Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimizing CAR T cell therapy for solid tumours: a clinical perspective

Abstract

Chimeric antigen receptor (CAR) T cell therapy is revolutionizing the management of haematological malignancies but faces particular hurdles in the treatment of solid tumours. In this Review, we discuss important advances in refining CAR T cell therapy to provide practical clinical insights to address these challenges. We describe key strategies, including target antigen selection to enhance efficacy while minimizing on-target, off-tumour toxicities; early apheresis, rapid manufacturing and frontline application to preserve T cell fitness and ensure timely treatment; lymphodepletion to augment CAR T cell expansion; locoregional delivery to maximize local therapeutic concentrations and reduce systemic toxicity; and repeat infusions to prolong therapeutic effects. Furthermore, we discuss advanced response evaluation frameworks that will be essential for accurate assessment of the efficacy of CAR T cell therapies, and we highlight the need for robust toxicity management approaches to mitigate severe adverse events. By systematically addressing these multifaceted challenges, this Review provides a comprehensive guide for the optimization of CAR T cell therapy for solid tumours to enhance both efficacy and safety.

Key points

  • Chimeric antigen receptor (CAR) T cell therapy is effective for the treatment of haematological malignancies, although implementing this therapeutic modality in solid tumours faces substantial challenges.

  • Key hurdles include tumour heterogeneity, the immunosuppressive tumour microenvironment and a paucity of tumour-specific antigens.

  • Target selection should prioritize antigens with high tumour specificity, broad tumour coverage and stable expression to minimize on-target, off-tumour toxicity and ensure durable antitumour efficacy.

  • Strategies such as early apheresis, rapid manufacturing and frontline application of CAR T cell products aim to improve T cell fitness and expedite therapy, which will be crucial for patients with aggressive and/or rapidly progressing solid tumours.

  • Lymphodepletion and locoregional delivery methods can enhance CAR T cell expansion, trafficking and local efficacy, with the potential to reduce the risks of systemic adverse effects.

  • Novel approaches to efficacy evaluation (beyond RECIST) and proactive safety management protocols are essential for accurate assessment of response, distinguishing pseudoprogression and mitigating severe CAR T cell-related adverse events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinically evaluated targets for CAR T cell therapy across different solid tumour types.

Similar content being viewed by others

References

  1. Brudno, J. N., Maus, M. V. & Hinrichs, C. S. CAR T cells and T-cell therapies for cancer: a translational science review. JAMA 332, 1924–1935 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lu, Z. H. et al. The landscape of cancer research and cancer care in China. Nat. Med. 29, 3022–3032 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Saez-Ibañez, A. R. et al. The changing landscape of cancer cell therapies: clinical trials and real-world data. Nat. Rev. Drug Discov. 23, 736–737 (2024).

    Article  PubMed  Google Scholar 

  4. Martínez-Gamboa, D. A. et al. CAR T-cell therapy landscape in pediatric, adolescent and young adult oncology – a comprehensive analysis of clinical trials. Crit. Rev. Oncol. Hematol. 209, 104648 (2025).

    Article  PubMed  Google Scholar 

  5. Schaft, N. The landscape of CAR-T cell clinical trials against solid tumors — a comprehensive overview. Cancers 12, 2567 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Albelda, S. M. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat. Rev. Clin. Oncol. 21, 47–66 (2023).

    Article  PubMed  Google Scholar 

  7. Du, B. et al. CAR-T therapy in solid tumors. Cancer Cell 43, 665–679 (2025).

    Article  CAS  PubMed  Google Scholar 

  8. Rosenberg, S. A. Finding suitable targets is the major obstacle to cancer gene therapy. Cancer Gene Ther. 21, 45–47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flugel, C. L. et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat. Rev. Clin. Oncol. 20, 49–62 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Smith, C. C. et al. Alternative tumour-specific antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Poorebrahim, M. et al. TCR-like CARs and TCR-CARs targeting neoepitopes: an emerging potential. Cancer Gene Ther. 28, 581–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, X. et al. Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy. J. Immunother. Cancer 10, e004035 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alsalloum, A. et al. Exploring TCR-like CAR-engineered lymphocyte cytotoxicity against MAGE-A4. Int. J. Mol. Sci. 24, 15134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tokatlian, T. et al. Chimeric antigen receptors directed at mutant KRAS exhibit an inverse relationship between functional potency and neoantigen selectivity. Cancer Res. Commun. 2, 58–65 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, B. N., Yan, L. L. & Zhou, M. Target selection of CAR T cell therapy in accordance with the TME for solid tumors. Am. J. Cancer Res. 9, 228–241 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haas, A. R. et al. Two cases of severe pulmonary toxicity from highly active mesothelin-directed CAR T cells. Mol. Ther. 31, 2309–2325 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Horna, P., Nowakowski, G., Endell, J. & Boxhammer, R. Comparative assessment of surface CD19 and CD20 expression on B-cell lymphomas from clinical biopsies: implications for targeted therapies. Blood 134, 5345 (2019).

    Article  Google Scholar 

  20. Qi, C. S. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial final results. Nat. Med. 30, 2224–2234 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, N., Li, X. Y., Chintala, N. K., Tano, Z. E. & Adusumilli, P. S. Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr. Opin. Immunol. 51, 103–110 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi, E., Shin, J., Ryu, M.-H., Kim, H.-D. & Park, Y. S. Heterogeneity of claudin 18.2 expression in metastatic gastric cancer. Sci. Rep. 14, 17648 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei, J. S., Han, X., Bo, J. & Han, W. D. Target selection for CAR-T therapy. J. Hematol. Oncol. 12, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hirabayashi, K. et al. Dual-targeting CAR-T cells with optimal co-stimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat. Cancer 2, 904–918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, G. et al. Dual CAR-T cells to treat cancers co-expressing NKG2D and PD1 ligands in xenograft models of peritoneal metastasis. Cancer Immunol. Immunother. 72, 223–234 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li, D. & Wang, W. Targeting hepatocellular carcinoma heterogeneity with FAP and GPC3-specific tandem CAR-T cells. Mol. Ther. Oncol. 32, 200859 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Han, X., Wang, Y., Wei, J. & Han, W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J. Hematol. Oncol. 12, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klampatsa, A. et al. Analysis and augmentation of the immunologic bystander effects of CAR T cell therapy in a syngeneic mouse cancer model. Mol. Ther. Oncolytics 18, 360–371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Albelda, S. M. Tumor antigen heterogeneity: the “Elephant in the Room” of adoptive T-cell therapy for solid tumors. Cancer Immunol. Res. 8, 2 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Upadhyay, R. et al. A critical role for fas-mediated off-target tumor killing in T-cell immunotherapy. Cancer Discov. 11, 599–613 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 9, eaaa0984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Krenciute, G. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol. Res. 5, 571–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qi, C. S. et al. 68 Ga-NC-BCH whole-body PET imaging rapidly targets claudin18.2 in lesions in gastrointestinal cancer patients. J. Nucl. Med. 65, 856–863 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beatty, G. L. et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol. Res. 2, 112–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Morello, A., Sadelain, M. & Adusumilli, P. S. Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov. 6, 133–146 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Punekar, S. R. et al. EVEREST-2: initial data of the logic-gated tmod chimeric antigen receptor T-cell (CAR T) therapy A2B694 for patients with solid tumors associated with mesothelin (MSLN) expression and with human leukocyte antigen (HLA) loss of heterozygosity (LOH). J. Clin. Oncol. 43, 3040–3040 (2025).

    Article  Google Scholar 

  40. Cheng, W.-L. et al. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 22, 12828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sigismund, S., Avanzato, D. & Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 12, 3–20 (2018).

    Article  PubMed  Google Scholar 

  42. Friedlaender, A. et al. EGFR and HER2 exon 20 insertions in solid tumours: from biology to treatment. Nat. Rev. Clin. Oncol. 19, 51–69 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Feng, K. et al. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci. China Life Sci. 59, 468–479 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y. et al. Anti-EGFR chimeric antigen receptor-modified T cells in metastatic pancreatic carcinoma: a phase I clinical trial. Cytotherapy 22, 573–580 (2020).

    Article  PubMed  Google Scholar 

  45. Pelloski, C. E. et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J. Clin. Oncol. 25, 2288–2294 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, L. et al. Intragenic EGFR::EGFR.E1E8 fusion (EGFRvIII) in 4331 solid tumors. Cancers 16, 6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Choi, B. D. et al. Intraventricular CARv3-TEAM-E T cells in recurrent glioblastoma. N. Engl. J. Med. 390, 1290–1298 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bagley, S. J. et al. Repeated peripheral infusions of anti-EGFRvIII CAR T cells in combination with pembrolizumab show no efficacy in glioblastoma: a phase 1 trial. Nat. Cancer 5, 517–531 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Gust, J. et al. Locoregional infusion of EGFR806-CAR T cells for recurrent or refractory pediatric CNS tumors: results of the completed BrainChild02 phase 1 clinical trial. Neuro-Oncol. 27, 2170–2181 (2025).

    Article  PubMed  Google Scholar 

  50. Goff, S. L. et al. Pilot trial of adoptive transfer of chimeric antigen receptor–transduced T cells targeting EGFRvIII in patients with glioblastoma. J. Immunother. 42, 126–135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Nazha, B., Inal, C. & Owonikoko, T. K. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front. Oncol. 10, 1000 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Monje, M. et al. Intravenous and intracranial GD2-CAR T cells for H3K27M+ diffuse midline gliomas. Nature 637, 708–715 (2025).

    Article  CAS  PubMed  Google Scholar 

  54. Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N. Engl. J. Med. 388, 1284–1295 (2023).

    Article  PubMed  Google Scholar 

  55. Locatelli, F. et al. GD2-targeting CAR T cells in high-risk neuroblastoma: a phase 1/phase 2 trial. Nat. Med. https://doi.org/10.1038/s41591-025-03874-6 (2025).

  56. Brown, C. E. et al. Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS ONE 8, e77769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thaci, B. et al. Significance of interleukin-13 receptor alpha 2–targeted glioblastoma therapy. Neuro-Oncol. 16, 1304–1312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown, C. E. et al. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncol. 24, 1318–1330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown, C. E. et al. Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial. Nat. Med. 30, 1001–1012 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakayama, I. et al. Claudin 18.2 as a novel therapeutic target. Nat. Rev. Clin. Oncol. 21, 354–369 (2024).

    Article  PubMed  Google Scholar 

  62. Wöll, S. et al. Claudin 18.2 is a target for IMAB362 antibody in pancreatic neoplasms. Int. J. Cancer 134, 731–739 (2013).

    Article  PubMed  Google Scholar 

  63. Qi, C. S. et al. Clinicopathological significance and immunotherapeutic outcome of claudin 18.2 expression in advanced gastric cancer: a retrospective study. Chin. J. Cancer Res. 36, 78–89 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qi, C. S. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qi, C. et al. Safety and efficacy of CT041 in patients with refractory metastatic pancreatic cancer: a pooled analysis of two early-phase trials. J. Clin. Oncol. 42, 2565–2577 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Qi, C. et al. Claudin-18 isoform 2-specific CAR T-cell therapy (satri-cel) versus treatment of physician’s choice for previously treated advanced gastric or gastro-oesophageal junction cancer (CT041-ST-01): a randomised, open-label, phase 2 trial. Lancet 405, 2049–2060 (2025).

    Article  CAS  PubMed  Google Scholar 

  67. Ushiku, T., Shinozaki-Ushiku, A., Maeda, D., Morita, S. & Fukayama, M. Distinct expression pattern of claudin-6, a primitive phenotypic tight junction molecule, in germ cell tumours and visceral carcinomas. Histopathology 61, 1043–1056 (2012).

    Article  PubMed  Google Scholar 

  68. Du, H., Yang, X., Fan, J. & Du, X. Claudin 6: therapeutic prospects for tumours, and mechanisms of expression and regulation (Review). Mol. Med. Rep. 24, 677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Mackensen, A. et al. CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial. Nat. Med. 29, 2844–2853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Carrithers, S. L. et al. Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc. Natl Acad. Sci. USA 93, 14827–14832 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Birbe, R. et al. Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract. Hum. Pathol. 36, 170–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Qi, C. S. et al. Antigen-independent activation is critical for the durable antitumor effect of GUCY2C-targeted CAR-T cells. J. Immunother. Cancer 12, e009960 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Qi, C. S. et al. Phase I study of GUCY2C CAR-T therapy IM96 in patients with metastatic colorectal cancer. J. Clin. Oncol. 42, 2518–2518 (2024).

    Article  Google Scholar 

  75. Zhang, Q. et al. Novel GUCY2C targeting CAR-T therapy: efficacy in advanced colorectal cancer. J. Clin. Oncol. 41, 3559–3559 (2023).

    Article  Google Scholar 

  76. Chen, N. F. et al. Chimeric antigen receptor T cells targeting CD19 and GCC in metastatic colorectal cancer a nonrandomized clinical trial. JAMA Oncol. 10, 1532–1536 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Baumhoer, D. et al. Glypican 3 expression in human nonneoplastic, preneoplastic, and neoplastic tissues: a tissue microarray analysis of 4,387 tissue samples. Am. J. Clin. Pathol. 129, 899–906 (2008).

    Article  PubMed  Google Scholar 

  78. Nakatsura, T., Ofuji, K., Saito, K. & Yoshikawa, T. Critical analysis of the potential of targeting GPC3 in hepatocellular carcinoma. J. Hepatocell. Carcinoma 1, 35–42 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shi, D. H. et al. Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin. Cancer Res. 26, 3979–3989 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Steffin, D. et al. Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers. Nature 637, 940–946 (2025).

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, Z. et al. An armored GPC3-directed CAR-T for refractory or relapsed hepatocellular carcinoma in China: a phase I trial. J. Clin. Oncol. 39, 4095–4095 (2021).

    Article  Google Scholar 

  82. Fu, Q. et al. RUNX-3-expressing CAR T cells targeting glypican-3 in patients with heavily pretreated advanced hepatocellular carcinoma: a phase I trial. eClinicalMedicine 63, 102175 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang, Q. et al. Phase I study of C-CAR031, a GPC3-specific TGFβRIIDN armored autologous CAR-T, in patients with advanced hepatocellular carcinoma (HCC). J. Clin. Oncol. 42, 4019–4019 (2024).

    Article  Google Scholar 

  84. Nakajima, T. E. et al. Updated results from first-in-human phase 1 dose-escalation trial of TAK-102, a GPC3-targeted armored CAR T cells, in patients with advanced solid tumors. J. Clin. Oncol. 42, 2543–2543 (2024).

    Article  Google Scholar 

  85. Lin, X., Lee, S., Sharma, P., George, B. & Scott, J. Summary of US Food and Drug Administration chimeric antigen receptor (CAR) T-cell biologics license application approvals from a statistical perspective. J. Clin. Oncol. 40, 3501–3509 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, S. & Liu, D. Rapid manufacturing of CAR-T therapy: strategies and impact. Trends Biotechnol. 43, 745–748 (2025).

    Article  CAS  PubMed  Google Scholar 

  87. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harrer, D. C. et al. Apheresis for chimeric antigen receptor T-cell production in adult lymphoma patients. Transfusion 62, 1602–1611 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Baguet, C., Larghero, J. & Mebarki, M. Early predictive factors of failure in autologous CAR T-cell manufacturing and/or efficacy in hematologic malignancies. Blood Adv. 8, 337–342 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Das, R. K., Vernau, L., Grupp, S. A. & Barrett, D. M. Naive T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov. 9, 492–499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dubnikov Sharon, T. et al. Early lymphocyte collection for anti-CD19 CART production improves T-cell fitness in patients with relapsed/refractory diffuse large B-cell lymphoma. Br. J. Haematol. 202, 74–85 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Ayala Ceja, M., Khericha, M., Harris, C. M., Puig-Saus, C. & Chen, Y. Y. CAR-T cell manufacturing: major process parameters and next-generation strategies. J. Exp. Med. 221, e20230903 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dickinson, M. J. et al. A novel autologous CAR-T therapy, YTB323, with preserved T-cell stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development. Cancer Discov. 13, 1982–1997 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, C. et al. Novel CD19 chimeric antigen receptor T cells manufactured next-day for acute lymphoblastic leukemia. Blood Cancer J. 12, 96 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bui, T. A., Mei, H., Sang, R., Ortega, D. G. & Deng, W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. eBioMedicine 106, 105266 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Short, L., Holt, R. A., Cullis, P. R. & Evgin, L. Direct in vivo CAR T cell engineering. Trends Pharmacol. Sci. 45, 406–418 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Xu, J. et al. In-vivo B-cell maturation antigen CAR T-cell therapy for relapsed or refractory multiple myeloma. Lancet 406, 228–231 (2025).

    Article  CAS  PubMed  Google Scholar 

  100. Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130, 2295–2306 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cohen, A. D. et al. Incidence and management of CAR-T neurotoxicity in patients with multiple myeloma treated with ciltacabtagene autoleucel in CARTITUDE studies. Blood Cancer J. 12, 32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Greenbaum, U. et al. CRP and ferritin in addition to the EASIX score predict CAR-T-related toxicity. Blood Adv. 5, 2799–2806 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Locke, F. L. et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N. Engl. J. Med. 386, 640–654 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Neelapu, S. S. et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat. Med. 28, 735–742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Locke, F. L. et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 4, 4898–4911 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yuan, Y. Spatial heterogeneity in the tumor microenvironment. Cold Spring Harb. Perspect. Med. 6, a026583 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Pantel, K. & Alix-Panabières, C. Minimal residual disease as a target for liquid biopsy in patients with solid tumours. Nat. Rev. Clin. Oncol. 22, 65–77 (2024).

    Article  PubMed  Google Scholar 

  111. Uslu, U. et al. Chimeric antigen receptor T cells as adjuvant therapy for unresectable adenocarcinoma. Sci. Adv. 9, eade2526 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hirayama, A. V. et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 133, 1876–1887 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Amini, L. et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat. Rev. Clin. Oncol. 19, 342–355 (2022).

    Article  PubMed  Google Scholar 

  114. Lickefett, B. et al. Lymphodepletion — an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front. Immunol. 14, 1303935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ju, A., Choi, S., Jeon, Y. & Kim, K. Lymphodepletion in chimeric antigen receptor T-cell therapy for solid tumors: a focus on brain tumors. Brain Tumor Res. Treat. 12, 208–220 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Medina, T. et al. Long-term efficacy and safety of lifileucel tumor-infiltrating lymphocyte cell therapy in patients with advanced melanoma: a 5-year analysis of the C-144-01 study. J. Clin. Oncol. https://doi.org/10.1200/JCO-25-00765 (2025).

    Article  PubMed  Google Scholar 

  117. D’Angelo, S. P. et al. Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial. Lancet 403, 1460–1471 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Haas, A. R. et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol. Ther. 27, 1919–1929 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Narayan, V. et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 28, 724–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dorff, T. B. et al. PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat. Med. 30, 1636–1644 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8, 355ra116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gardner, R. A. et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129, 3322–3331 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Alvarez, R. et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 109, 926–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Von Hoff, D. D. et al. Gemcitabine plusnab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II Trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  Google Scholar 

  126. Feng, K. C. et al. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 9, 838–847 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Michels, T. et al. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in a TLR4-independent manner. J. Immunotoxicol. 9, 292–300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, L. et al. Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin. Immunol. 129, 219–229 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, A. X., Ong, X. J., D’Souza, C., Neeson, P. J. & Zhu, J. J. Combining chemotherapy with CAR-T cell therapy in treating solid tumors. Front. Immunol. 14, 1140541 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Srivastava, S. et al. Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade. Cancer Cell 39, 193 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Cherkassky, L., Hou, Z. H., Amador-Molina, A. & Adusumilli, P. S. Regional CAR T cell therapy: an ignition key for systemic immunity in solid tumors. Cancer Cell 40, 569–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sagnella, S. M. et al. Locoregional delivery of CAR-T cells in the clinic. Pharmacol. Res. 182, 106329 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Papa, S. et al. Intratumoral pan-ErbB targeted CAR-T for head and neck squamous cell carcinoma: interim analysis of the T4 immunotherapy study. J. Immunother. Cancer 11, e007162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhang, H. et al. Phase I trial of hypoxia-responsive CEA CAR-T cell therapy in patients with heavily pretreated solid tumor via intraperitoneal or intravenous transfusion. J. Clin. Oncol. 42, 3514–3514 (2024).

    Article  Google Scholar 

  135. Zygogianni, A. et al. From imaging to biology of glioblastoma: new clinical oncology perspectives to the problem of local recurrence. Clin. Transl. Oncol. 20, 989–1003 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Vitanza, N. A. et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat. Med. 27, 1544–1552 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Vitanza, N. A. et al. Intracerebroventricular B7-H3-targeting CAR T cells for diffuse intrinsic pontine glioma: a phase 1 trial. Nat. Med. 31, 861–868 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137, 323–335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Locke, F. L. et al. Retreatment (reTx) of patients (pts) with refractory large B-cell lymphoma with axicabtagene ciloleucel (axi-cel) in ZUMA-1. J. Clin. Oncol. 38, 8012–8012 (2020).

    Article  Google Scholar 

  140. Wagner, D. L. et al. Immunogenicity of CAR T cells in cancer therapy. Nat. Rev. Clin. Oncol. 18, 379–393 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Holland, E. M. et al. Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. J. Immunother. Cancer 10, e004483 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Volpe, A., Adusumilli, P. S., Schöder, H. & Ponomarev, V. Imaging cellular immunotherapies and immune cell biomarkers: from preclinical studies to patients. J. Immunother. Cancer 10, e004902 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yu, W. L. & Hua, Z. C. Chimeric antigen receptor T-cell (CAR T) therapy for hematologic and solid malignancies: efficacy and safety-a systematic review with meta-analysis. Cancers 11, 47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Boursier, C., Perrin, M., Bordonne, M., Campidelli, A. & Verger, A. Early F-FDG PET flare-up phenomenon after CAR T-cell therapy in lymphoma. Clin. Nucl. Med. 47, E152–E153 (2022).

    Article  PubMed  Google Scholar 

  146. Wang, J. S. et al. Role of fluorodeoxyglucose positron emission tomography/computed tomography in predicting the adverse effects of chimeric antigen receptor T cell therapy in patients with non-Hodgkin lymphoma. Biol. Blood Marrow Transplant 25, 1092–1098 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Danylesko, I. et al. Immune imitation of tumor progression after anti-CD19 chimeric antigen receptor T cells treatment in aggressive B-cell lymphoma. Bone Marrow Transplant. 56, 1134–1143 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cohen, D., Beyar-Katz, O., Even-Sapir, E. & Perry, C. Lymphoma pseudoprogression observed on [18F]FDG PET-CT scan 15 days after CAR-T infusion. Eur. J. Nucl. Med. Mol. Imaging 49, 2447–2449 (2022).

    Article  PubMed  Google Scholar 

  149. Mirza, A. S. et al. Incidence and management of effusions before and after CD19-directed chimeric antigen receptor (CAR) T cell therapy in large B cell lymphoma. Transplant. Cell. Ther. 27, 242.e1–242.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Zhao, X. et al. Pseudoprogression in CAR-T cell therapy for solid tumor: case report. Front. Immunol. 15, 1504104 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mahdi, J. et al. Tumor inflammation-associated neurotoxicity. Nat. Med. 29, 803–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Burger, M. C. et al. Intracranial injection of natural killer cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro-Oncol. 25, 2058–2071 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shao, F. Q. et al. Radionuclide-based molecular imaging allows CAR-T cellular visualization and therapeutic monitoring. Theranostics 11, 6800–6817 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Beatty, G. L. et al. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155, 29–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Wang, S. J. et al. First-in-human CLDN18.2 functional diagnostic pet imaging of digestive system neoplasms enables whole-body target mapping and lesion detection. Eur. J. Nucl. Med. Mol. Imaging 50, 2802–2817 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Wittibschlager, V. et al. CAR T-cell persistence correlates with improved outcome in patients with B-cell lymphoma. Int. J. Mol. Sci. 24, 5688 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bao, Y. T., Lv, M., Huang, X. J. & Zhao, X. Y. The mechanisms and countermeasures for CAR-T cell expansion and persistence deficiency. Cancer Lett. 626, 217771 (2025).

    Article  CAS  PubMed  Google Scholar 

  159. Hu, Y. F. & Huang, J. The chimeric antigen receptor detection toolkit. Front. Immunol. 11, 1770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Van Hoeck, J., Vanhove, C., De Smedt, S. C. & Raemdonck, K. Non-invasive cell-tracking methods for adoptive T cell therapies. Drug Discov. Today 27, 793–807 (2022).

    Article  PubMed  Google Scholar 

  161. Skovgard, M. S. et al. Imaging CAR T-cell kinetics in solid tumors: translational implications. Mol. Ther. Oncolytics 22, 355–367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Weist, M. R. et al. PET of adoptively transferred chimeric antigen receptor T cells with 89Zr-oxine. J. Nucl. Med. 59, 1531–1537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fröse, J. et al. Development of an antigen-based approach to noninvasively image CAR T cells in real time and as a predictive tool. Sci. Adv. 10, eadn3816 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Nikanjam, M., Kato, S. & Kurzrock, R. Liquid biopsy: current technology and clinical applications. J. Hematol. Oncol. 15, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Huang, Z. et al. Liquid biopsy in T-cell lymphoma: biomarker detection techniques and clinical application. Mol. Cancer 23, 36 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, J. et al. Peripheral blood neutrophils contribute to Claudin18.2-specific CAR-T cell treatment resistance in advanced gastric cancer. Br. J. Cancer 132, 1167–1176 (2025).

    Article  CAS  PubMed  Google Scholar 

  167. Lee, J. H. et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti–programmed cell death 1 antibodies. JAMA Oncol. 4, 717–721 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kubendran, S. et al. Circulating tumor DNA and association with CAR-T cell therapy response in gastric and pancreatic cancer patients. J. Clin. Oncol. 41, 4053–4053 (2023).

    Article  Google Scholar 

  169. Botta, G. P. et al. Metastatic gastric cancer target lesion complete response with Claudin18.2-CAR T cells. J. Immunother. Cancer 12, e007927 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lei, W. et al. Treatment-related adverse events of chimeric antigen receptor T-cell (CAR T) in clinical trials: a systematic review and meta-analysis. Cancers 13, 3912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant 25, 625–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Maus, M. V. et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J. Immunother. Cancer 8, e001511 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Schubert, M. L. et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol. 32, 34–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  175. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Scala, J. J. et al. Treatment strategies for progressive immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome: case series. Haematologica 109, 3439–3445 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ortí, G. et al. Less frequent complications following CAR T-cell therapies: hemophagocytic lymphohistiocytosis, graft-versus-host disease, thrombotic microangiopathy, coagulation disorders and secondary malignancies: best practice recommendations from the EBMT practice harmonization and guidelines committee. Bone Marrow Transplant. 60, 751–758 (2025).

    Article  PubMed  Google Scholar 

  178. Shi, J. et al. CAR-T therapy pulmonary adverse event profile: a pharmacovigilance study based on FAERS database (2017-2023). Front. Pharmacol. 15, 1434231 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Goldman, A. et al. Adverse cardiovascular and pulmonary events associated with chimeric antigen receptor T-cell therapy. J. Am. Coll. Cardiol. 78, 1800–1813 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  180. MacKay, M. et al. The therapeutic landscape for cells engineered with chimeric antigen receptors. Nat. Biotechnol. 38, 233–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Jing, Y. et al. Expression of chimeric antigen receptor therapy targets detected by single-cell sequencing of normal cells may contribute to off-tumor toxicity. Cancer Cell 39, 1558–1559 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Brentjens, R., Yeh, R., Bernal, Y., Riviere, I. & Sadelain, M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol. Ther. 18, 666–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Uslu, U. & June, C. H. Beyond the blood: expanding CAR T cell therapy to solid tumors. Nat. Biotechnol. 43, 506–515 (2025).

    Article  CAS  PubMed  Google Scholar 

  184. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Diorio, C., Teachey, D. T. & Grupp, S. A. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat. Rev. Clin. Oncol. 22, 10–27 (2025).

    Article  CAS  PubMed  Google Scholar 

  186. Wu, Z. et al. Glycan shielding enables TCR-sufficient allogeneic CAR-T therapy. Cell https://doi.org/10.1016/j.cell.2025.07.046 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Pal, S. K. et al. CD70-targeted allogeneic CAR T-cell therapy for advanced clear cell renal cell carcinoma. Cancer Discov. 14, 1176–1189 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Quintarelli, C. et al. Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma. Nat. Med. 31, 849–860 (2025).

    Article  CAS  PubMed  Google Scholar 

  189. Lamers, C. H. J. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24, e20–e22 (2006).

    Article  PubMed  Google Scholar 

  190. Lamers, C. H. J. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Thistlethwaite, F. C. et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 66, 1425–1436 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Guo, Y. L. et al. Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin. Cancer Res. 24, 1277–1286 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is funded by the National Key Research and Development Program of China (No. 2022YFC2505006 and 2023YFC3403700 to L.S., and No. 2022YFA0912400 to C.Q.), the National Natural Science Foundation of China (No. 82522068 to C.Q. and No. U22A20327 to L.S.), the Beijing Natural Science Foundation (L232080 to C.Q.), the Beijing Hospitals Authority Youth Program (QMS20201101 to C.Q.), the Science Foundation of Peking University Cancer Hospital (JC202406 to C.Q.), the Clinical Medicine Plus X – Young Scholars Project of Peking University (to C.Q.), the Peking University Clinical Scientist Training Program (to C.Q.), and the Fundamental Research Funds for the Central Universities (to C.Q.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Lin Shen or Changsong Qi.

Ethics declarations

Competing interests

L.S. declares consulting or advisory roles for AstraZeneca, Boehringer Ingelheim, MSD, Servier and Transcenta Holding, and has received research funding (to the institution) from BeiGene and CARsgen. C.Q. declares consulting or advisory roles for AstraZeneca, Bayer, CARsgen, Imunopharm and Legend. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, C., Zhang, P. et al. Optimizing CAR T cell therapy for solid tumours: a clinical perspective. Nat Rev Clin Oncol (2025). https://doi.org/10.1038/s41571-025-01075-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-025-01075-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research