Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding and overcoming multidrug resistance in cancer

Abstract

Cancer evolution can engender tumours with the ability to resist multiple treatments with distinct chemical structures and mechanisms of action, and this multidrug resistance (MDR) phenotype has long been a substantial challenge in cancer therapy. Despite the established benefits of systemic treatments including chemotherapies, molecularly targeted therapies and immunotherapies across various cancers, MDR inevitably occurs at some point during the course of the disease and its treatment in most patients. Since the discovery of MDR in the 1960s, our understanding of the underlying mechanisms has deepened. However, few strategies are currently available to combat MDR in the clinical setting, and approaches to systematically translate knowledge of new MDR mechanisms and treatments from the laboratory into the clinic are lacking. In this Review, we focus on preclinical and clinical advances in understanding MDR, with an emphasis on resistance to chemotherapy and targeted therapy. We also summarize progress made in translating these findings from bench to bedside through the development of potential strategies to overcome MDR and thus improve patient outcomes.

Key points

  • Multidrug resistance (MDR) is driven first and foremost by ATP-binding cassette efflux pumps and is further reinforced by tumour heterogeneity, epigenetic changes, signalling pathway interactions and the tumour microenvironment.

  • Many drug resistance mechanisms, despite clear evidence that they confer cross-resistance to multiple agents, are often discussed only in general terms of ‘drug resistance’; emphasizing contributions of these mechanisms to MDR is important to the clinical translation of MDR-reversal strategies.

  • Robust preclinical models are vital to bridge the gap between basic research and clinical application. Traditional xenograft models often fail to reflect the complexities of cancer in patients; genetically engineered mouse models and patient-derived xenograft models are typically more representative but still do not fully recapitulate tumour heterogeneity and immune interactions, necessitating further refinement.

  • Addressing MDR will require combinations of molecularly targeted agents and other therapies, immune modulation and innovative drug delivery methods to target multiple resistance pathways simultaneously.

  • Incorporating molecular profiling and biomarker-based diagnostics will facilitate progress in MDR research by connecting preclinical findings with clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones in MDR research.
Fig. 2: Key signalling pathways that contribute to MDR in cancer.
Fig. 3: Major mechanisms of MDR in cancer and potential corresponding treatment strategies.

Similar content being viewed by others

References

  1. Cancer facts and figures 2024. American Cancer Society https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2024/2024-cancer-facts-and-figures-acs.pdf (2024).

  2. Ashique, S. et al. Multi drug resistance in colorectal cancer — approaches to overcome, advancements and future success. Adv. Cancer Biol. Metastasis 10, 100114 (2024).

    Article  CAS  Google Scholar 

  3. Cancer multidrug resistance. Nat. Biotechnol. 18, IT18–IT20 (2000).

    Article  Google Scholar 

  4. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull. 7, 339–348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kessel, D. & Bosmann, H. B. On the characteristics of actinomycin D resistance in L5178Y cells. Cancer Res. 30, 2695–2701 (1970).

    CAS  PubMed  Google Scholar 

  6. Kessel, D. & Wodinsky, I. Uptake in vivo and in vitro of actinomycin D by mouse leukemias as factors in survival. Biochem. Pharmacol. 17, 161–164 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. Kessel, D., Botterill, V. & Wodinsky, I. Uptake and retention of daunomycin by mouse leukemic cells as factors in drug response. Cancer Res. 28, 938–941 (1968).

    CAS  PubMed  Google Scholar 

  8. Bellamy, W. T. & Dalton, W. S. Multidrug resistance in the laboratory and clinic. Adv. Clin. Chem. 31, 1–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Kurre, D., Dang, P. X., Le, L. T. M., Gadkari, V. V. & Alam, A. Structural insights into binding-site access and ligand recognition by human ABCB1. EMBO J. https://doi.org/10.1038/s44318-025-00361-z (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shinde, O. et al. Structures of ATP-binding cassette transporter ABCC1 reveal the molecular basis of cyclic dinucleotide cGAMP export. Immunity 58, 59–73 (2025).

    Article  CAS  PubMed  Google Scholar 

  11. Lei, Z. N. et al. Understanding and targeting resistance mechanisms in cancer. MedComm 4, e265 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tippett, V. L. et al. The strategy and clinical relevance of in vitro models of MAP resistance in osteosarcoma: a systematic review. Oncogene 42, 259–277 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. McDermott, M. et al. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies. Front. Oncol. 4, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu, Z. X. et al. Establishment and characterization of an irinotecan-resistant human colon cancer cell line. Front. Oncol. 10, 624954 (2020).

    Article  PubMed  Google Scholar 

  15. Watson, M. B., Lind, M. J. & Cawkwell, L. Establishment of in-vitro models of chemotherapy resistance. Anticancer Drugs 18, 749–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Beraldo-Neto, E. et al. Proteomic dynamics of multidrug resistance mechanisms in lucena 1 cell line. Cells 13, 1427 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosch, L. et al. ERBB and P-glycoprotein inhibitors break resistance in relapsed neuroblastoma models through P-glycoprotein. Mol. Oncol. 17, 37–58 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Berrieman, H. K., Lind, M. J. & Cawkwell, L. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol. 5, 158–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Klotz, D. M. et al. Establishment and molecular characterization of an in vitro model for PARPi-resistant ovarian cancer. Cancers 15, 3774 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bell, C. C. & Gilan, O. Principles and mechanisms of non-genetic resistance in cancer. Br. J. Cancer 122, 465–472 (2020).

    Article  PubMed  Google Scholar 

  21. Gillet, J. P. et al. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl Acad. Sci. USA 108, 18708–18713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aldonza, M. B., Hong, J. Y. & Lee, S. K. Paclitaxel-resistant cancer cell-derived secretomes elicit ABCB1-associated docetaxel cross-resistance and escape from apoptosis through FOXO3a-driven glycolytic regulation. Exp. Mol. Med. 49, e286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alalawy, A. I. Key genes and molecular mechanisms related to paclitaxel resistance. Cancer Cell Int. 24, 244 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vaghari-Tabari, M. et al. CRISPR/Cas9 gene editing: a new approach for overcoming drug resistance in cancer. Cell. Mol. Biol. Lett. 27, 49 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lei, Z. N. et al. Overcoming multidrug resistance by knockout of ABCB1 gene using CRISPR/Cas9 system in SW620/Ad300 colorectal cancer cells. MedComm 2, 765–777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, T. et al. Targeting ABCB1 (MDR1) in multi-drug resistant osteosarcoma cells using the CRISPR–Cas9 system to reverse drug resistance. Oncotarget 7, 83502 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang, K. et al. Targeting uPAR by CRISPR/Cas9 system attenuates cancer malignancy and multidrug resistance. Front. Oncol. 9, 80 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, M. A. et al. Tousled-like kinase loss confers PARP inhibitor resistance in BRCA1-mutated cancers by impeding non-homologous end joining repair. Mol. Med. 31, 18 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ibrahim, K., Abdul Murad, N. A., Harun, R. & Jamal, R. Knockdown of Tousled-like kinase 1 inhibits survival of glioblastoma multiforme cells. Int. J. Mol. Med. 46, 685–699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balon, K., Sheriff, A., Jacków, J. & Łaczmański, Ł. Targeting cancer with CRISPR/Cas9-based therapy. Int. J. Mol. Sci. 23, 573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lavi, O. Redundancy: a critical obstacle to improving cancer therapy. Cancer Res. 75, 808–812 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Che, L. et al. Computer-assisted engineering of programmed drug releasing multilayer nanomedicine via indomethacin-mediated ternary complex for therapy against a multidrug resistant tumor. Acta Biomater. 97, 461–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Qin, S. et al. CCT251545 enhances drug delivery and potentiates chemotherapy in multidrug-resistant cancers by Rac1-mediated macropinocytosis. Drug. Resist. Updat. 66, 100906 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Cho, S. Y. Patient-derived xenografts as compatible models for precision oncology. Lab. Anim. Res. 36, 14 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goto, T. Patient-derived tumor xenograft models: toward the establishment of precision cancer medicine. J. Pers. Med. 10, 64 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lubachowski, M. et al. Activation of the anaphase promoting complex restores impaired mitotic progression and chemosensitivity in multiple drug-resistant human breast cancer. Cancers 16, 1755 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lim, S. M. et al. Exploration of immune-modulatory effects of amivantamab in combination with pembrolizumab in lung and head and neck squamous cell carcinoma. Cancer Res. Commun. 4, 1748–1764 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dickins, R. A. et al. Tissue-specific and reversible RNA interference in transgenic mice. Nat. Genet. 39, 914–921 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hooijkaas, A. I., Gadiot, J., van der Valk, M., Mooi, W. J. & Blank, C. U. Targeting BRAFV600E in an inducible murine model of melanoma. Am. J. Pathol. 181, 785–794 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Politi, K., Fan, P. D., Shen, R., Zakowski, M. & Varmus, H. Erlotinib resistance in mouse models of epidermal growth factor receptor-induced lung adenocarcinoma. Dis. Model. Mech. 3, 111–119 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Z., Yang, S. & Wang, Q. Impact of MET alterations on targeted therapy with EGFR-tyrosine kinase inhibitors for EGFR-mutant lung cancer. Biomark. Res. 7, 27 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee, J. B., Shim, J. S. & Byoung, C. C. Evolving roles of MET as a therapeutic target in NSCLC and beyond. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-025-01051-9 (2025).

    Article  PubMed  Google Scholar 

  44. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abate-Shen, C. & Pandolfi, P. P. Effective utilization and appropriate selection of genetically engineered mouse models for translational integration of mouse and human trials. Cold Spring Harb. 2013, https://doi.org/10.1101/pdb.top078774 (2013).

  46. Yang, Y. et al. Comprehensive landscape of resistance mechanisms for neoadjuvant therapy in esophageal squamous cell carcinoma by single-cell transcriptomics. Signal. Transduct. Target. Ther. 8, 298 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sahu, D., Shi, J., Segura Rueda, I. A., Chatrath, A. & Dutta, A. Development of a polygenic score predicting drug resistance and patient outcome in breast cancer. NPJ Precis. Oncol. 8, 219 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, S. et al. LncRNA AGPG confers endocrine resistance in breast cancer by promoting E2F1 activity. Cancer Res. 83, 3220–3236 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Bartolomucci, A. et al. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis. Oncol. 9, 84 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Otsuji, K. et al. Serial single-cell RNA sequencing unveils drug resistance and metastatic traits in stage IV breast cancer. NPJ Precis. Oncol. 8, 222 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martinelli, E. et al. Cetuximab rechallenge plus avelumab in pretreated patients with RAS wild-type metastatic colorectal cancer: the phase 2 single-arm clinical CAVE trial. JAMA Oncol. 7, 1529–1535 (2021).

    Article  PubMed  Google Scholar 

  53. Wu, H. et al. Single-cell RNA sequencing reveals tumor heterogeneity, microenvironment, and drug-resistance mechanisms of recurrent glioblastoma. Cancer Sci. 114, 2609–2621 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. Single-cell RNA sequencing in cancer research. J. Exp. Clin. Cancer Res. 40, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, M., Zhao, X., Wen, T. & Qu, X. Unveiling the role of KRAS in tumor immune microenvironment. Biomed. Pharmacother. 171, 116058 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Nussinov, R., Tsai, C. J. & Jang, H. Anticancer drug resistance: an update and perspective. Drug. Resist. Updat. 59, 100796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Glaviano, A. et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 22, 138 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, Y. et al. CEA-induced PI3K/AKT pathway activation through the binding of CEA to KRT1 contributes to oxaliplatin resistance in gastric cancer. Drug. Resist. Updat. 78, 101179 (2025).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, R. et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 11, 797 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang, L. et al. CDK6–PI3K signaling axis is an efficient target for attenuating ABCB1/P-gp mediated multi-drug resistance (MDR) in cancer cells. Mol. Cancer 21, 103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang, Q., Jiang, W. & Hou, P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin. Cancer Biol. 59, 112–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Haselager, M. et al. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ. 28, 1658–1668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, W., Liu, X., Yuan, S. & Qiao, T. HSPA12B overexpression induces cisplatin resistance in non-small-cell lung cancer by regulating the PI3K/Akt/NF-κB signaling pathway. Oncol. Lett. 15, 3883–3889 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Hernandez, L. et al. Activation of NF-kappaB signaling by inhibitor of NF-kappaB kinase beta increases aggressiveness of ovarian cancer. Cancer Res. 70, 4005–4014 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kuo, M. T. et al. Induction of human MDR1 gene expression by 2-acetylaminofluorene is mediated by effectors of the phosphoinositide 3-kinase pathway that activate NF-kappaB signaling. Oncogene 21, 1945–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Li, X. et al. PI3K/Akt/mTOR signaling orchestrates the phenotypic transition and chemo-resistance of small cell lung cancer. J. Genet. Genom. 48, 640–651 (2021).

    Article  CAS  Google Scholar 

  67. Kim, E. K. & Choi, E. J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et. Biophysica Acta 1802, 396–405 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, S., Rauch, J. & Kolch, W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci. 21, 1102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, D., Zhao, W., Vallega, K. A. & Sun, S. Y. Managing acquired resistance to third-generation EGFR tyrosine kinase inhibitors through co-targeting MEK/ERK signaling. Lung Cancer 12, 1–10 (2021).

    PubMed  PubMed Central  Google Scholar 

  70. Eberlein, C. A. et al. Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in preclinical models. Cancer Res. 75, 2489–2500 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peters, T. L. et al. Evolution of MET and NRAS gene amplification as acquired resistance mechanisms in EGFR mutant NSCLC. NPJ Precis. Oncol. 5, 91 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ercan, D. et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2, 934–947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ciardiello, D. et al. Comprehensive genomic profiling by liquid biopsy portrays metastatic colorectal cancer mutational landscape to predict antitumor efficacy of FOLFIRI plus cetuximab in the CAPRI-2 GOIM trial. ESMO Open. 10, 104511 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahronian, L. G. et al. Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discov. 5, 358–367 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rizzolio, S. et al. Neuropilin-1 upregulation elicits adaptive resistance to oncogene-targeted therapies. J. Clin. Invest. 128, 3976–3990 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guo, G. et al. A TNF-JNK-Axl-ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma. Nat. Neurosci. 20, 1074–1084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu, L., Fu, Y., Li, Y. & Han, X. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells. Cancer Chemother. Pharmacol. 80, 235–242 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Seino, M. et al. Requirement of JNK signaling for self-renewal and tumor-initiating capacity of ovarian cancer stem cells. Anticancer. Res. 34, 4723–4731 (2014).

    CAS  PubMed  Google Scholar 

  79. Matsuda, K. et al. Targeting JNK for therapeutic depletion of stem-like glioblastoma cells. Sci. Rep. 2, 516 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu, J. et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal. Transduct. Target. Ther. 7, 3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bu, H., Liu, D., Cui, J., Cai, K. & Shen, F. Wnt/β-catenin signaling pathway is involved in induction of apoptosis by oridonin in colon cancer COLO205 cells. Transl. Cancer Res. 8, 1782–1794 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, X., Luo, F., Li, J., Zhong, X. & Liu, K. Tankyrase 1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int. J. Oncol. 48, 1333–1340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhong, Z. & Virshup, D. M. Wnt signaling and drug resistance in cancer. Mol. Pharmacol. 97, 72–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Lepore Signorile, M. et al. Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis. 12, 316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. de Sousa, E. M. F. & Vermeulen, L. Wnt signaling in cancer stem cell biology. Cancers 8, 60 (2016).

    Article  Google Scholar 

  86. Tammela, T. et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545, 355–359 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nagaraj, A. B. et al. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget 6, 23720–23734 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Daisy Precilla, S., Biswas, I., Kuduvalli, S. S. & Anitha, T. S. Crosstalk between PI3K/AKT/mTOR and WNT/beta-catenin signaling in GBM - could combination therapy checkmate the collusion? Cell Signal. 95, 110350 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Chien, A. J. et al. Targeted BRAF inhibition impacts survival in melanoma patients with high levels of Wnt/beta-catenin signaling. PLoS ONE 9, e94748 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tabernero, J. et al. A phase Ib/II study of WNT974 + encorafenib + cetuximab in patients with BRAF V600E-mutant KRAS wild-type metastatic colorectal cancer. Oncologist 28, 230–238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shen, W., Huang, J. & Wang, Y. Biological significance of Notch signaling strength. Front. Cell Dev. Biol. 9, 652273 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang, Z., Li, Y., Banerjee, S. & Sarkar, F. H. Emerging role of Notch in stem cells and cancer. Cancer Lett. 279, 8–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, X. et al. miR-181b/Notch2 overcome chemoresistance by regulating cancer stem cell-like properties in NSCLC. Stem Cell Res. Ther. 9, 327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jiang, N. et al. HIF-1α-regulated miR-1275 maintains stem cell-like phenotypes and promotes the progression of LUAD by simultaneously activating Wnt/β-catenin and Notch signaling. Theranostics 10, 2553–2570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin, X. et al. Notch4+ cancer stem-like cells promote the metastatic and invasive ability of melanoma. Cancer Sci. 107, 1079–1091 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Christiansen, J. J. & Rajasekaran, A. K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66, 8319–8326 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Shao, S. et al. Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol. Cancer 14, 28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, X., Huang, T., Liu, Z., Sun, M. & Luo, S. LncRNA SNHG7 contributes to tumorigenesis and progression in breast cancer by interacting with miR-34a through EMT initiation and the Notch-1 pathway. Eur. J. Pharmacol. 856, 172407 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Yuan, X. et al. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J. Hematol. Oncol. 7, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, Z. et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 69, 2400–2407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, J. et al. Notch signalling induces epithelial-mesenchymal transition to promote metastasis in oral squamous cell carcinoma. Int. J. Mol. Med. 42, 2276–2284 (2018).

    CAS  PubMed  Google Scholar 

  102. Clark, A. G., Bertrand, F. E. & Sigounas, G. A potential requirement for Smad3 phosphorylation in Notch-mediated EMT in colon cancer. Adv. Biol. Regul. 88, 100957 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, J., Kuang, Y., Wang, Y., Xu, Q. & Ren, Q. Notch-4 silencing inhibits prostate cancer growth and EMT via the NF-κB pathway. Int. J. Program. Cell Death 22, 877–884 (2017).

    Article  CAS  Google Scholar 

  104. Lailler, C. et al. PrPC controls epithelial-to-mesenchymal transition in EGFR-mutated NSCLC: implications for TKI resistance and patient follow-up. Oncogene 43, 2781–2794 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal. Transduct. Target. Ther. 6, 402 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Xue, C. et al. Evolving cognition of the JAK–STAT signaling pathway: autoimmune disorders and cancer. Signal. Transduct. Target. Ther. 8, 204 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jin, W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial-mesenchymal transition. Cells 9, 217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bauvois, B. et al. Activation of interferon signaling in chronic lymphocytic leukemia cells contributes to apoptosis resistance via a JAK-Src/STAT3/Mcl-1 signaling pathway. Biomedicines 9, 188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ho, J. N. et al. Bcl-XL and STAT3 mediate malignant actions of gamma-irradiation in lung cancer cells. Cancer Sci. 101, 1417–1423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang, C. Y., Chen, L. J., Chen, C. S., Wang, C. Y. & Hong, S. Y. MCL1 inhibition: a promising approach to augment the efficacy of sorafenib in NSCLC through ferroptosis induction. Cell Death Discov. 10, 137 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, S. Y. et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell. Signal. 25, 961–969 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Puris, E., Fricker, G. & Gynther, M. The role of solute carrier transporters in efficient anticancer drug delivery and therapy. Pharmaceutics 15, 364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Marin, J. J. G. et al. Impact of genetic variants in the solute carrier (SLC) genes encoding drug uptake transporters on the response to anticancer chemotherapy. Cancer Drug. Resist. 7, 27 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang, Y. & Sadée, W. Membrane transporters and channels in chemoresistance and sensitivity of tumor cells. Cancer Lett. 239, 168–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Obaidat, A., Roth, M. & Hagenbuch, B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu. Rev. Pharmacol. Toxicol. 52, 135–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. de Morree, E. S. et al. Loss of SLCO1B3 drives taxane resistance in prostate cancer. Br. J. Cancer 115, 674–681 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. König, J., Seithel, A., Gradhand, U. & Fromm, M. F. Pharmacogenomics of human OATP transporters. Naunyn-Schmiedeberg’s Arch. Pharmacol. 372, 432–443 (2006).

    Article  Google Scholar 

  118. Kiyotani, K. et al. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia. Cancer Sci. 99, 967–972 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim, D. H. et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin. Cancer Res. 15, 4750–4758 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Cargnin, S., Ravegnini, G., Soverini, S., Angelini, S. & Terrazzino, S. Impact of SLC22A1 and CYP3A5 genotypes on imatinib response in chronic myeloid leukemia: a systematic review and meta-analysis. Pharmacol. Res. 131, 244–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. White, B. & Swietach, P. What can we learn about acid-base transporters in cancer from studying somatic mutations in their genes? Pflug. Arch. 476, 673–688 (2024).

    Article  CAS  Google Scholar 

  122. Lavoro, A. et al. In silico analysis of the solute carrier (SLC) family in cancer indicates a link among DNA methylation, metabolic adaptation, drug response, and immune reactivity. Front. Pharmacol. 14, 1191262 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, L. et al. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol. Cancer 23, 66 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Meng, X. et al. Cell membrane fatty acid composition differs between normal and malignant cell lines. Puerto Rico Health Sci. J. 23, 103–106 (2004).

    Google Scholar 

  125. Peetla, C., Vijayaraghavalu, S. & Labhasetwar, V. Biophysics of cell membrane lipids in cancer drug resistance: implications for drug transport and drug delivery with nanoparticles. Adv. Drug. Deliv. Rev. 65, 1686–1698 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Hendrich, A. B. & Michalak, K. Lipids as a target for drugs modulating multidrug resistance of cancer cells. Curr. Drug. Targets 4, 23–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Casares, D., Escribá, P. V. & Rosselló, C. A. Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20, 2167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Vijayaraghavalu, S., Peetla, C., Lu, S. & Labhasetwar, V. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions. Mol. Pharm. 9, 2730–2742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Huang, H. et al. LC–MS based sphingolipidomic study on A2780 human ovarian cancer cell line and its taxol-resistant strain. Sci. Rep. 6, 34684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kristenson, L. et al. Deletion of the TMEM30A gene enables leukemic cell evasion of NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 121, e2316447121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Riedl, S. et al. In search of a novel target — phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Biophys. Acta 1808, 2638–2645 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rivel, T., Ramseyer, C. & Yesylevskyy, S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci. Rep. 9, 5627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. May, G. L. et al. Plasma membrane lipid composition of vinblastine sensitive and resistant human leukaemic lymphoblasts. Int. J. Cancer 42, 728–733 (1988).

    Article  CAS  PubMed  Google Scholar 

  134. Storch, C. H., Ehehalt, R., Haefeli, W. E. & Weiss, J. Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J. Pharmacol. Exp. Ther. 323, 257–264 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Gayet, L. et al. Control of P-glycoprotein activity by membrane cholesterol amounts and their relation to multidrug resistance in human CEM leukemia cells. Biochemistry 44, 4499–4509 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Simon, S., Roy, D. & Schindler, M. Intracellular pH and the control of multidrug resistance. Proc. Natl Acad. Sci. USA 91, 1128–1132 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rauch, C. Toward a mechanical control of drug delivery. On the relationship between Lipinski’s 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data. Eur. Biophys. J. 38, 829–846 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Wojtkowiak, J. W., Verduzco, D., Schramm, K. J. & Gillies, R. J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 8, 2032–2038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Juliano, R. L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976).

    Article  CAS  PubMed  Google Scholar 

  140. Wang, J. Q. et al. ATP-binding cassette (ABC) transporters in cancer: a review of recent updates. J. Evid. Based Med. 14, 232–256 (2021).

    Article  PubMed  Google Scholar 

  141. Lu, Q., Ambudkar, S. V. & Yang, D. H. Editorial: ABC transporters and drug resistance. Drug. Resist. Updat. 77, 101135 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. van den Heuvel-Eibrink, M. M. et al. Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia 16, 833–839 (2002).

    Article  PubMed  Google Scholar 

  143. Marzac, C. et al. ATP binding cassette transporters associated with chemoresistance: transcriptional profiling in extreme cohorts and their prognostic impact in a cohort of 281 acute myeloid leukemia patients. Haematologica 96, 1293–1301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. van den Heuvel-Eibrink, M. M. et al. CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age. Ann. Hematol. 86, 329–337 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Burger, H. et al. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin. Cancer Res. 9, 827–836 (2003).

    CAS  PubMed  Google Scholar 

  146. Lheureux, S. et al. EVOLVE: a multicenter open-label single-arm clinical and translational phase II trial of cediranib plus olaparib for ovarian cancer after PARP inhibition progression. Clin. Cancer Res. 26, 4206–4215 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Haber, M. et al. Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J. Clin. Oncol. 24, 1546–1553 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Hegedus, C. et al. Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br. J. Pharmacol. 158, 1153–1164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Fu, H. et al. The resistance of cancer cells to palbociclib, a cyclin-dependent kinase 4/6 inhibitor, is mediated by the ABCB1 transporter. Front. Pharmacol. 13, 861642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Eadie, L. N., Hughes, T. P. & White, D. L. The clinical significance of early imatinib induced ABCB1 overexpression in chronic phase CML patients: a TIDEL II sub-study. Blood 126, 348–348 (2015).

    Article  Google Scholar 

  151. Malhotra, H. et al. Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase. Indian. J. Med. Res. 142, 175–182 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ieiri, I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug. Metab. Pharmacokinet. 27, 85–105 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Lewis, L. D. et al. The relationship of polymorphisms in ABCC2 and SLCO1B3 with docetaxel pharmacokinetics and neutropenia: CALGB 60805 (Alliance). Pharmacogenet. Genom. 23, 29–33 (2013).

    Article  CAS  Google Scholar 

  154. Corbett, S. et al. The role of specific ATP-binding cassette transporters in the acquired resistance to pyrrolobenzodiazepine dimer-containing antibody-drug conjugates. Mol. Cancer Ther. 19, 1856–1865 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kijima, T. et al. Predictive role of ABC transporters in the efficacy of enfortumab vedotin for urothelial carcinoma. BJUI Compass 6, e488 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  157. Hoxhaj, G. & Manning, B. D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Zhao, Y. et al. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res. 71, 4585–4597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Muramatsu, H. et al. Targeting lactate dehydrogenase-A promotes docetaxel-induced cytotoxicity predominantly in castration-resistant prostate cancer cells. Oncol. Rep. 42, 224–230 (2019).

    CAS  PubMed  Google Scholar 

  160. Hua, G., Liu, Y., Li, X., Xu, P. & Luo, Y. Targeting glucose metabolism in chondrosarcoma cells enhances the sensitivity to doxorubicin through the inhibition of lactate dehydrogenase-A. Oncol. Rep. 31, 2727–2734 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Nagamine, A., Araki, T., Nagano, D., Miyazaki, M. & Yamamoto, K. l-Lactate dehydrogenase B may be a predictive marker for sensitivity to anti-EGFR monoclonal antibodies in colorectal cancer cell lines. Oncol. Lett. 17, 4710–4716 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Quek, L. E. et al. Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene 41, 4066–4078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou, M. et al. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer 9, 33 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Liu, H., Liu, Y. & Zhang, J. T. A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol. Cancer Ther. 7, 263–270 (2008).

    Article  PubMed  Google Scholar 

  165. Al-Bahlani, S. et al. Fatty acid synthase regulates the chemosensitivity of breast cancer cells to cisplatin-induced apoptosis. Int. J. Program. Cell Death 22, 865–876 (2017).

    Article  CAS  Google Scholar 

  166. Jin, C. & Yuan, P. Implications of lipid droplets in lung cancer: associations with drug resistance. Oncol. Lett. 20, 2091–2104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Accioly, M. T. et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68, 1732–1740 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Cotte, A. K. et al. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat. Commun. 9, 322 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Huang, Q. et al. Co-administration of 20-S-protopanaxatriol (g-PPT) and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer. J. Exp. Clin. Cancer Res. 38, 129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhang, I. et al. Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma. Eur. J. Pharm. Biopharm. 100, 66–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. Schmidt, R. et al. CYP3A4, CYP2C9 and CYP2B6 expression and ifosfamide turnover in breast cancer tissue microsomes. Br. J. Cancer 90, 911–916 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Miyoshi, Y. et al. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int. J. Cancer 97, 129–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Yao, D., Ding, S., Burchell, B., Wolf, C. R. & Friedberg, T. Detoxication of vinca alkaloids by human P450 CYP3A4-mediated metabolism: implications for the development of drug resistance. J. Pharmacol. Exp. Ther. 294, 387–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Kumarakulasingham, M. et al. Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin. Cancer Res. 11, 3758–3765 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Xue, Y. et al. CYP1B1 promotes PARPi-resistance via histone H1.4 interaction and increased chromatin accessibility in ovarian cancer. Drug. Resist. Updat. 77, 101151 (2024).

    Article  CAS  PubMed  Google Scholar 

  176. Gessner, T., Vaughan, L. A., Beehler, B. C., Bartels, C. J. & Baker, R. M. Elevated pentose cycle and glucuronyltransferase in daunorubicin-resistant P388 cells. Cancer Res. 50, 3921–3927 (1990).

    CAS  PubMed  Google Scholar 

  177. Takahashi, T. et al. The role of glucuronidation in 7-ethyl-10-hydroxycamptothecin resistance in vitro. J. Cancer Res. 88, 1211–1217 (1997).

    CAS  Google Scholar 

  178. Cummings, J. et al. Enhanced clearance of topoisomerase I inhibitors from human colon cancer cells by glucuronidation. Biochem. Pharmacol. 63, 607–613 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Zahreddine, H. A. et al. The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature 511, 90–93 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. López-Ayllón, B. D. et al. Biomarkers of erlotinib response in non-small cell lung cancer tumors that do not harbor the more common epidermal growth factor receptor mutations. Int. J. Clin. Exp. Pathol. 8, 2888–2898 (2015).

    PubMed  PubMed Central  Google Scholar 

  181. Romero-Lorca, A., Novillo, A., Gaibar, M., Bandrés, F. & Fernández-Santander, A. Impacts of the glucuronidase genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on tamoxifen metabolism in breast cancer patients. PLoS ONE 10, e0132269 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Ascierto, M. L. et al. The intratumoral balance between metabolic and immunologic gene expression is associated with anti-PD-1 response in patients with renal cell carcinoma. Cancer Immunol. Res. 4, 726–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Yang, L. et al. EGFR TKIs impair lysosome-dependent degradation of SQSTM1 to compromise the effectiveness in lung cancer. Signal. Transduct. Target. Ther. 4, 25 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Seebacher, N., Lane, D. J., Richardson, D. R. & Jansson, P. J. Turning the gun on cancer: utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free. Radic. Biol. Med. 96, 432–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Rajagopal, A. & Simon, S. M. Subcellular localization and activity of multidrug resistance proteins. Mol. Biol. Cell 14, 3389–3399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Halaby, R. Influence of lysosomal sequestration on multidrug resistance in cancer cells. Cancer Drug. Resist. 2, 31–42 (2019).

    PubMed  PubMed Central  Google Scholar 

  187. Hou, D. Y. et al. A lysosome-targeting self-condensation prodrug-nanoplatform system for addressing drug resistance of cancer. Nano Lett. 22, 3983–3992 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Colla, R. et al. Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 7, 70715–70737 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Potęga, A. Glutathione-mediated conjugation of anticancer drugs: an overview of reaction mechanisms and biological significance for drug detoxification and bioactivation. Molecules 27, 5252 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Chen, H. H. & Kuo, M. T. Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy. Met. Based Drugs 2010, 430939 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Nasr, R. et al. Molecular analysis of the massive GSH transport mechanism mediated by the human multidrug resistant protein 1/ABCC1. Sci. Rep. 10, 7616 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Min, H. Y. & Lee, H. Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 54, 1670–1694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li, L. Y., Guan, Y. D., Chen, X. S., Yang, J. M. & Cheng, Y. DNA repair pathways in cancer therapy and resistance. Front. Pharmacol. 11, 629266 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Bonanno, L., Favaretto, A. & Rosell, R. Platinum drugs and DNA repair mechanisms in lung cancer. Anticancer. Res. 34, 493–501 (2014).

    CAS  PubMed  Google Scholar 

  195. Alagoz, M., Gilbert, D. C., El-Khamisy, S. & Chalmers, A. J. DNA repair and resistance to topoisomerase I inhibitors: mechanisms, biomarkers and therapeutic targets. Curr. Med. Chem. 19, 3874–3885 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Sethy, C. & Kundu, C. N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 137, 111285 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Crul, M. et al. DNA repair mechanisms involved in gemcitabine cytotoxicity and in the interaction between gemcitabine and cisplatin. Biochem. Pharmacol. 65, 275–282 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Karnitz, L. M. & Zou, L. Molecular pathways: targeting ATR in cancer therapy. Clin. Cancer Res. 21, 4780–4785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Aziz, M. H. & Ahmad, A. Epigenetic basis of cancer drug resistance. Cancer Drug. Resist. 3, 113–116 (2020).

    PubMed  PubMed Central  Google Scholar 

  200. Ma, Y. et al. DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents. Pharmacol. Res. 160, 105071 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Wang, Q. et al. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J. Hepatol. 75, 1142–1153 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Dong, B., Qiu, Z. & Wu, Y. Tackle epithelial-mesenchymal transition with epigenetic drugs in cancer. Front. Pharmacol. 11, 596239 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Hervouet, E., Cheray, M., Vallette, F. M. & Cartron, P. F. DNA methylation and apoptosis resistance in cancer cells. Cells 2, 545–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Jahangiri, R., Mosaffa, F., Emami Razavi, A., Teimoori-Toolabi, L. & Jamialahmadi, K. Altered DNA methyltransferases promoter methylation and mRNA expression are associated with tamoxifen response in breast tumors. J. Cell. Physiol. 233, 7305–7319 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Kang, K. A. et al. Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis. 5, e1183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Huang, R. et al. Restoration of TET2 deficiency inhibits tumor growth in head neck squamous cell carcinoma. Ann. Transl. Med. 8, 329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Guo, X. J. et al. Loss of 5-hydroxymethylcytosine induces chemotherapy resistance in hepatocellular carcinoma via the 5-hmC/PCAF/AKT axis. Cell Death Dis. 14, 79 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhou, X. et al. Non-coding RNA in cancer drug resistance: underlying mechanisms and clinical applications. Front. Oncol. 12, 951864 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhang, J. et al. Tet methylcytosine dioxygenase 2 (TET2) deficiency elicits EGFR-TKI (tyrosine kinase inhibitors) resistance in non-small cell lung cancer. Signal. Transduct. Target. Ther. 9, 65 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sun, L. et al. Understanding and targeting the epigenetic regulation to overcome EGFR-TKIs resistance in human cancer. Recent. Pat. Anti Cancer Drug. Discov. 18, 506–516 (2023).

    Article  CAS  Google Scholar 

  211. Chen, J. et al. EZH2 mediated metabolic rewiring promotes tumor growth independently of histone methyltransferase activity in ovarian cancer. Mol. Cancer 22, 85 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Yang, Y., Zhang, M. & Wang, Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. J. Natl Cancer Cent. 2, 277–290 (2022).

    PubMed  PubMed Central  Google Scholar 

  213. Zhang, X. et al. The role of trimethylation on histone H3 lysine 27 (H3K27me3) in temozolomide resistance of glioma. Brain Res. 1846, 149252 (2025).

    Article  CAS  PubMed  Google Scholar 

  214. Tiwari, A., Trivedi, R. & Lin, S. Y. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J. Biomed. Sci. 29, 83 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Hinshaw, D. C. & Shevde, L. A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 79, 4557–4566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–r925 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wei, R., Liu, S., Zhang, S., Min, L. & Zhu, S. Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal. Cell. Pathol. 2020, 6283796 (2020).

    Article  Google Scholar 

  218. Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal. Transduct. Target. Ther. 8, 70 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Jing, X. et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Huang, J. et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal. Transduct. Target. Ther. 6, 153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Rizzolio, S., Giordano, S. & Corso, S. The importance of being CAFs (in cancer resistance to targeted therapies). J. Exp. Clin. Cancer Res. 41, 319 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Huang, T. X., Guan, X. Y. & Fu, L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am. J. Cancer Res. 9, 1889–1904 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Mitchell, M. I. & Engelbrecht, A. M. Metabolic hijacking: a survival strategy cancer cells exploit? Crit. Rev. Oncol. Hematol. 109, 1–8 (2017).

    Article  PubMed  Google Scholar 

  224. Wang, H. et al. Cancer-associated fibroblasts secreted miR-103a-3p suppresses apoptosis and promotes cisplatin resistance in non-small cell lung cancer. Aging 13, 14456–14468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ingham, J., Ruan, J. L. & Coelho, M. A. Breaking barriers: we need a multidisciplinary approach to tackle cancer drug resistance. BJC Rep. 3, 11 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Tamaki, A., Ierano, C., Szakacs, G., Robey, R. W. & Bates, S. E. The controversial role of ABC transporters in clinical oncology. Essays Biochem. 50, 209–232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lai, J. I., Tseng, Y. J., Chen, M. H., Huang, C. F. & Chang, P. M. Clinical perspective of FDA approved drugs with P-glycoprotein inhibition activities for potential cancer therapeutics. Front. Oncol. 10, 561936 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Milroy, R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland lung cancer research group, and the Aberdeen oncology group. Br. J. Cancer 68, 813–818 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Punt, C. J. et al. Phase IB study of doxorubicin in combination with the multidrug resistance reversing agent S9788 in advanced colorectal and renal cell cancer. Br. J. Cancer 76, 1376–1381 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lhommé, C. et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J. Clin. Oncol. 26, 2674–2682 (2008).

    Article  PubMed  Google Scholar 

  231. Wandel, C. et al. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res. 59, 3944–3948 (1999).

    CAS  PubMed  Google Scholar 

  232. Friedenberg, W. R. et al. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern cooperative oncology group. Cancer 106, 830–838 (2006).

    Article  PubMed  Google Scholar 

  233. Baer, M. R. et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: cancer and leukemia group B study 9720. Blood 100, 1224–1232 (2002).

    Article  CAS  PubMed  Google Scholar 

  234. Ruff, P. et al. A randomized, placebo-controlled, double-blind phase 2 study of docetaxel compared to docetaxel plus zosuquidar (LY335979) in women with metastatic or locally recurrent breast cancer who have received one prior chemotherapy regimen. Cancer Chemother. Pharmacol. 64, 763–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  235. Nobili, S., Landini, I., Giglioni, B. & Mini, E. Pharmacological strategies for overcoming multidrug resistance. Curr. Drug. Targets 7, 861–879 (2006).

    Article  CAS  PubMed  Google Scholar 

  236. Cripe, L. D. et al. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern cooperative oncology group 3999. Blood 116, 4077–4085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Libby, E. & Hromas, R. Dismounting the MDR horse. Blood 116, 4037–4038 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Fukuda, Y., Lian, S. & Schuetz, J. D. Leukemia and ABC transporters. Adv. Cancer Res. 125, 171–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Khongorzul, P., Ling, C. J., Khan, F. U., Ihsan, A. U. & Zhang, J. Antibody-drug conjugates: a comprehensive review. Mol. Cancer Res. 18, 3–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  240. Powles, T. et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N. Engl. J. Med. 384, 1125–1135 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Gandullo-Sanchez, L., Ocana, A. & Pandiella, A. Generation of antibody-drug conjugate resistant models. Cancers 13, 4631 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Kovtun, Y. V. et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 70, 2528–2537 (2010).

    Article  CAS  PubMed  Google Scholar 

  243. Murakami, M. et al. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting. Sci. Transl. Med. 3, 64ra62 (2011).

    Article  Google Scholar 

  244. Zhang, S. et al. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J. Nanobiotechnol. 17, 109 (2019).

    Article  Google Scholar 

  245. Borsoi, C. et al. Gemcitabine enhances the transport of nanovector-albumin-bound paclitaxel in gemcitabine-resistant pancreatic ductal adenocarcinoma. Cancer Lett. 403, 296–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Godin, B., Tasciotti, E., Liu, X., Serda, R. E. & Ferrari, M. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc. Chem. Res. 44, 979–989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Rodríguez, F. et al. Nano-based approved pharmaceuticals for cancer treatment: present and future challenges. Biomolecules 12, 784 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 14, 282–295 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Alshememry, A. K., Alsaleh, N. B., Alkhudair, N., Alzhrani, R. & Alshamsan, A. Recent nanotechnology advancements to treat multidrug-resistance pancreatic cancer: pre-clinical and clinical overview. Front. Pharmacol. 13, 933457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    Article  CAS  PubMed  Google Scholar 

  252. Zhao, Y., Butler, E. B. & Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Hayashi, M. et al. GLUT1 inhibition by BAY-876 induces metabolic changes and cell death in human colorectal cancer cells. BMC Cancer 25, 716 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Chen, Q., Meng, Y. Q., Xu, X. F. & Gu, J. Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin. Anti-Cancer Drugs 28, 880–887 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Zhang, R. S., Li, Z. K., Liu, J., Deng, Y. T. & Jiang, Y. WZB117 enhanced the anti-tumor effect of apatinib against melanoma via blocking STAT3/PKM2 axis. Front. Pharmacol. 13, 976117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Li, Y., Zeng, P., Xiao, J., Huang, P. & Liu, P. Modulation of energy metabolism to overcome drug resistance in chronic myeloid leukemia cells through induction of autophagy. Cell Death Discov. 8, 212 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug. Discov. 21, 141–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Mansi, J. L. et al. A phase II clinical and pharmacokinetic study of lonidamine in patients with advanced breast cancer. Br. J. Cancer 64, 593–597 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Raez, L. E. et al. A phase I dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 71, 523–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  260. Lemberg, K. M., Vornov, J. J., Rais, R. & Slusher, B. S. We’re not ‘DON’ yet: optimal dosing and prodrug delivery of 6-diazo-5-oxo-l-norleucine. Mol. Cancer Ther. 17, 1824–1832 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tenora, L. et al. Tumor-targeted delivery of 6-diazo-5-oxo-l-norleucine (DON) using substituted acetylated lysine prodrugs. J. Med. Chem. 62, 3524–3538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Yang, W. H., Qiu, Y., Stamatatos, O., Janowitz, T. & Lukey, M. J. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer 7, 790–804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. van Geldermalsen, M. et al. ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201–3208 (2016).

    Article  PubMed  Google Scholar 

  264. Schulte, M. L. et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24, 194–202 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Das, D. S. et al. Anti-myeloma activity of a novel glutaminase inhibitor CB-839. Blood 124, 3439–3439 (2014).

    Article  Google Scholar 

  266. Tannir, N. M. et al. Phase 1 study of glutaminase (GLS) inhibitor CB-839 combined with either everolimus (E) or cabozantinib (Cabo) in patients (pts) with clear cell (cc) and papillary (pap) metastatic renal cell cancer (mRCC). J. Clin. Oncol. https://doi.org/10.1200/JCO.2018.36.6_suppl.603 (2018).

  267. Tannir, N. M. et al. Efficacy and safety of telaglenastat plus cabozantinib vs placebo plus cabozantinib in patients with advanced renal cell carcinoma: the CANTATA randomized clinical trial. JAMA Oncol. 8, 1411–1418 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Lee, C. H. et al. Telaglenastat plus everolimus in advanced renal cell carcinoma: a randomized, double-blinded, placebo-controlled, phase II ENTRATA trial. Clin. Cancer Res. 28, 3248–3255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Falchook, G. et al. First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. EClinicalMedicine 34, 100797 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Lv, S. et al. Cerulenin suppresses ErbB2-overexpressing breast cancer by targeting ErbB2/PKM2 pathway. Med. Oncol. 40, 5 (2022).

    Article  PubMed  Google Scholar 

  271. Aquino, I. G. et al. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines. Arch. Oral Biol. 113, 104707 (2020).

    Article  PubMed  Google Scholar 

  272. Serhan, H. A. et al. Targeting fatty acid synthase in preclinical models of TNBC brain metastases synergizes with SN-38 and impairs invasion. NPJ Breast Cancer 10, 43 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Puig, T. et al. A novel inhibitor of fatty acid synthase shows activity against HER2+ breast cancer xenografts and is active in anti-HER2 drug-resistant cell lines. Breast Cancer Res. 13, R131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Kelly, W. et al. Phase II investigation of TVB-2640 (denifanstat) with bevacizumab in patients with first relapse high-grade astrocytoma. Clin. Cancer Res. 29, 2419–2425 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Besse, B. et al. Amivantamab plus lazertinib in patients with EGFR-mutant NSCLC after progression on osimertinib and platinum-based chemotherapy: results from CHRYSALIS-2 Cohort A. J. Thorac. Oncol. 20, 651–664 (2025).

    Article  CAS  PubMed  Google Scholar 

  276. Corcoran, R. B. et al. Combined BRAF, EGFR, and MEK inhibition in patients with BRAFV600E-mutant colorectal cancer. Cancer Discov. 8, 428–443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAFV600E-mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019).

    Article  CAS  PubMed  Google Scholar 

  278. Kopetz, S. et al. Encorafenib, cetuximab and chemotherapy in BRAF-mutant colorectal cancer: a randomized phase 3 trial. Nat. Med. 31, 901–908 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Zhang, L. et al. In vitro anti-leukemia activity of dual PI3K/mTOR inhibitor Voxtalisib on HL60 and K562 cells, as well as their multidrug resistance counterparts HL60/ADR and K562/A02 cells. Biomed. Pharmacother. 103, 1069–1078 (2018).

    Article  CAS  PubMed  Google Scholar 

  280. Martinez-Marti, A. et al. Dual MET and ERBB inhibition overcomes intratumor plasticity in osimertinib-resistant-advanced non-small-cell lung cancer (NSCLC). Ann. Oncol. 28, 2451–2457 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Yang, Y. M., Jang, Y., Lee, S. H., Kang, B. & Lim, S. M. AXL/MET dual inhibitor, CB469, has activity in non-small cell lung cancer with acquired resistance to EGFR TKI with AXL or MET activation. Lung Cancer 146, 70–77 (2020).

    Article  PubMed  Google Scholar 

  282. Brown, J. R. et al. Voxtalisib (XL765) in patients with relapsed or refractory non-Hodgkin lymphoma or chronic lymphocytic leukaemia: an open-label, phase 2 trial. Lancet Haematol. 5, e170–e180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Smith, M. et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J. Clin. Oncol. 34, 3005–3013 (2016).

    Article  CAS  PubMed  Google Scholar 

  284. Abou-Alfa, G. K. et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N. Engl. J. Med. 379, 54–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Choueiri, T. K. et al. A phase I study of cabozantinib (XL184) in patients with renal cell cancer. Ann. Oncol. 25, 1603–1608 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Mason-Osann, E., Pomeroy, A. E., Palmer, A. C. & Mettetal, J. T. Synergistic drug combinations promote the development of resistance in acute myeloid leukemia. Blood Cancer Discov. 5, 95–105 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Abbott, M. & Ustoyev, Y. Cancer and the immune system: the history and background of immunotherapy. Semin. Oncol. Nurs. 35, 150923 (2019).

    Article  PubMed  Google Scholar 

  288. Yamaguchi, T. et al. Efficacy of chemotherapy plus immune checkpoint inhibitors in patients with non-small cell lung cancer who have rare oncogenic driver mutations: a retrospective analysis. BMC Cancer 24, 842 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Vafaei, S. et al. Combination therapy with immune checkpoint inhibitors (ICIs); a new frontier. Cancer Cell Int. 22, 2 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Li, B., Jin, J., Guo, D., Tao, Z. & Hu, X. Immune checkpoint inhibitors combined with targeted therapy: the recent advances and future potentials. Cancers 15, 2858 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Chen, N. et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-Driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J. Thorac. Oncol. 10, 910–923 (2015).

    Article  CAS  PubMed  Google Scholar 

  292. Nishida, N. Role of oncogenic pathways on the cancer immunosuppressive microenvironment and its clinical implications in hepatocellular carcinoma. Cancers 13, 3666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Walsh, S. R. et al. Endogenous T cells prevent tumor immune escape following adoptive T cell therapy. J. Clin. Invest. 129, 5400–5410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Kankeu Fonkoua, L. A., Sirpilla, O., Sakemura, R., Siegler, E. L. & Kenderian, S. S. CAR T cell therapy and the tumor microenvironment: current challenges and opportunities. Mol. Ther. Oncolytics 25, 69–77 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. FDA. FDA grants accelerated approval to lifileucel for unresectable or metastatic melanoma. US FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-lifileucel-unresectable-or-metastatic-melanoma (2024).

  297. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  298. Bishop, M. R. et al. Second-line tisagenlecleucel or standard care in aggressive B-cell lymphoma. N. Engl. J. Med. 386, 629–639 (2022).

    Article  CAS  PubMed  Google Scholar 

  299. Moreau, P. et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 387, 495–505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. FDA. FDA grants accelerated approval to talquetamab-tgvs for relapsed or refractory multiple myeloma. US FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-talquetamab-tgvs-relapsed-or-refractory-multiple-myeloma (2023).

  301. Prieto-Vila, M., Takahashi, R. U., Usuba, W., Kohama, I. & Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci. 18, 2574 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  302. De Francesco, E. M., Sotgia, F. & Lisanti, M. P. Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem. J. 475, 1611–1634 (2018).

    Article  PubMed  Google Scholar 

  303. Yang, L. et al. Targeting cancer stem cell pathways for cancer therapy. Signal. Transduct. Target. Ther. 5, 8 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Catenacci, D. V. et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J. Clin. Oncol. 33, 4284–4292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Schott, A. F. et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin. Cancer Res. 19, 1512–1524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Locatelli, M. A. et al. Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget 8, 2320–2328 (2017).

    Article  PubMed  Google Scholar 

  307. Richter, S. et al. A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575). Invest. N. Drugs 32, 243–249 (2014).

    Article  CAS  Google Scholar 

  308. LoConte, N. K. et al. A multicenter phase 1 study of γ -secretase inhibitor RO4929097 in combination with capecitabine in refractory solid tumors. Invest. N. Drugs 33, 169–176 (2015).

    Article  CAS  Google Scholar 

  309. Chen, C. L. et al. Profiling of circulating tumor cells for screening of selective inhibitors of tumor-initiating stem-like cells. Adv. Sci. 10, e2206812 (2023).

    Article  Google Scholar 

  310. Walcher, L. et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front. Immunol. 11, 1280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Guzman, M. L. et al. Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001).

    Article  CAS  PubMed  Google Scholar 

  312. Vergez, F. et al. High levels of CD34+CD38low/−CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica 96, 1792–1798 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Budde, L. E. et al. Abstract PR14: CD123CAR displays clinical activity in relapsed/refractory (r/r) acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN): safety and efficacy results from a phase 1 study. Cancer Immunol. Res. 8, PR14–PR14 (2020).

    Article  Google Scholar 

  314. Wang, Y. et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology 7, e1440169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Li, D. et al. EpCAM-targeting CAR-T cell immunotherapy is safe and efficacious for epithelial tumors. Sci. Adv. 9, eadg9721 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Koseer, A. S., Di Gaetano, S., Arndt, C., Bachmann, M. & Dubrovska, A. Immunotargeting of cancer stem cells. Cancers 15, 1608 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Yan, Y., Zuo, X. & Wei, D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cell Transl. Med. 4, 1033–1043 (2015).

    Article  CAS  Google Scholar 

  318. Menke-van der Houven van Oordt, C. W. et al. First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors. Oncotarget 7, 80046–80058 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Riechelmann, H. et al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral. Oncol. 44, 823–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  320. Robinson, A. N. et al. Coexpression of ABCB1 and ABCG2 in a cell line model reveals both independent and additive transporter function. Drug. Metab. Dispos. 47, 715–723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Cerovska, E. et al. ABC transporters are predictors of treatment failure in acute myeloid leukaemia. Biomed. Pharmacother. 170, 115930 (2024).

    Article  CAS  PubMed  Google Scholar 

  322. Ebner, J. et al. ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia. Nat. Commun. 14, 5709 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Garg, P. et al. Emerging therapeutic strategies to overcome drug resistance in cancer cells. Cancers 16, 100754 (2024).

    Article  Google Scholar 

  324. Zhou, Y. et al. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal. Transduct. Target. Ther. 9, 132 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  325. El Bairi, K., Atanasov, A. G., Amrani, M. & Afqir, S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed. Pharmacother. 109, 2492–2498 (2019).

    Article  CAS  PubMed  Google Scholar 

  326. Sartore-Bianchi, A. et al. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: the phase 2 CHRONOS trial. Nat. Med. 28, 1612–1618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Frei, E. et al. Studies of sequential and combination antimetabolite therapy in acute leukemia: 6-mercaptopurine and methotrexate. Blood 18, 431–454 (1961).

    Article  Google Scholar 

  329. Ling, V. & Thompson, L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell Physiol. 83, 103–116 (1974).

    Article  CAS  PubMed  Google Scholar 

  330. Gros, P., Croop, J. & Housman, D. Mammalian multidrug resistance gene: complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47, 371–380 (1986).

    Article  CAS  PubMed  Google Scholar 

  331. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  332. Cole, S. P., Downes, H. F. & Slovak, M. L. Effect of calcium antagonists on the chemosensitivity of two multidrug-resistant human tumour cell lines which do not overexpress P-glycoprotein. Br. J. Cancer 59, 42–46 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Cole, S. P. et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258, 1650–1654 (1992).

    Article  CAS  PubMed  Google Scholar 

  334. Doyle, L. A. et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA 95, 15665–15670 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

X.Y.C. expresses thanks for the teaching fellowship from the Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University. The work of M.G. is supported by the National Natural Science Foundation of China (grant no. 82173855) and the Zhejiang Provincial Science and Technology Program (grant no. 2022R51002).

Author information

Authors and Affiliations

Authors

Contributions

M.G, X.-Y.C., P.H. J.S.F. and Z.-F.K. researched data for the article. M.G, X.-Y.C., D.-H.Y, Z.-F.K. and Z.-S.C. contributed substantially to discussion of the content. M.G, X.-Y.C., P.H. and Z.-X.W wrote the article. M.G, X.-Y.C., J.S.F., D.-H.Y, Z.-X.W, Z.-F.K. and Z.-S.C reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Minghua Ge, Zun-Fu Ke or Zhe-Sheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks C. Riganti, C.-P. Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Chen, XY., Huang, P. et al. Understanding and overcoming multidrug resistance in cancer. Nat Rev Clin Oncol 22, 760–780 (2025). https://doi.org/10.1038/s41571-025-01059-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01059-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing