Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Achieving control of nasopharyngeal carcinoma: the role of Epstein–Barr virus-based screening and vaccines

Abstract

Nasopharyngeal carcinoma (NPC) is a major disease burden in endemic regions, where Epstein–Barr virus (EBV) infection has a key aetiological role in this malignancy. Both plasma EBV DNA and serum antibodies targeting EBV antigens have been validated independently in large-scale prospective trials as effective biomarkers for early detection of NPC. Plasma EBV DNA analysis by PCR could identify patients with early-stage, asymptomatic NPC. Emergent studies have shown that fragmentomics analysis of plasma EBV DNA can further enhance the specificity of NPC detection at the time of testing and better predict the future risk of NPC. Initial antibody-based NPC screening approaches were based on the detection of immunoglobulin A antibodies targeting EBV viral capsid antigen or Epstein–Barr nuclear antigen 1, which resulted in a subsequent reduction in NPC-specific mortality in a population screening trial. Subsequently, the detection of anti-BNLF2b antibodies alone has been reported to achieve higher sensitivity and specificity relative to the dual antibody approach. Cost-effectiveness analyses support the implementation of NPC screening in endemic regions using either EBV DNA or antibodies. Ongoing research initiatives are focusing on developing prophylactic and therapeutic vaccines as preventive measures against EBV-associated diseases, including NPC. In this Review, we discuss these advances as well as their relevance for the implementation of prevention strategies such as population-wide NPC screening and vaccination in endemic areas of NPC prevalence. We also highlight valuable insights from plasma EBV DNA studies that might facilitate optimization of liquid biopsy-based screening strategies for other types of cancer.

Key points

  • The prevalence of nasopharyngeal carcinoma (NPC) is characterized by marked geographical and ethnic disparities, and is particularly high in southern China and Southeast Asia. NPC is strongly associated with Epstein–Barr virus (EBV) infection, prompting a focus on early detection and prevention, including strategies for screening using EBV-based biomarkers or the development of EBV vaccines, to alleviate the burden of NPC.

  • The quantification of plasma EBV DNA using real-time PCR assays or other sequencing-based methods provides a sensitive and specific biomarker for NPC screening, and evidence suggests that the initial test results can predict future risk of NPC development within the subsequent few years.

  • Quantification of serum antibodies targeting EBV antigens, including EBV viral capsid antigen, Epstein–Barr nuclear antigen 1 (EBNA1) and BNLF2b, has demonstrated promising screening performance, improving early diagnosis of NPC and reducing NPC-specific mortality by 30% in a population screening trial.

  • Further research and the development of risk models based on other EBV-based and human biomarkers, including specific EBV variants and human HLA genotypes, could refine NPC screening and the identification of populations at high risk, thereby enhancing the predictive value and cost-effectiveness of screening programmes.

  • Current efforts in EBV vaccine development focus on administering EBV envelope glycoproteins, such as gp350, gH–gL, gp42 and gB, or EBV proteins expressed in infected NPC cells that promote oncogenic properties, including EBNA1 and latent membrane protein 2. Nanoparticle-based and mRNA-based vaccines have demonstrated promising results in preclinical studies and are being tested in ongoing clinical trials.

  • Plasma EBV DNA-based and serological antibody-based approaches for NPC screening provide numerous insights for the development of blood-based multi-cancer early detection tests, highlighting the importance of longitudinal follow-up, increasing participation in screening programmes and leveraging multimodal-based detection methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current approaches and emerging advances for EBV-based screening and prevention of NPC.

References

  1. Wong, K. C. W. et al. Nasopharyngeal carcinoma: an evolving paradigm. Nat. Rev. Clin. Oncol. 18, 679–695 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Chang, E. T. & Adami, H. O. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol. Biomark. Prev. 15, 1765–1777 (2006).

    Article  CAS  Google Scholar 

  3. Young, L. S., Yap, L. F. & Murray, P. G. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat. Rev. Cancer 16, 789–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. zur Hausen, H. et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228, 1056–1058 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Su, Z. Y., Siak, P. Y., Leong, C. O. & Cheah, S. C. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front. Microbiol. 14, 1116143 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. National Cancer Registry Department. Summary of the Malaysia National Cancer Registry report 2017-2021. Ministry of Health https://nci.moh.gov.my/images/pdf_folder/SUMMARY-OF-MALAYSIA-NATIONAL-CANCER-REGISTRY-REPORT-2017-2021.pdf (2025).

  7. Singapore Cancer Registry. Singapore Cancer Registry annual report 2022. National Registry of Diseases Office https://www.nrdo.gov.sg/publications/cancer (2024).

  8. Au, K. H. et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: a report of 3328 patients (HKNPCSG 1301 study). Oral. Oncol. 77, 16–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Zou, X. et al. Establishment and validation of M1 stage subdivisions for de novo metastatic nasopharyngeal carcinoma to better predict prognosis and guide treatment. Eur. J. Cancer 77, 117–126 (2017).

    Article  PubMed  Google Scholar 

  10. Liao, C.-H. et al. Quality of life as a mediator between cancer stage and long-term mortality in nasopharyngeal cancer patients treated with intensity-modulated radiotherapy. Cancers 13, 5063 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hong, J. S., Tian, J., Han, Q. F. & Ni, Q. Y. Quality of life of nasopharyngeal cancer survivors in China. Curr. Oncol. 22, e142–e147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong Kong Cancer Registry. Nasopharyngeal cancer in 2022. Hong Kong Cancer Registry, Hospital Authority. https://www3.ha.org.hk/cancereg/pdf/factsheet/2022/npc_2022.pdf (2022).

  13. Mao, Y. P. et al. Re-evaluation of 6th edition of AJCC staging system for nasopharyngeal carcinoma and proposed improvement based on magnetic resonance imaging. Int. J. Radiat. Oncol. Biol. Phys. 73, 1326–1334 (2009).

    Article  PubMed  Google Scholar 

  14. Alsavaf, M. B. et al. Patient characteristics and treatment outcomes of nasopharyngeal carcinoma in nonendemic regions. JAMA Netw. Open 8, e251895 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blanchard, P. et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol. 16, 645–655 (2015).

    Article  PubMed  Google Scholar 

  16. Chang, E. T., Ye, W., Zeng, Y. X. & Adami, H. O. The evolving epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol. Biomark. Prev. 30, 1035–1047 (2021).

    Article  CAS  Google Scholar 

  17. Jia, W. H. et al. Familial risk and clustering of nasopharyngeal carcinoma in Guangdong, China. Cancer 101, 363–369 (2004).

    Article  PubMed  Google Scholar 

  18. Liu, Z. et al. Quantification of familial risk of nasopharyngeal carcinoma in a high-incidence area. Cancer 123, 2716–2725 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Hsu, W. L. et al. Familial tendency and risk of nasopharyngeal carcinoma in Taiwan: effects of covariates on risk. Am. J. Epidemiol. 173, 292–299 (2011).

    Article  PubMed  Google Scholar 

  20. Loh, K. S., Goh, B. C., Lu, J., Hsieh, W. S. & Tan, L. Familial nasopharyngeal carcinoma in a cohort of 200 patients. Arch. Otolaryngol. Head Neck Surg. 132, 82–85 (2006).

    Article  PubMed  Google Scholar 

  21. Ng, W. T. et al. Familial nasopharyngeal carcinoma in Hong Kong: epidemiology and implication in screening. Fam. Cancer 8, 103–108 (2009).

    Article  PubMed  Google Scholar 

  22. Choi, C. W. et al. An analysis of the efficacy of serial screening for familial nasopharyngeal carcinoma based on Markov chain models. Fam. Cancer 10, 133–139 (2011).

    Article  PubMed  Google Scholar 

  23. Friborg, J. et al. Cancer susceptibility in nasopharyngeal carcinoma families — a population-based cohort study. Cancer Res. 65, 8567–8572 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Noel, C. W. et al. Association of immigration status and Chinese and South Asian ethnicity with incidence of head and neck cancer. JAMA Otolaryngol. Head Neck Surg. 146, 1125–1135 (2020).

    Article  PubMed  Google Scholar 

  25. Wang, Q. et al. Racial and ethnic disparities in nasopharyngeal cancer with an emphasis among Asian Americans. Int. J. Cancer 151, 1291–1303 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Tse, K. P. et al. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3. Am. J. Hum. Genet. 85, 194–203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bei, J. X. et al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat. Genet. 42, 599–603 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Tang, M. et al. The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove. PLoS Genet. 8, e1003103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chin, Y. M. et al. HLA-A SNPs and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese. Int. J. Cancer 136, 678–687 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. He, Y. Q. et al. A polygenic risk score for nasopharyngeal carcinoma shows potential for risk stratification and personalized screening. Nat. Commun. 13, 1966 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, T. M. et al. Whole-exome sequencing study of familial nasopharyngeal carcinoma and its implication for identifying high-risk individuals. J. Natl Cancer Inst. 114, 1689–1697 (2022).

    Article  PubMed  Google Scholar 

  32. Xu, M. et al. Host genetic variants, Epstein-Barr virus subtypes, and the risk of nasopharyngeal carcinoma: assessment of interaction and mediation. Cell Genom. 4, 100474 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, M. et al. Genome sequencing analysis identifies Epstein-Barr virus subtypes associated with high risk of nasopharyngeal carcinoma. Nat. Genet. 51, 1131–1136 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hui, K. F. et al. High risk Epstein-Barr virus variants characterized by distinct polymorphisms in the EBER locus are strongly associated with nasopharyngeal carcinoma. Int. J. Cancer 144, 3031–3042 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Barrett, D. et al. Past and recent salted fish and preserved food intakes are weakly associated with nasopharyngeal carcinoma risk in adults in Southern China. J. Nutr. 149, 1596–1605 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Feng, H. et al. Consumption of processed food and risk of nasopharyngeal carcinoma: a systematic review and meta-analysis. Transl. Cancer Res. 11, 872–879 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zheng, Y. M. et al. Environmental and dietary risk factors for nasopharyngeal carcinoma: a case-control study in Zangwu county, Guangxi, China. Br. J. Cancer 69, 508–514 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, X. et al. Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high-risk population of southern China. Int. J. Cancer 124, 2942–2947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Armstrong, R. W. et al. Nasopharyngeal carcinoma in Malaysian Chinese: salted fish and other dietary exposures. Int. J. Cancer 77, 228–235 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Jia, W. H. et al. Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer 10, 446 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yong, S. K. et al. Associations of lifestyle and diet with the risk of nasopharyngeal carcinoma in Singapore: a case-control study. Chin. J. Cancer 36, 3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mai, Z. M. et al. Dietary fiber intake from fresh and preserved food and risk of nasopharyngeal carcinoma: observational evidence from a Chinese population. Nutr. J. 20, 14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, C. et al. Chinese nonmedicinal herbal diet and risk of nasopharyngeal carcinoma: a population-based case-control study. Cancer 125, 4462–4470 (2019).

    Article  PubMed  Google Scholar 

  44. Liu, Y. T. et al. Greater intake of fruit and vegetables is associated with lower risk of nasopharyngeal carcinoma in Chinese adults: a case-control study. Cancer Causes Control. 23, 589–599 (2012).

    PubMed  Google Scholar 

  45. Polesel, J. et al. Consumption of fruit, vegetables, and other food groups and the risk of nasopharyngeal carcinoma. Cancer Causes Control. 24, 1157–1165 (2013).

    PubMed  Google Scholar 

  46. Friborg, J. T. et al. A prospective study of tobacco and alcohol use as risk factors for pharyngeal carcinomas in Singapore Chinese. Cancer 109, 1183–1191 (2007).

    Article  PubMed  Google Scholar 

  47. Feng, R. et al. Intake of alcohol and tea and risk of nasopharyngeal carcinoma: a population-based case-control study in southern China. Cancer Epidemiol. Biomark. Prev. 30, 545–553 (2021).

    Article  Google Scholar 

  48. Chen, L. et al. Alcohol consumption and the risk of nasopharyngeal carcinoma: a systematic review. Nutr. Cancer 61, 1–15 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Du, T. et al. Association between alcohol consumption and risk of nasopharyngeal carcinoma: a comprehensive meta-analysis of epidemiological studies. Alcohol. Clin. Exp. Res. 43, 2262–2273 (2019).

    Article  PubMed  Google Scholar 

  50. Lin, J. H. et al. Smoking and nasopharyngeal cancer: individual data meta-analysis of six prospective studies on 334 935 men. Int. J. Epidemiol. 50, 975–986 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xue, W. Q., Qin, H. D., Ruan, H. L., Shugart, Y. Y. & Jia, W. H. Quantitative association of tobacco smoking with the risk of nasopharyngeal carcinoma: a comprehensive meta-analysis of studies conducted between 1979 and 2011. Am. J. Epidemiol. 178, 325–338 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chang, E. T. et al. Active and passive smoking and risk of nasopharyngeal carcinoma: a population-based case-control study in southern China. Am. J. Epidemiol. 185, 1272–1280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hu, T. et al. Smoking can increase nasopharyngeal carcinoma risk by repeatedly reactivating Epstein-Barr virus: an analysis of a prospective study in southern China. Cancer Med. 8, 2561–2571 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Long, M., Fu, Z., Li, P. & Nie, Z. Cigarette smoking and the risk of nasopharyngeal carcinoma: a meta-analysis of epidemiological studies. BMJ Open 7, e016582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hsu, W. L. et al. Cigarette smoking increases the risk of nasopharyngeal carcinoma through the elevated level of IgA antibody against Epstein-Barr virus capsid antigen: a mediation analysis. Cancer Med. 9, 1867–1876 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, F. H. et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J. Natl Cancer Inst. 104, 1396–1410 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Xie, S. H., Yu, I. T., Tse, L. A., Au, J. S. & Lau, J. S. Tobacco smoking, family history, and the risk of nasopharyngeal carcinoma: a case-referent study in Hong Kong Chinese. Cancer Causes Control. 26, 913–921 (2015).

    PubMed  Google Scholar 

  58. Ji, X. et al. Nasopharyngeal carcinoma risk by histologic type in central China: impact of smoking, alcohol and family history. Int. J. Cancer 129, 724–732 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. He, Y. Q. et al. Household inhalants exposure and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer 15, 1022 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen, Y. et al. Occupational exposures and risk of nasopharyngeal carcinoma in a high-risk area: a population-based case-control study. Cancer 127, 2724–2735 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. E, M. et al. Wood dust exposure and risks of nasopharyngeal carcinoma: a meta-analysis. Eur. J. Public Health 30, 817–822 (2020).

    Article  PubMed  Google Scholar 

  62. Chen, Y. et al. Residence characteristics and risk of nasopharyngeal carcinoma in southern China: a population-based case-control study. Env. Int. 151, 106455 (2021).

    Article  Google Scholar 

  63. Yang, T., Liu, Y., Zhao, W., Chen, Z. & Deng, J. Association of ambient air pollution with nasopharyngeal carcinoma incidence in ten large Chinese cities, 2006-2013. Int. J. Environ. Res. Public Health 17, 1824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fan, H. C. et al. Increased risk of incident nasopharyngeal carcinoma with exposure to air pollution. PLoS ONE 13, e0204568 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Huang, H. C. et al. Association between coarse particulate matter (PM(10-2.5)) and nasopharyngeal carcinoma among Taiwanese men. J. Investig. Med. 68, 419–424 (2020).

    Article  PubMed  Google Scholar 

  66. Chen, B. et al. Long-term trends in the burden of nasopharyngeal carcinoma in China: a comprehensive analysis from 1990 to 2021 and projections to 2030 based on the Global Burden of Disease Study 2021. Radiother. Oncol. 202, 110613 (2025).

    Article  PubMed  Google Scholar 

  67. Lo, Y. M. et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 59, 1188–1191 (1999).

    CAS  PubMed  Google Scholar 

  68. Lam, W. K. J., Chan, K. C. A. & Lo, Y. M. D. Plasma Epstein-Barr virus DNA as an archetypal circulating tumour DNA marker. J. Pathol. 247, 641–649 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chan, A. T. C. et al. Plasma Epstein-Barr virus DNA and residual disease after radiotherapy for undifferentiated nasopharyngeal carcinoma. J. Natl Cancer Inst. 94, 1614–1619 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Lin, J. C. et al. Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N. Engl. J. Med. 350, 2461–2470 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Leung, S. F. et al. Plasma Epstein-Barr viral deoxyribonucleic acid quantitation complements tumor-node-metastasis staging prognostication in nasopharyngeal carcinoma. J. Clin. Oncol. 24, 5414–5418 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Chai, S. J. et al. Clinical significance of plasma Epstein-Barr virus DNA loads in a large cohort of Malaysian patients with nasopharyngeal carcinoma. J. Clin. Virol. 55, 34–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Lee, V. H. et al. Prognostication of serial post-intensity-modulated radiation therapy undetectable plasma EBV DNA for nasopharyngeal carcinoma. Oncotarget 8, 5292–5308 (2017).

    Article  PubMed  Google Scholar 

  74. Ma, B. B. et al. Relationship between pretreatment level of plasma Epstein-Barr virus DNA, tumor burden, and metabolic activity in advanced nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 66, 714–720 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Chan, K. C. et al. Investigation into the origin and tumoral mass correlation of plasma Epstein-Barr virus DNA in nasopharyngeal carcinoma. Clin. Chem. 51, 2192–2195 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Chan, K. C. A. et al. Analysis of plasma Epstein-Barr virus DNA to screen for nasopharyngeal cancer. N. Engl. J. Med. 377, 513–522 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Lee, A. W. et al. Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int. J. Radiat. Oncol. Biol. Phys. 61, 1107–1116 (2005).

    Article  PubMed  Google Scholar 

  78. Chan, K. C. A. et al. Plasma Epstein-Barr virus DNA and risk of future nasopharyngeal cancer. NEJM Evid. 2, EVIDoa2200309 (2023).

    Article  PubMed  Google Scholar 

  79. Lam, W. K. J. et al. Recommendations for Epstein-Barr virus-based screening for nasopharyngeal cancer in high- and intermediate-risk regions. J. Natl Cancer Inst. 115, 355–364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kanakry, J. & Ambinder, R. The biology and clinical utility of EBV monitoring in blood. Curr. Top. Microbiol. Immunol. 391, 475–499 (2015).

    CAS  PubMed  Google Scholar 

  81. Chan, K. C. et al. Early detection of nasopharyngeal carcinoma by plasma Epstein-Barr virus DNA analysis in a surveillance program. Cancer 119, 1838–1844 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Lam, W. K. J. et al. Methylation analysis of plasma DNA informs etiologies of Epstein-Barr virus-associated diseases. Nat. Commun. 10, 3256 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chan, K. C. et al. Molecular characterization of circulating EBV DNA in the plasma of nasopharyngeal carcinoma and lymphoma patients. Cancer Res. 63, 2028–2032 (2003).

    CAS  PubMed  Google Scholar 

  84. Chan, K. C. A., Chu, S. W. I. & Lo, Y. M. D. Ambient temperature and screening for nasopharyngeal cancer. N. Engl. J. Med. 378, 962–963 (2018).

    Article  PubMed  Google Scholar 

  85. Wang, H. Y. et al. Cancers screening in an asymptomatic population by using multiple tumour markers. PLoS ONE 11, e0158285 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lam, W. K. J. et al. Sequencing-based counting and size profiling of plasma Epstein-Barr virus DNA enhance population screening of nasopharyngeal carcinoma. Proc. Natl Acad. Sci. USA 115, E5115–E5124 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou, Q. et al. Epigenetic analysis of cell-free DNA by fragmentomic profiling. Proc. Natl Acad. Sci. USA 119, e2209852119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shaw, J. E., Levinger, L. F. & Carter, C. W. Jr. Nucleosomal structure of Epstein-Barr virus DNA in transformed cell lines. J. Virol. 29, 657–665 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dyson, P. J. & Farrell, P. J. Chromatin structure of Epstein-Barr virus. J. Gen. Virol. 66(Pt 9), 1931–1940 (1985).

    Article  CAS  PubMed  Google Scholar 

  90. Arvey, A. et al. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe 12, 233–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Arvey, A., Tempera, I. & Lieberman, P. M. Interpreting the Epstein-Barr virus (EBV) epigenome using high-throughput data. Viruses 5, 1042–1054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Johannsen, E. et al. Proteins of purified Epstein-Barr virus. Proc. Natl Acad. Sci. USA 101, 16286–16291 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fernandez, A. F. et al. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res. 19, 438–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tempera, I. & Lieberman, P. M. Epigenetic regulation of EBV persistence and oncogenesis. Semin. Cancer Biol. 26, 22–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Woellmer, A. & Hammerschmidt, W. Epstein-Barr virus and host cell methylation: regulation of latency, replication and virus reactivation. Curr. Opin. Virol. 3, 260–265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lam, W. K. J. et al. Fragmentomics profiling and quantification of plasma Epstein-Barr virus DNA enhance prediction of future nasopharyngeal carcinoma. Cancer Cell 43, 728–739.e5 (2025).

    Article  CAS  PubMed  Google Scholar 

  97. Le, Q. T. et al. An international collaboration to harmonize the quantitative plasma Epstein-Barr virus DNA assay for future biomarker-guided trials in nasopharyngeal carcinoma. Clin. Cancer Res. 19, 2208–2215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yip, T. T., Ngan, R. K., Fong, A. H. & Law, S. C. Application of circulating plasma/serum EBV DNA in the clinical management of nasopharyngeal carcinoma. Oral. Oncol. 50, 527–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, K. Y. et al. Current state of PCR-based Epstein-Barr virus DNA testing for nasopharyngeal cancer. J. Natl Cancer Inst. 109, djx007 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zeng, Y. et al. Prospective studies on nasopharyngeal carcinoma in Epstein-Barr virus IgA/VCA antibody-positive persons in Wuzhou city, China. Int. J. Cancer 36, 545–547 (1985).

    Article  CAS  PubMed  Google Scholar 

  101. Ji, M. F. et al. Sustained elevation of Epstein-Barr virus antibody levels preceding clinical onset of nasopharyngeal carcinoma. Br. J. Cancer 96, 623–630 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cao, S. M. et al. Fluctuations of epstein-barr virus serological antibodies and risk for nasopharyngeal carcinoma: a prospective screening study with a 20-year follow-up. PLoS ONE 6, e19100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zeng, Y. et al. Serological mass survey for early detection of nasopharyngeal carcinoma in Wuzhou city, China. Int. J. Cancer 29, 139–141 (1982).

    Article  CAS  PubMed  Google Scholar 

  104. Yao, J. J. et al. Prognostic value of serum Epstein-Barr virus antibodies in patients with nasopharyngeal carcinoma and undetectable pretreatment Epstein-Barr virus DNA. Cancer Sci. 108, 1640–1647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, Z. et al. Two Epstein-Barr virus-related serologic antibody tests in nasopharyngeal carcinoma screening: results from the initial phase of a cluster randomized controlled trial in southern China. Am. J. Epidemiol. 177, 242–250 (2013).

    Article  PubMed  Google Scholar 

  106. Ji, M. F. et al. Incidence and mortality of nasopharyngeal carcinoma: interim analysis of a cluster randomized controlled screening trial (PRO-NPC-001) in southern China. Ann. Oncol. 30, 1630–1637 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Chen, W. J. et al. Impact of an Epstein-Barr virus serology-based screening program on nasopharyngeal carcinoma mortality: a cluster-randomized controlled trial. J. Clin. Oncol. 43, 22–31 (2025).

    Article  CAS  PubMed  Google Scholar 

  108. Li, T. et al. Anti-Epstein-Barr virus BNLF2b for mass screening for nasopharyngeal cancer. N. Engl. J. Med. 389, 808–819 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Lam, W. K. J. & Chan, A. T. C. Nasopharyngeal cancer screening with an anti-BNLF2b antibody: a new arrow in the quiver? Nat. Rev. Clin. Oncol. 21, 6–7 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, Z. et al. Multilaboratory assessment of Epstein-Barr virus serologic assays: the case for standardization. J. Clin. Microbiol. 57, e01107-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lou, P. J. et al. Performance and operational feasibility of Epstein-Barr virus-based screening for detection of nasopharyngeal carcinoma: direct comparison of two alternative approaches. J. Clin. Oncol. 41, 4257–4266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lam, W. K. J. et al. Sequencing analysis of plasma Epstein-Barr virus DNA reveals nasopharyngeal carcinoma-associated single nucleotide variant profiles. Clin. Chem. 66, 598–605 (2020).

    Article  PubMed  Google Scholar 

  113. Cui, Q. et al. An extended genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma. Hum. Mol. Genet. 25, 3626–3634 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Zhou, X. et al. A comprehensive risk score for effective risk stratification and screening of nasopharyngeal carcinoma. Nat. Commun. 12, 5189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, G. H. et al. Prospective assessment of a nasopharyngeal carcinoma risk score in a population undergoing screening. Int. J. Cancer 148, 2398–2406 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, G. H. et al. Utility of Epstein-Barr virus DNA in nasopharynx swabs as a reflex test to triage seropositive individuals in nasopharyngeal carcinoma screening programs. Clin. Chem. 68, 953–962 (2022).

    Article  PubMed  Google Scholar 

  117. Simon, J. et al. Validation of an Epstein-Barr virus antibody risk stratification signature for nasopharyngeal carcinoma by use of multiplex serology. J. Clin. Microbiol. 58, e00077-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yang, L. et al. Prospective evaluation of the relevance of Epstein-Barr virus antibodies for early detection of nasopharyngeal carcinoma in Chinese adults. Int. J. Epidemiol. 53, dyae098 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  119. King, A. D. et al. Magnetic resonance imaging for the detection of nasopharyngeal carcinoma. AJNR Am. J. Neuroradiol. 27, 1288–1291 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. King, A. D. et al. Primary nasopharyngeal carcinoma: diagnostic accuracy of MR imaging versus that of endoscopy and endoscopic biopsy. Radiology 258, 531–537 (2011).

    Article  PubMed  Google Scholar 

  121. King, A. D. et al. Detection of nasopharyngeal carcinoma by MR imaging: diagnostic accuracy of MRI compared with endoscopy and endoscopic biopsy based on long-term follow-up. AJNR Am. J. Neuroradiol. 36, 2380–2385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. King, A. D. et al. Complementary roles of MRI and endoscopic examination in the early detection of nasopharyngeal carcinoma. Ann. Oncol. 30, 977–982 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, Z. et al. Comparison of new magnetic resonance imaging grading system with conventional endoscopy for the early detection of nasopharyngeal carcinoma. Cancer 127, 3403–3412 (2021).

    Article  PubMed  Google Scholar 

  124. King, A. D. et al. Early detection of nasopharyngeal carcinoma: performance of a short contrast-free screening magnetic resonance imaging. J. Natl Cancer Inst. 116, 665–672 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Ke, L. et al. Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral. Oncol. 110, 104862 (2020).

    Article  PubMed  Google Scholar 

  126. Wong, L. M. et al. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI. Eur. Radiol. 31, 3856–3863 (2021).

    Article  PubMed  Google Scholar 

  127. Miller, J. A., Le, Q. T., Pinsky, B. A. & Wang, H. Cost-effectiveness of nasopharyngeal carcinoma screening with Epstein-Barr virus polymerase chain reaction or serology in high-incidence populations worldwide. J. Natl Cancer Inst. 113, 852–862 (2021).

    Article  PubMed  Google Scholar 

  128. Miller, J. A. et al. Optimization and local cost-effectiveness of nasopharyngeal carcinoma screening strategies in southern China: secondary analysis of the guangdong randomized trial. Cancer Epidemiol. Biomark. Prev. 33, 884–895 (2024).

    Article  Google Scholar 

  129. Clark, P. E., Taparra, K. & Miller, J. A. Identification of high-incidence populations in the United States for anti-Epstein-Barr virus serologic screening for nasopharyngeal carcinoma. Cancer Epidemiol. Biomark. Prev. 33, 1706–1716 (2024).

    Article  Google Scholar 

  130. Zhong, L., Zhao, Q., Zeng, M. S. & Zhang, X. Prophylactic vaccines against Epstein-Barr virus. Lancet 404, 845 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Sun, C., Chen, X. C., Kang, Y. F. & Zeng, M. S. The status and prospects of Epstein-Barr virus prophylactic vaccine development. Front. Immunol. 12, 677027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jackman, W. T., Mann, K. A., Hoffmann, H. J. & Spaete, R. R. Expression of Epstein-Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine. Vaccine 17, 660–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Morgan, A. J., Finerty, S., Lovgren, K., Scullion, F. T. & Morein, B. Prevention of Epstein-Barr (EB) virus-induced lymphoma in cottontop tamarins by vaccination with the EB virus envelope glycoprotein gp340 incorporated into immune-stimulating complexes. J. Gen. Virol. 69(Pt 8), 2093–2096 (1988).

    Article  CAS  PubMed  Google Scholar 

  134. Finerty, S. et al. Immunization of cottontop tamarins and rabbits with a candidate vaccine against the Epstein-Barr virus based on the major viral envelope glycoprotein gp340 and alum. Vaccine 12, 1180–1184 (1994).

    Article  CAS  PubMed  Google Scholar 

  135. Finerty, S. et al. Protective immunization against Epstein-Barr virus-induced disease in cottontop tamarins using the virus envelope glycoprotein gp340 produced from a bovine papillomavirus expression vector. J. Gen. Virol. 73(Pt 2), 449–453 (1992).

    Article  CAS  PubMed  Google Scholar 

  136. Servat, E. et al. Identification of the critical attribute(s) of EBV gp350 antigen required for elicitation of a neutralizing antibody response in vivo. Vaccine 33, 6771–6777 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Sokal, E. M. et al. Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults. J. Infect. Dis. 196, 1749–1753 (2007).

    Article  PubMed  Google Scholar 

  138. Rees, L. et al. A phase I trial of Epstein-Barr virus gp350 vaccine for children with chronic kidney disease awaiting transplantation. Transplantation 88, 1025–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Moutschen, M. et al. Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults. Vaccine 25, 4697–4705 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Gu, S. Y. et al. First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev. Biol. Stand. 84, 171–177 (1995).

    CAS  PubMed  Google Scholar 

  141. Cui, X. et al. A novel tetrameric gp350 1-470 as a potential Epstein-Barr virus vaccine. Vaccine 31, 3039–3045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bu, W. et al. Immunization with components of the viral fusion apparatus elicits antibodies that neutralize Epstein-Barr virus in B cells and epithelial cells. Immunity 50, 1305–1316.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu, C. et al. GB and gH/gL fusion machinery: a promising target for vaccines to prevent Epstein-Barr virus infection. Arch. Virol. 169, 167 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Cui, X. et al. Rabbits immunized with Epstein-Barr virus gH/gL or gB recombinant proteins elicit higher serum virus neutralizing activity than gp350. Vaccine 34, 4050–4055 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Nguyen, B. & Tolia, N. H. Protein-based antigen presentation platforms for nanoparticle vaccines. NPJ Vaccines 6, 70 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kanekiyo, M. et al. Rational design of an Epstein-Barr virus vaccine targeting the receptor-binding site. Cell 162, 1090–1100 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Malhi, H. et al. Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge. Cell Rep. Med. 3, 100658 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wei, C. J. et al. A bivalent Epstein-Barr virus vaccine induces neutralizing antibodies that block infection and confer immunity in humanized mice. Sci. Transl. Med. 14, eabf3685 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sun, C. et al. A gB nanoparticle vaccine elicits a protective neutralizing antibody response against EBV. Cell Host Microbe 31, 1882–1897.e10 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Edwards, K. R. et al. A gH/gL-encoding replicon vaccine elicits neutralizing antibodies that protect humanized mice against EBV challenge. NPJ Vaccines 9, 120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kang, M. S. & Kieff, E. Epstein-Barr virus latent genes. Exp. Mol. Med. 47, e131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hui, E. P. et al. Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res. 73, 1676–1688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhao, G. X. et al. mRNA-based vaccines targeting the T-cell epitope-rich domain of Epstein Barr virus latent proteins elicit robust anti-tumor immunity in mice. Adv. Sci. 10, e2302116 (2023).

    Article  Google Scholar 

  154. Oxman, M. N. et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N. Engl. J. Med. 352, 2271–2284 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Rubinstein, W. S. et al. Cancer screening with multicancer detection tests: a translational science review. CA Cancer J. Clin. 74, 368–382 (2024).

    PubMed  PubMed Central  Google Scholar 

  156. Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Lennon, A. M. et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 369, eabb9601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lo, Y. M. D., Han, D. S. C., Jiang, P. & Chiu, R. W. K. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 372, eaaw3616 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Thierry, A. R. Circulating DNA fragmentomics and cancer screening. Cell Genom. 3, 100242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jiang, P. et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chan, K. C. et al. Second generation noninvasive fetal genome analysis reveals de novo mutations, single-base parental inheritance, and preferred DNA ends. Proc. Natl Acad. Sci. USA 113, E8159–E8168 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jiang, P. et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 115, E10925–E10933 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jiang, P. et al. Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation. Cancer Discov. 10, 664–673 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Nicholson, B. D. et al. Multi-cancer early detection test in symptomatic patients referred for cancer investigation in England and Wales (SYMPLIFY): a large-scale, observational cohort study. Lancet Oncol. 24, 733–743 (2023).

    Article  PubMed  Google Scholar 

  166. Schrag, D. et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. Lancet 402, 1251–1260 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Castle, P. E. & Han, P. K. J. On the nose: reducing nasopharyngeal cancer-related mortality using risk-based Epstein-Barr virus serology screening. J. Clin. Oncol. 43, 1–3 (2025).

    Article  PubMed  Google Scholar 

  168. Ng, C. C. et al. A genome-wide association study identifies ITGA9 conferring risk of nasopharyngeal carcinoma. J. Hum. Genet. 54, 392–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, T. M. et al. High-throughput identification of regulatory elements and functional assays to uncover susceptibility genes for nasopharyngeal carcinoma. Am. J. Hum. Genet. 110, 1162–1176 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

W.K.J.L., Y.M., and K.C.A.C. receive research support from the Innovation and Technology Fund under the InnoHK Initiative, a major initiative of the Hong Kong Special Administrative Region Government, and the Research Grants Council of the Hong Kong SAR Government under the NSFC/RGC Joint Research Scheme (N_CUHK495/22).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of preparation of the manuscript.

Corresponding author

Correspondence to Anthony T. C. Chan.

Ethics declarations

Competing interests

W.K.J.L. holds equity in Illumina. K.C.A.C. holds equity in DRA, Illumina, Insighta and Take2. B.B.Y.M., A.D.K., Y.M. and A.T.C.C. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks S. Franceschi and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, W.K.J., Ma, B.B.Y., King, A.D. et al. Achieving control of nasopharyngeal carcinoma: the role of Epstein–Barr virus-based screening and vaccines. Nat Rev Clin Oncol (2025). https://doi.org/10.1038/s41571-025-01079-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-025-01079-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer