576 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Wan, T., Zhang, T., Si, X. & Zhou, Y. Overexpression of EMT-inducing transcription factors as a potential poor prognostic factor for hepatocellular carcinoma in Asian populations: a meta-analysis. Oncotarget 8, 59500–59508 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ahmadiankia, N. & Khosravi, A. Significance of epithelial-to-mesenchymal transition inducing transcription factors in predicting distance metastasis and survival in patients with colorectal cancer: a systematic review and meta-analysis. J. Res. Med. Sci. 25, 60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Natsugoe, S. et al. Snail plays a key role in E-cadherin-preserved esophageal squamous cell carcinoma. Oncol. Rep. 17, 517–523 (2007).

    CAS  PubMed  Google Scholar 

  128. Breyer, J. et al. Epithelial-mesenchymal transformation markers E-cadherin and survivin predict progression of stage pTa urothelial bladder carcinoma. World J. Urol. 34, 709–716 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Otto, W. et al. WHO 1973 grade 3 and infiltrative growth pattern proved, aberrant E-cadherin expression tends to be of predictive value for progression in a series of stage T1 high-grade bladder cancer after organ-sparing approach. Int. Urol. Nephrol. 49, 431–437 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Xie, X. et al. Prognostic significance of β-catenin expression in osteosarcoma: a meta-analysis. Front. Oncol. 10, 402 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gou, Y. et al. Snail is an independent prognostic indicator for predicting recurrence and progression in non-muscle-invasive bladder cancer. Int. Urol. Nephrol. 47, 289–293 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Creighton, C. J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl Acad. Sci. USA 106, 13820–13825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hennessy, B. T. et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 69, 4116–4124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Saxena, M., Stephens, M. A., Pathak, H. & Rangarajan, A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2, e179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Giles, K. M. et al. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol. Cancer Ther. 12, 2541–2558 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Bhangu, A. et al. The role of epithelial mesenchymal transition and resistance to neoadjuvant therapy in locally advanced rectal cancer. Colorectal Dis. 16, O133–O143 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Porter, R. L. et al. Epithelial to mesenchymal plasticity and differential response to therapies in pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA 116, 26835–26845 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, D. et al. Zeb1-controlled metabolic plasticity enables remodeling of chromatin accessibility in the development of neuroendocrine prostate cancer. Cell Death Differ. 31, 779–791 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tang, Y., Feinberg, T., Keller, E. T., Li, X. Y. & Weiss, S. J. Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat. Cell Biol. 18, 917–929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ruh, M. et al. The EMT transcription factor ZEB1 blocks osteoblastic differentiation in bone development and osteosarcoma. J. Pathol. 254, 199–211 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Kahlert, U. D., Joseph, J. V. & Kruyt, F. A. E. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol. Oncol. 11, 860–877 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Rowe, R. G. et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J. Cell Biol. 184, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Siebzehnrubl, F. A. et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 5, 1196–1212 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Xiao, Z. et al. Prognosis and clinical features analysis of EMT-related signature and tumor immune microenvironment in glioma. J. Med. Biochem. 42, 122–137 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhu, X. et al. P4HA1 as an unfavorable prognostic marker promotes cell migration and invasion of glioblastoma via inducing EMT process under hypoxia microenvironment. Am. J. Cancer Res. 11, 590–617 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, Y. et al. Silencing IKBKE inhibits the migration and invasion of glioblastoma by promoting Snail1 degradation. Clin. Transl. Oncol. 24, 816–828 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. El-Naggar, A. M. et al. Translational activation of HIF1α by YB-1 promotes sarcoma metastasis. Cancer Cell 27, 682–697 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Lamhamedi-Cherradi, S. E. et al. Transcriptional activators YAP/TAZ and AXL orchestrate dedifferentiation, cell fate, and metastasis in human osteosarcoma. Cancer Gene Ther. 28, 1325–1338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yang, L. et al. CCNDBP1, a prognostic marker regulated by DNA methylation, inhibits aggressive behavior in dedifferentiated liposarcoma via repressing epithelial mesenchymal transition. Front. Oncol. 11, 687012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Harada, H. et al. Carcinosarcoma of the esophagus: a report of 6 cases associated with zinc finger E-box-binding homeobox 1 expression. Oncol. Lett. 17, 578–586 (2019).

    CAS  PubMed  Google Scholar 

  155. Ho, G. Y. et al. Epithelial-to-mesenchymal transition supports ovarian carcinosarcoma tumorigenesis and confers sensitivity to microtubule targeting with eribulin. Cancer Res. 82, 4457–4473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sertier, A. S. et al. Dissecting the origin of heterogeneity in uterine and ovarian carcinosarcomas. Cancer Res. Commun. 3, 830–841 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang, M. et al. A gut microbiota rheostat forecasts responsiveness to PD-L1 and VEGF blockade in mesothelioma. Nat. Commun. 15, 7187 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Almotiri, A. et al. Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J. Clin. Invest. 131, e129115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Radhakrishnan, K., Truong, L. & Carmichael, C. L. An “unexpected” role for EMT transcription factors in hematological development and malignancy. Front. Immunol. 14, 1207360 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang, J. et al. Interplay between the EMT transcription factors ZEB1 and ZEB2 regulates hematopoietic stem and progenitor cell differentiation and hematopoietic lineage fidelity. PLoS Biol. 19, e3001394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. van Helden, M. J. et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J. Exp. Med. 212, 2015–2025 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Scott, C. L. et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J. Exp. Med. 213, 897–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lemma, S. et al. Biological roles and prognostic values of the epithelial-mesenchymal transition-mediating transcription factors Twist, ZEB1 and Slug in diffuse large B-cell lymphoma. Histopathology 62, 326–333 (2013).

    Article  PubMed  Google Scholar 

  164. Mishra, A. B. & Nishank, S. S. Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis. Med. Oncol. 40, 190 (2023).

    Article  CAS  PubMed  Google Scholar 

  165. Yang, J. Z. et al. High nuclear expression of Twist1 in the skeletal extramedullary disease of myeloma patients predicts inferior survival. Pathol. Res. Pract. 212, 210–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Wang, N. et al. TWIST-1 promotes cell growth, drug resistance and progenitor clonogenic capacities in myeloid leukemia and is a novel poor prognostic factor in acute myeloid leukemia. Oncotarget 6, 20977–20992 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Percio, S., Coltella, N., Grisanti, S., Bernardi, R. & Pattini, L. A HIF-1 network reveals characteristics of epithelial-mesenchymal transition in acute promyelocytic leukemia. Genome Med. 6, 84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Dongre, A. et al. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Res. 77, 3982–3989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pang, Q. Y., Chiu, Y. C. & Huang, R. Y. Regulating epithelial-mesenchymal plasticity from 3D genome organization. Commun. Biol. 7, 750 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lehmann, B. D. et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750–2767 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Masuda, H. et al. Changes in triple-negative breast cancer molecular subtypes in patients without pathologic complete response after neoadjuvant systemic chemotherapy. JCO Precis. Oncol. 6, e2000368 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Pitroda, S. P. et al. Integrated molecular subtyping defines a curable oligometastatic state in colorectal liver metastasis. Nat. Commun. 9, 1793 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Lugli, A., Zlobec, I., Berger, M. D., Kirsch, R. & Nagtegaal, I. D. Tumour budding in solid cancers. Nat. Rev. Clin. Oncol. 18, 101–115 (2021).

    Article  PubMed  Google Scholar 

  174. Levine, H. et al. 2354P computational pathology-derived features capture varied epithelial-mesenchymal transition (EMT) states. Ann. Oncol. 34, S1197 (2023).

    Article  Google Scholar 

  175. Bagheri, M. et al. Pharmacological induction of chromatin remodeling drives chemosensitization in triple-negative breast cancer. Cell Rep. Med. 5, 101504 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Twelves, C. et al. “New” metastases are associated with a poorer prognosis than growth of pre-existing metastases in patients with metastatic breast cancer treated with chemotherapy. Breast Cancer Res. 17, 150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Guillen, K. P. et al. A human breast cancer-derived xenograft and organoid platform for drug discovery and precision oncology. Nat. Cancer 3, 232–250 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Demetri, G. D. et al. Activity of eribulin in patients with advanced liposarcoma demonstrated in a subgroup analysis from a randomized phase III study of eribulin versus dacarbazine. J. Clin. Oncol. 35, 3433–3439 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Kitahara, H. et al. Eribulin sensitizes oral squamous cell carcinoma cells to cetuximab via induction of mesenchymal-to-epithelial transition. Oncol. Rep. 36, 3139–3144 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang, X. et al. Netrin-1 elicits metastatic potential of non-small cell lung carcinoma cell by enhancing cell invasion, migration and vasculogenic mimicry via EMT induction. Cancer Gene Ther. 25, 18–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Cassier, P. A. et al. Netrin-1 blockade inhibits tumour growth and EMT features in endometrial cancer. Nature 620, 409–416 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cassier, P. et al. A first in human, phase I trial of NP137, a first-in-class antibody targeting netrin-1, in patients with advanced refractory solid tumors. Ann. Oncol. 30, v159 (2019).

    Article  Google Scholar 

  183. Yadav, M. et al. AXL signaling in cancer: from molecular insights to targeted therapies. Signal Transduct. Target. Ther. 10, 37 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Engelsen, A. S. T. et al. AXL is a driver of stemness in normal mammary gland and breast cancer. iScience 23, 101649 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Antony, J. & Huang, R. Y. AXL-driven EMT state as a targetable conduit in cancer. Cancer Res. 77, 3725–3732 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Antony, J. et al. The GAS6-AXL signaling network is a mesenchymal (Mes) molecular subtype-specific therapeutic target for ovarian cancer. Sci. Signal. 9, ra97 (2016).

    Article  PubMed  Google Scholar 

  187. Arner, E. N. et al. AXL-TBK1 driven AKT3 activation promotes metastasis. Sci. Signal. 17, eado6057 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Goyette, M. A. et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc. Natl Acad. Sci. USA 118, e2023868118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kollmannsberger, C. et al. Phase I study evaluating glesatinib (MGCD265), an inhibitor of MET and AXL, in patients with non-small cell lung cancer and other advanced solid tumors. Target. Oncol. 18, 105–118 (2023).

    Article  PubMed  Google Scholar 

  190. Yau, T. C. C. et al. A phase I/II multicenter study of single-agent foretinib as first-line therapy in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 23, 2405–2413 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Li, H. et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1+ CD8 T cells. Cell Rep. Med. 3, 100554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Feng, Y. L., Chen, D. Q., Vaziri, N. D., Guo, Y. & Zhao, Y. Y. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med. Res. Rev. 40, 54–78 (2020).

    Article  PubMed  Google Scholar 

  193. Gu, Y., Zhang, Z. & Ten Dijke, P. Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy. Cell Mol. Immunol. 20, 318–340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ramesh, V., Brabletz, T. & Ceppi, P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 6, 942–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Zhang, N. et al. Novel therapeutic strategies: targeting epithelial-mesenchymal transition in colorectal cancer. Lancet Oncol. 22, e358–e368 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Zhou, Y. et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct. Target. Ther. 9, 132 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Waryah, C. et al. Synthetic epigenetic reprogramming of mesenchymal to epithelial states using the CRISPR/dCas9 platform in triple negative breast cancer. Adv. Sci. 10, e2301802 (2023).

    Article  Google Scholar 

  199. Ahmadi-Hadad, A., de Queiroz, P. C. C., Schettini, F. & Giuliano, M. Reawakening the master switches in triple-negative breast cancer: a strategic blueprint for confronting metastasis and chemoresistance via microRNA-200/205: a systematic review. Crit. Rev. Oncol. Hematol. 204, 104516 (2024).

    Article  PubMed  Google Scholar 

  200. Laney, V. et al. MR molecular image guided treatment of pancreatic cancer with targeted ECO/miR-200c nanoparticles in immunocompetent mouse tumor models. Pharm. Res. 41, 1811–1825 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Plumber, S. A. et al. Rosiglitazone and trametinib exhibit potent anti-tumor activity in a mouse model of muscle invasive bladder cancer. Nat. Commun. 15, 6538 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Friedmann Angeli, J. P., Krysko, D. V. & Conrad, M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 19, 405–414 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Schwab, A. et al. Zeb1 mediates EMT/plasticity-associated ferroptosis sensitivity in cancer cells by regulating lipogenic enzyme expression and phospholipid composition. Nat. Cell Biol. https://doi.org/10.1038/s41556-024-01464-1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Wang, Y. et al. ACSL4 and polyunsaturated lipids support metastatic extravasation and colonization. Cell https://doi.org/10.1016/j.cell.2024.10.047 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Jonckheere, S. et al. Development and validation of a high-throughput screening pipeline of compound libraries to target EMT. Cell Death Differ. https://doi.org/10.1038/s41418-025-01515-6 (2025).

    Article  PubMed  Google Scholar 

  207. Terry, S. et al. New insights into the role of EMT in tumor immune escape. Mol. Oncol. 11, 824–846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Wang, H. & Yee, D. I-SPY 2: a neoadjuvant adaptive clinical trial designed to improve outcomes in high-risk breast cancer. Curr. Breast Cancer Rep. 11, 303–310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Twelves, C. et al. Efficacy of eribulin in women with metastatic breast cancer: a pooled analysis of two phase 3 studies. Breast Cancer Res. Treat. 148, 553–561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shichiri, K., Oshi, M., Ziazadeh, D., Endo, I. & Takabe, K. High miR-200c expression is associated with suppressed epithelial-mesenchymal transition, TGF-β signaling and better survival despite enhanced cell proliferation in gastric cancer patients. Am. J. Cancer Res. 13, 3027–3040 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Oshi, M. et al. Enhanced epithelial-mesenchymal transition signatures are linked with adverse tumor microenvironment, angiogenesis and worse survival in gastric cancer. Cancer Gene Ther. 31, 746–754 (2024).

    Article  CAS  PubMed  Google Scholar 

  212. Pascual, T. et al. Neoadjuvant eribulin in HER2-negative early-stage breast cancer (SOLTI-1007-NeoEribulin): a multicenter, two-cohort, non-randomized phase II trial. NPJ Breast Cancer 7, 145 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Filho, O. M. et al. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov. 11, 2474–2487 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Michalski, K. et al. Prognostic implications of dual tracer PET/CT: PSMA ligand and [18F]FDG PET/CT in patients undergoing [(177)Lu]PSMA radioligand therapy. Eur. J. Nucl. Med. Mol. Imaging 48, 2024–2030 (2021).

    Article  CAS  PubMed  Google Scholar 

  215. Kahlert, C. et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin. Cancer Res. 17, 7654–7663 (2011).

    Article  CAS  PubMed  Google Scholar 

  216. Al Bakir, M. et al. The evolution of non-small cell lung cancer metastases in TRACERx. Nature 616, 534–542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. el Ghouzzi, V. et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat. Genet. 15, 42–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  218. Hudson, L. G. et al. Cutaneous wound reepithelialization is compromised in mice lacking functional Slug (Snai2). J. Dermatol. Sci. 56, 19–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Sánchez-Martín, M. et al. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum. Mol. Genet. 11, 3231–3236 (2002).

    Article  PubMed  Google Scholar 

  220. Takagi, T., Moribe, H., Kondoh, H. & Higashi, Y. DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125, 21–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  221. Van de Putte, T. et al. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein-1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am. J. Hum. Genet. 72, 465–470 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Xu, Y. et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am. J. Pathol. 183, 1281–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  224. McNiel, E. A. & Tsichlis, P. N. Analyses of publicly available genomics resources define FGF-2-expressing bladder carcinomas as EMT-prone, proliferative tumors with low mutation rates and high expression of CTLA-4, PD-1 and PD-L1. Signal Transduct. Target. Ther. 2, 16045 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Wang, L. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 9, 3503 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Knudsen, E. S. et al. Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia. Breast Cancer Res. Treat. 133, 1009–1024 (2012).

    Article  CAS  PubMed  Google Scholar 

  228. Rios, A. C. et al. Intraclonal plasticity in mammary tumors revealed through large-scale single-cell resolution 3D imaging. Cancer Cell 35, 618–632.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Horimoto, Y. et al. Analysis of circulating tumour cell and the epithelial mesenchymal transition (EMT) status during eribulin-based treatment in 22 patients with metastatic breast cancer: a pilot study. J. Transl. Med. 16, 287 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Papadaki, M. A. et al. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol. Cancer Ther. 18, 437–447 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Guan, X. et al. The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial-mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer. Cancer Commun. 39, 1 (2019).

    Article  Google Scholar 

  232. Asiedu, M. K., Ingle, J. N., Behrens, M. D., Radisky, D. C. & Knutson, K. L. TGFβ/TNFα-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 71, 4707–4719 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Kröger, C. et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc. Natl Acad. Sci. USA 116, 7353–7362 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Bado, I. L. et al. The bone microenvironment increases phenotypic plasticity of ER+ breast cancer cells. Dev. Cell 56, 1100–1117.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Werner-Klein, M. et al. Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nat. Commun. 11, 4977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lesniak, D. et al. Spontaneous epithelial-mesenchymal transition and resistance to HER-2-targeted therapies in HER-2-positive luminal breast cancer. PLoS ONE 8, e71987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kawamoto, A. et al. Radiation induces epithelial-mesenchymal transition in colorectal cancer cells. Oncol. Rep. 27, 51–57 (2012).

    CAS  PubMed  Google Scholar 

  239. Gasinska, A. et al. Biomarkers of epithelial-mesenchymal transition in localized, surgically treated clear-cell renal cell carcinoma. Folia Histochem. Cytobiol. 56, 195–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  240. Tao, Z. H. et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J. Exp. Med. 210, 789–803 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lei, X. et al. Ack1 overexpression promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Oncotarget 6, 40622–40641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Peng, R. et al. Elevated TRIM44 promotes intrahepatic cholangiocarcinoma progression by inducing cell EMT via MAPK signaling. Cancer Med. 7, 796–808 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Critelli, R. et al. Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. Cell Death Dis. 8, e3017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Yang, R. et al. Low PRRX1 expression and high ZEB1 expression are significantly correlated with epithelial-mesenchymal transition and tumor angiogenesis in non-small cell lung cancer. Medicine 100, e24472 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Shintani, Y. et al. Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann. Thorac. Surg. 92, 1794–1804 (2011).

    Article  PubMed  Google Scholar 

  246. Elamin, Y. Y. et al. Poziotinib for EGFR exon 20-mutant NSCLC: clinical efficacy, resistance mechanisms, and impact of insertion location on drug sensitivity. Cancer Cell 40, 754–767.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Kim, S. et al. PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Hum. Pathol. 58, 7–14 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. Lou, Y. et al. Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin. Cancer Res. 22, 3630–3642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Gonzalez, V. D. et al. Commonly occurring cell subsets in high-grade serous ovarian tumors identified by single-cell mass cytometry. Cell Rep. 22, 1875–1888 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Mao, Y. et al. The role of nuclear β-catenin accumulation in the Twist2-induced ovarian cancer EMT. PLoS ONE 8, e78200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Meidhof, S. et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med. 7, 831–847 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Sharma, S. et al. Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. J. Biol. Chem. 291, 19351–19363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yu-Lee, L. Y. et al. Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFβRIII-p38MAPK-pS249/T252RB pathway. Cancer Res. 78, 2911–2924 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Marín-Aguilera, M. et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol. Cancer Ther. 13, 1270–1284 (2014).

    Article  PubMed  Google Scholar 

  255. Martin, S. K. et al. Multinucleation and mesenchymal-to-epithelial transition alleviate resistance to combined cabazitaxel and antiandrogen therapy in advanced prostate cancer. Cancer Res. 76, 912–926 (2016).

    Article  CAS  PubMed  Google Scholar 

  256. Cmero, M. et al. Loss of SNAI2 in prostate cancer correlates with clinical response to androgen deprivation therapy. JCO Precis. Oncol. 5, https://doi.org/10.1200/po.20.00337 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Lefevre, M. et al. Epithelial to mesenchymal transition and HPV infection in squamous cell oropharyngeal carcinomas: the papillophar study. Br. J. Cancer 116, 362–369 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Kong, Y. H. et al. Co-expression of TWIST1 and ZEB2 in oral squamous cell carcinoma is associated with poor survival. PLoS ONE 10, e0134045 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Genenger, B., Perry, J. R., Ashford, B. & Ranson, M. A tEMTing target? Clinical and experimental evidence for epithelial-mesenchymal transition in the progression of cutaneous squamous cell carcinoma (a scoping systematic review). Discov. Oncol. 13, 42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Tomizawa, Y., Wu, T. T. & Wang, K. K. Epithelial mesenchymal transition and cancer stem cells in esophageal adenocarcinoma originating from Barrett’s esophagus. Oncol. Lett. 3, 1059–1063 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Valenzano, M. C. et al. Zinc gluconate induces potentially cancer chemopreventive activity in Barrett’s esophagus: a phase 1 pilot study. Dig. Dis. Sci. 66, 1195–1211 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Biddle, A., Gammon, L., Liang, X., Costea, D. E. & Mackenzie, I. C. Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. eBioMedicine 4, 138–145 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Guo, Q. et al. ADMA mediates gastric cancer cell migration and invasion via Wnt/β-catenin signaling pathway. Clin. Transl. Oncol. 23, 325–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  265. Yang, Z. et al. Acquisition of resistance to trastuzumab in gastric cancer cells is associated with activation of IL-6/STAT3/Jagged-1/Notch positive feedback loop. Oncotarget 6, 5072–5087 (2015).

    Article  PubMed  Google Scholar 

  266. Hara, J. et al. Mesenchymal phenotype after chemotherapy is associated with chemoresistance and poor clinical outcome in esophageal cancer. Oncol. Rep. 31, 589–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  267. Denecker, G. et al. Identification of a ZEB2-MITF-ZEB1 transcriptional network that controls melanogenesis and melanoma progression. Cell Death Differ. 21, 1250–1261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Kudo-Saito, C., Shirako, H., Takeuchi, T. & Kawakami, Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15, 195–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  269. Yao, J. et al. Altered expression and splicing of ESRP1 in malignant melanoma correlates with epithelial-mesenchymal status and tumor-associated immune cytolytic activity. Cancer Immunol. Res. 4, 552–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  270. Chen, L. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 5, 5241 (2014).

    Article  CAS  PubMed  Google Scholar 

  271. Simeonov, K. P. et al. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 39, 1150–1162.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhao, S. et al. Ningetinib plus gefitinib in EGFR-mutant non-small-cell lung cancer with MET and AXL dysregulations: a phase 1b clinical trial and biomarker analysis. Lung Cancer 188, 107468 (2024).

    Article  CAS  PubMed  Google Scholar 

  273. Goto, K. et al. Phase 1 study of DS-1205c combined with gefitinib for EGFR mutation-positive non-small cell lung cancer. Cancer Med. 12, 7090–7104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Melisi, D. et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br. J. Cancer 119, 1208–1214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Melisi, D. et al. Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J. Immunother. Cancer 9, e002068 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Nadal, E. et al. A phase Ib/II study of galunisertib in combination with nivolumab in solid tumors and non-small cell lung cancer. BMC Cancer 23, 708 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Sardesai, S. D. et al. Inhibiting fatty acid synthase in operable triple negative breast cancer. J. Clin. Oncol. 38, 584–584 (2020).

    Article  Google Scholar 

  278. Blais, N. et al. A phase II trial to evaluate the epithelial-to-mesenchymal (EMT) inhibitor sotevtamab combined with docetaxel in patients with metastatic non-small cell lung cancer following failure of primary chemoimmunotherapy. J. Clin. Oncol. 42, 8577–8577 (2024).

    Article  Google Scholar 

  279. Yamashita, T. et al. Trastuzumab-pertuzumab plus eribulin or taxane as first-line chemotherapy for human epidermal growth factor 2-positive locally advanced/metastatic breast cancer: the randomized noninferiority phase III EMERALD trial. J. Clin. Oncol. 43, 1302–1313 (2025).

    Article  CAS  PubMed  Google Scholar 

  280. Lengrand, J. et al. Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature 620, 402–408 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Khan, A. Q. et al. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin. Cancer Biol. 100, 1–16 (2024).

    Article  CAS  PubMed  Google Scholar 

  282. Metge, B. J. et al. Targeting EMT using low-dose teniposide by downregulating ZEB2-driven activation of RNA polymerase I in breast cancer. Cell Death Dis. 15, 322 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Wu, Y. et al. Identification of a cisplatin resistant-based prognostic immune related gene signature in MIBC. Transl. Oncol. 44, 101942 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Hsu, D. S. et al. Regulation of excision repair cross-complementation group 1 by Snail contributes to cisplatin resistance in head and neck cancer. Clin. Cancer Res. 16, 4561–4571 (2010).

    Article  CAS  PubMed  Google Scholar 

  285. Wei, L. Y. et al. A six-epithelial-mesenchymal transition gene signature may predict metastasis of triple-negative breast cancer. Onco Targets Ther. 13, 6497–6509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Chang, Y. C. et al. RAB31 drives extracellular vesicle fusion and cancer-associated fibroblast formation leading to oxaliplatin resistance in colorectal cancer. J. Extracell. Biol. 3, e141 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Sun, Y. et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 72, 527–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  288. Hanrahan, K. et al. The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol. Oncol. 11, 251–265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Stark, T. W. et al. Predictive value of epithelial-mesenchymal-transition (EMT) signature and PARP-1 in prostate cancer radioresistance. Prostate 77, 1583–1591 (2017).

    Article  CAS  PubMed  Google Scholar 

  290. Wu, S. L. et al. 2-Methoxyestradiol inhibits the proliferation and migration and reduces the radioresistance of nasopharyngeal carcinoma CNE-2 stem cells via NF-κB/HIF-1 signaling pathway inactivation and EMT reversal. Oncol. Rep. 37, 793–802 (2017).

    Article  CAS  PubMed  Google Scholar 

  291. Xie, P., Yu, H., Wang, F., Yan, F. & He, X. Inhibition of LOXL2 enhances the radiosensitivity of castration-resistant prostate cancer cells associated with the reversal of the EMT process. Biomed. Res. Int. 2019, 4012590 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Chae, Y. K. et al. Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci. Rep. 8, 2918 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Plaschka, M. et al. ZEB1 transcription factor promotes immune escape in melanoma. J. Immunother. Cancer 10, e003484 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Thompson, J. C. et al. Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer 139, 1–8 (2020).

    Article  PubMed  Google Scholar 

  295. Zhang, Y. et al. Tumor stemness score to estimate epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) characterization and to predict the prognosis and immunotherapy response in bladder urothelial carcinoma. Stem Cell Res. Ther. 14, 15 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Dongre, A. et al. Direct and indirect regulators of epithelial-mesenchymal transition-mediated immunosuppression in breast carcinomas. Cancer Discov. 11, 1286–1305 (2021).

    Article  CAS  PubMed  Google Scholar 

  297. Li, J. et al. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov. 11, 1212–1227 (2021).

    Article  CAS  PubMed  Google Scholar 

  298. Terabe, M. et al. Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncoimmunology 6, e1308616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Wang, C. et al. UGT1A7 altered HER2-positive breast cancer response to trastuzumab by affecting epithelial-to-mesenchymal transition: a potential biomarker to identify patients resistant to trastuzumab treatment. Cancer Gene Ther. 31, 1525–1535 (2024).

    Article  CAS  PubMed  Google Scholar 

  300. Byers, L. A. et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 19, 279–290 (2013).

    Article  CAS  PubMed  Google Scholar 

  301. Lv, L. et al. Anlotinib reverses osimertinib resistance via inhibiting epithelial-to-mesenchymal transition and angiogenesis in non-small cell lung cancer. J. Biomed. Res. https://doi.org/10.7555/jbr.38.20240045 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors research is supported by the German Research Foundation (TRR305 TP A03, A04, B01 and B07, SPP2306 project 461704629 and BR1399/17-1, BR4145/1-1, BR4145/2-1 and BR4145/3-1), IZKF-Erlangen (IZKF D39), the Bavarian Cancer Research Center (BZKF:PRe-Ferro 001), the National Breast Cancer Foundation (Australia; RPG0118), and Tour de Cure (Australia; RSP-106-2024).

Author information

Authors and Affiliations

Authors

Contributions

E.W.T., A.D.R., S.B., V.A., M.P.S. and T.B. researched data for this manuscript. E.W.T., A.D.R., S.B., K.G., R.Y.H., D.I.-R., P.S., G.S., M.P.S. and T.B. made a substantial contribution to discussions of content. E.W.T., A.D.R., S.B., M.P.S. and T.B. wrote the manuscript. E.W.T., A.D.R., S.B., R.Y.H., D.I.-R., P.S., G.S., M.P.S. and T.B. edited and/or reviewed the manuscript prior to submission.

Corresponding authors

Correspondence to Erik W. Thompson or Thomas Brabletz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks A. Moustakas, A. Tasdogan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, E.W., Redfern, A.D., Brabletz, S. et al. EMT and cancer: what clinicians should know. Nat Rev Clin Oncol 22, 711–733 (2025). https://doi.org/10.1038/s41571-025-01058-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01058-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer