Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drugging the efferocytosis process: concepts and opportunities

Abstract

The daily removal of billions of apoptotic cells in the human body via the process of efferocytosis is essential for homeostasis. To allow for this continuous efferocytosis, rapid phenotypic changes occur in the phagocytes enabling them to engulf and digest the apoptotic cargo. In addition, efferocytosis is actively anti-inflammatory and promotes resolution. Owing to its ubiquitous nature and the sheer volume of cell turnover, efferocytosis is a point of vulnerability. Aberrations in efferocytosis are associated with numerous inflammatory pathologies, including atherosclerosis, cancer and infections. The recent exciting discoveries defining the molecular machinery involved in efferocytosis have opened many avenues for therapeutic intervention, with several agents now in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steps in efferocytosis and therapeutic opportunities.
Fig. 2: Opportunities to target efferocytosis steps in specific pathologies.
Fig. 3: The metabolic dynamics of efferocytosis.

Similar content being viewed by others

References

  1. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Green, D., Oguin, T. & Martinez, J. The clearance of dying cells: table for two. Cell Death Differ. 23, 915–926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morioka, S., Maueröder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019). This work details the tissue-specific aspects of efferocytosis and the pathological implications of aberrant efferocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doran, A. C., Yurdagul, A. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Henson, P. M. Cell removal: efferocytosis. Annu. Rev. Cell Devel. Biol. 33, 127–144 (2017).

    Article  CAS  Google Scholar 

  6. Lauber, K., Blumenthal, S. G., Waibel, M. & Wesselborg, S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell 14, 277–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chekeni, F. B. et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Gude, D. R. et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 22, 2629–2638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Truman, L. A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112, 5026–5036 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Medina, C. B. & Ravichandran, K. S. Do not let death do us part: ‘find-me’ signals in communication between dying cells and the phagocytes. Cell Death Differ. 23, 979–989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Medina, C. B. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 580, 130–135 (2020). This study details the release of signalling metabolites from apoptotic cells and highlights the induction of anti-inflammatory and pro-resolution associated gene expression in the tissue neighbourhood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elliott, M. R. & Ravichandran, K. S. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marques-da-Silva, C., Burnstock, G., Ojcius, D. M. & Coutinho-Silva, R. Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology 216, 1–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Yamaguchi, H., Maruyama, T., Urade, Y. & Nagata, S. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. eLife 3, e02172 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Elliott, M. R., Koster, K. M. & Murphy, P. S. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J. Immunol. 198, 1387–1394 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Köröskényi, K. et al. Involvement of adenosine A2A receptors in engulfment-dependent apoptotic cell suppression of inflammation. J. Immunol. 186, 7144–7155 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. Medina, C. B. et al. Pannexin 1 channels facilitate communication between T cells to restrict the severity of airway inflammation. Immunity 54, 1715–1727.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Benden, C. et al. Extracorporeal photopheresis after lung transplantation: a 10-year single-center experience. Transplantation 86, 1625–1627 (2008).

    Article  PubMed  Google Scholar 

  23. Urbani, L. et al. in Transplantation Proceedings 1175–1178 (Elsevier, 2004).

  24. He, Y. et al. Antiinflammatory effect of Rho kinase blockade via inhibition of NF-κB activation in rheumatoid arthritis. Arthritis Rheum. 58, 3366–3376 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Dangi, A. & Luo, X. Harnessing apoptotic cells for transplantation tolerance: current status and future perspectives. Curr. Transplant. Rep. 4, 270–279 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chiu, Y.-H. et al. Deacetylation as a receptor-regulated direct activation switch for pannexin channels. Nat. Commun. 12, 1–14 (2021).

    Article  CAS  Google Scholar 

  27. Kelley, S. M. & Ravichandran, K. S. Putting the brakes on phagocytosis: “don’t-eat-me” signaling in physiology and disease. EMBO Rep. 22, e52564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992). This classic study identifies PS as a signal exposed on apoptotic cells and its recognition by macrophages as an ‘eat-me’ signal.

    CAS  PubMed  Google Scholar 

  29. Arashiki, N. et al. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia. Haematologica 101, 559–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Segawa, K. & Nagata, S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015). This review details the key control mechanisms involved in asymmetric PS distribution in living cells versus its disruption in apoptotic cells.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki, J., Imanishi, E. & Nagata, S. Exposure of phosphatidylserine by Xk-related protein family members during apoptosis. J. Biol. Chem. 289, 30257–30267 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki, J. et al. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J. Biol. Chem. 288, 13305–13316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Fujii, T., Sakata, A., Nishimura, S., Eto, K. & Nagata, S. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc. Natl Acad. Sci. USA 112, 12800–12805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Park, D., Hochreiter-Hufford, A. & Ravichandran, K. S. The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr. Biol. 19, 346–351 (2009).

    Article  PubMed  CAS  Google Scholar 

  37. Lee, C. S. et al. Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity 44, 807–820 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moon, B. et al. Mertk interacts with Tim-4 to enhance Tim-4-mediated efferocytosis. Cells 9, 1625 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  40. Nishi, C., Yanagihashi, Y., Segawa, K. & Nagata, S. MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation. J. Biol. Chem. 294, 7221–7230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heckmann, B. L. & Green, D. R. LC3-associated phagocytosis at a glance. J. Cell Sci. 132, jcs222984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lemke, G. & Rothlin, C. V. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 8, 327–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tibrewal, N. et al. Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-κB transcriptional activation. J. Biol. Chem. 283, 3618–3627 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Sen, P. et al. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-κB activation in dendritic cells. Blood 109, 653–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007). This seminal paper identifies Tyro3, Axl and MerTK family members as relevant in anti-inflammatory signalling.

    Article  CAS  PubMed  Google Scholar 

  46. Wallet, M. A. et al. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205, 219–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Filardy, A. A. et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12lowIL-10high regulatory phenotype in macrophages. J. Immunol. 185, 2044–2050 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Zizzo, G., Hilliard, B. A., Monestier, M. & Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol. 189, 3508–3520 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Park, S.-Y. et al. Stabilin-2 modulates the efficiency of myoblast fusion during myogenic differentiation and muscle regeneration. Nat. Commun. 7, 1–15 (2016).

    Article  Google Scholar 

  50. Cummings, C. T., DeRyckere, D., Earp, H. S. & Graham, D. K. Molecular pathways: MERTK signaling in cancer. Clin. Cancer Res. 19, 5275–5280 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Park, M. & Kang, K. W. Phosphatidylserine receptor-targeting therapies for the treatment of cancer. Arch. Pharmacal Res. 42, 617–628 (2019).

    Article  CAS  Google Scholar 

  52. Penberthy, K. K. et al. Context-dependent compensation among phosphatidylserine-recognition receptors. Sci. Rep. 7, 14623 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Segawa, K., Suzuki, J. & Nagata, S. Constitutive exposure of phosphatidylserine on viable cells. Proc. Natl Acad. Sci. USA 108, 19246–19251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsai, R. K. & Discher, D. E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 180, 989–1003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barkal, A. A. et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 572, 392–396 (2019). Together with Brown et al. (2002), this pioneering study highlights the importance of ‘do not eat-me’ signals CD31 and CD24 in immunotherapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brown, S. et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Fond, A. M., Lee, C. S., Schulman, I. G., Kiss, R. S. & Ravichandran, K. S. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J. Clin. Invest. 125, 2748–2758 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xian, X. et al. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. eLife, 6, e29292 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cui, D. et al. Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J. Leukoc. Biol. 82, 1040–1050 (2007). This important study highlights the metabolic adaptability of macrophages, enabling them to handle the cholesterol burden derived from apoptotic cargo.

    Article  CAS  PubMed  Google Scholar 

  61. Glass, C. K & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Imuunol. 10, 365–376 (2010).

    Article  CAS  Google Scholar 

  62. Gonzalez, N. A-. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  CAS  Google Scholar 

  63. Ivanov, S. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Atherosclerosis 287, e77 (2019).

    Article  Google Scholar 

  64. Yurdagul, A. Jr et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533.e10 (2020). This work presents an important finding highlighting the utilization of apoptotic cargo-derived metabolites by macrophages during efferocytosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gerlach, B. D. et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab. 33, 2445–2463.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Morioka, S. et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563, 714–718 (2018). This work identifies a role for the SLC family of proteins during efferocytosis, and how SLC gene induction can link to improved phagocytosis and anti-inflammatory responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Met. 29, 443–456 (2019).

    Article  CAS  Google Scholar 

  68. Wang, Y. et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171, 331–345.e22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fernandez-Boyanapalli, R. F. et al. Impaired efferocytosis in human chronic granulomatous disease is reversed by pioglitazone treatment. J. Allergy Clin. Immunol. 136, 1399 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tanegashima, K. et al. Epigenetic regulation of the glucose transporter gene Slc2a1 by β-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes. Cell 22, 71–83 (2017).

    Article  CAS  Google Scholar 

  71. Lin, L., Yee, S. W., Kim, R. B. & Giacomini, K. M. SLC transporters as therapeutic targets: emerging opportunities. Nat. Rev. Drug Discov. 14, 543–560 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Y. & Oram, J. F. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a phospholipase D2 pathway. J. Biol. Chem. 280, 35896–35903 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, Y. & Oram, J. F. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a protein kinase Cδ pathway. J. Lipid Res. 48, 1062–1068 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Tang, C. & Oram, J. F. The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochim. Biophys. Acta 1791, 563–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Cai, B. et al. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proc. Natl Acad. Sci. USA 113, 6526–6531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garbin, U. et al. Expansion of necrotic core and shedding of Mertk receptor in human carotid plaques: a role for oxidized polyunsaturated fatty acids? Cardiovasc. Res. 97, 125–133 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Cai, B. et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis. J. Clin. Invest. 127, 564–568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Doran, A. C. et al. CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J. Clin. Invest. 127, 4075–4089 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cai, B. et al. MerTK signaling in macrophages promotes the synthesis of inflammation resolution mediators by suppressing CaMKII activity. Sci. Signal. 11, eaar3721 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Godson, C. et al. Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J. Immunol. 164, 1663–1667 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Dalli, J. & Serhan, C. N. Pro-resolving mediators in regulating and conferring macrophage function. Front. Immunol. 8, 1400 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Fredman, G. et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat. Commun. 7, 12859 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Manega, C. M. et al. 12(S)-Hydroxyeicosatetraenoic acid downregulates monocyte-derived macrophage efferocytosis: new insights in atherosclerosis. Pharmacol. Res. 144, 336–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Komura, H., Miksa, M., Wu, R., Goyert, S. M. & Wang, P. Milk fat globule epidermal growth factor–factor VIII is down-regulated in sepsis via the lipopolysaccharide–CD14 pathway. J. Immunol. 182, 581–587 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Tosello-Trampont, A.-C., Nakada-Tsukui, K. & Ravichandran, K. S. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J. Biol. Chem. 278, 49911–49919 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Wu, D.-J. et al. Effects of fasudil on early atherosclerotic plaque formation and established lesion progression in apolipoprotein E-knockout mice. Atherosclerosis 207, 68–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Toyama, T. et al. Fasudil ameliorates fibrosis, vasculopathy, and immune abnormalities in animal models of systemic sclerosis. J. Dermatol. Sci. 84, e11 (2016).

    Article  Google Scholar 

  88. Li, Y., Wu, Y., Wang, Z., Zhang, X.-H. & Wu, W.-K. Fasudil attenuates lipopolysaccharide-induced acute lung injury in mice through the Rho/Rho kinase pathway. Med. Sci. Monit. 16, BR112–BR118 (2010).

    CAS  PubMed  Google Scholar 

  89. Segain, J.-P. et al. Rho kinase blockade prevents inflammation via nuclear factor κB inhibition: evidence in Crohn’s disease and experimental colitis. Gastroenterology 124, 1180–1187 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Galvão, I. et al. ROCK inhibition drives resolution of acute inflammation by enhancing neutrophil apoptosis. Cells 8, 964 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  91. Kojima, Y. et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536, 86–90 (2016). This study highlights how administration of CD47 blocking antibodies could effectively enhance efferocytosis, and aid in suppression of atherosclerosis in mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Singla, B. et al. Loss of myeloid cell-specific SIRPα, but not CD47, attenuates inflammation and suppresses atherosclerosis. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab369 (2021).

    Article  PubMed  Google Scholar 

  93. Flores, A. M. et al. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat. Nanotechnol. 15, 154–161 (2020). This work presents a landmark technological development in nanoparticle-based targeting of efferocytosis for improving prognosis in atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gerlach, B. D. et al. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ. 27, 525–539 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99, 7604–7609 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vucic, E. et al. Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. JACC 5, 819–828 (2012).

    PubMed  Google Scholar 

  97. Arabpour, M., Saghazadeh, A. & Rezaei, N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int. Immunopharmacol. 97, 107823 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Jiang, W. & Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif. 53, e12712 (2020).

    Article  PubMed  Google Scholar 

  99. Zhang, Z. et al. Mesenchymal stem cells promote the resolution of cardiac inflammation after ischemia reperfusion via enhancing efferocytosis of neutrophils. J. Am. Heart Assoc. 9, e014397 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pinti, M. et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”. Eur. J. Immunol. 44, 1552–1562 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Aprahamian, T., Takemura, Y., Goukassian, D. & Walsh, K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin. Exp. Immunol. 152, 448–455 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Arnardottir, H. H., Dalli, J., Colas, R. A., Shinohara, M. & Serhan, C. N. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving medicines. J. Immunol. 193, 4235–4244 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Tourki, B. et al. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol. Metab. 31, 138–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. De Maeyer, R. P. et al. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat. Immunol. 21, 615–625 (2020). This important study details the direct implications of poor efferocytosis in inflammation resolution in aged humans, and identifies p38MAPK and TIM4 as targets for improving efferocytosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. di Fagagna, Fd. A. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

    Article  CAS  Google Scholar 

  107. Shay, J. W. & Wright, W. E. Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1, 72–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Hall, B. M. et al. Aging of mice is associated with p16(Ink4a)-and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8, 1294 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rodier, F. & Campisi, J. Four faces of cellular senescence. J. Cell Biol. 192, 547–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rymut, N. et al. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J. 34, 597–609 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Baker, D. J. et al. Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martin, J. A., Brown, T., Heiner, A. & Buckwalter, J. A. Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence. Biorheology 41, 479–491 (2004).

    CAS  PubMed  Google Scholar 

  116. Dalli, J., Colas, R., Shinohara, M. & Serhan, C. N. Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving. Medicines 193, 4235–4244 (2014).

    Google Scholar 

  117. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Sica, A., Schioppa, T., Mantovani, A. & Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, Q. et al. TIM-4 promotes the growth of non-small-cell lung cancer in a RGD motif-dependent manner. Br. J. Cancer 113, 1484–1492 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tan, X., Zhang, Z., Yao, H. & Shen, L. Tim-4 promotes the growth of colorectal cancer by activating angiogenesis and recruiting tumor-associated macrophages via the PI3K/AKT/mTOR signaling pathway. Cancer Lett. 436, 119–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Tesi, R. MDSC; the most important cell you have never heard of. Trends Pharmacol. Sci. 40, 4–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Holtzhausen, A. et al. TAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanoma. Cancer Immunol. Res. 7, 1672 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cook, R. S. et al. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J. Clin. Invest. 123, 3231–3242 (2013). This study highlights the role of MerTK signalling in poor cancer prognosis and the advantages of using inhibitors of PS receptors as therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Graham, D. K., DeRyckere, D., Davies, K. D. & Earp, H. S. The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer 14, 769–785 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Kumar, S., Calianese, D. & Birge, R. B. Efferocytosis of dying cells differentially modulate immunological outcomes in tumor microenvironment. Immunol. Rev. 280, 149–164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vaught, D. B., Stanford, J. C. & Cook, R. S. Efferocytosis creates a tumor microenvironment supportive of tumor survival and metastasis. Cancer Cell Microenviron. 2, e666 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Holland, S. J. et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 70, 1544–1554 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Wilson, C. et al. AXL inhibition sensitizes mesenchymal cancer cells to antimitotic drugs. Cancer Res. 74, 5878–5890 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Post, S. M. et al. AXL/MERTK inhibitor ONO-7475 potently synergizes with venetoclax and overcomes venetoclax resistance to kill FLT3-ITD acute myeloid leukemia. Haematologica https://doi.org/10.3324/haematol.2021.278369 (2020).

    Article  Google Scholar 

  133. Minson, K. A. et al. The MERTK/FLT3 inhibitor MRX-2843 overcomes resistance-conferring FLT3 mutations in acute myeloid leukemia. JCI Insight 1, e85630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Subbiah, V. et al. Trials in progress: A phase 1, open-label, dose-escalation, pharmacokinetic, safety and tolerability study of the selective TAM kinase inhibitor PF-07265807 in patients with advanced or metastatic solid tumors [abstract TPS2671]. J. Clin. Oncol. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS2671 (2021).

  135. Zeidan, A. M. et al. The STIMULUS Program: clinical trials evaluating sabatolimab (MBG453) combination therapy in patients (Pts) with higher-risk myelodysplastic syndromes (HR-MDS) or acute mMyeloid leukemia (AML). Blood 136, 45–46 (2020).

    Article  Google Scholar 

  136. Brunner, A. M. et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study. Blood 138, 244 (2021).

    Article  Google Scholar 

  137. Brunner, A. M. et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (HR-MDS): updated results from a phase 1b study. Blood 136, 1–2 (2020).

    Article  Google Scholar 

  138. Harding, J. J. et al. Blocking TIM-3 in treatment-refractory advanced solid tumors: a phase Ia/b study of LY3321367 with or without an anti-PD-L1 antibody. Clin. Cancer Res. 27, 2168–2178 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tseng, D. et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013). Together with Jaiswal et al. (2009), this paper presents early findings highlighting the role of CD47 in driving a poor cancer prognosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Veillette, A. & Chen, J. SIRPα–CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 39, 173–184 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017). This study's findings bring forward the role played by PD1 expression and signalling in reducing phagocytosis and removal of tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Burris III, H. A. et al. A first-in-human study of AO-176, a highly differentiated anti-CD47 antibody, in patients with advanced solid tumors [abstract 2516]. J. Clin. Oncol. 39, no. 15_suppl 2516–2516 (2021).

  147. Roohullah, A. et al. First-in-human phase 1 dose escalation study of HX009, a novel recombinant humanized anti-PD-1 and CD47 bispecific antibody, in patients with advanced malignancies [abstract 2517]. J. Clin. Oncol. 39, no. 15_suppl 2517–2517 (2021).

  148. Gan, H. K. et al. Safety of AK117, an anti-CD47 monoclonal antibody, in patients with advanced or metastatic solid tumors in a phase I study [abstract 2630]. J. Clin. Oncol. 39, no. 15_suppl 2630–2630 (2021).

  149. Lakhani, N. et al. A phase 1 study of ALX148, a CD47 blocker, alone and in combination with established anti-cancer antibodies in patients with advanced malignancy and non Hodgkin lymphoma. Breast 1, 1 (2018).

    Google Scholar 

  150. Haddad, F. & Daver, N. Targeting CD47/SIRPα in acute myeloid leukemia and myelodysplastic syndrome: preclinical and clinical developments of magrolimab. J. Immunother. Precis. Oncol. 4, 67–71 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Barkal, A. A. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 19, 76–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Zhou, J. et al. Immunogenic cell death in cancer therapy: present and emerging inducers. J. Cell. Mol. Med. 23, 4854–4865 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Perry, J. S. A. et al. Interpreting an apoptotic corpse as anti-inflammatory involves a chloride sensing pathway. Nat. Cell Biol. 21, 1532–1543 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Behar, S. M. & Briken, V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Curr. Opin. Immunol. 60, 103–110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tzelepis, F. et al. Annexin1 regulates DC efferocytosis and cross-presentation during Mycobacterium tuberculosis infection. J. Clin. Invest. 125, 752–768 (2015).

    Article  PubMed  Google Scholar 

  158. Codo, A. C. et al. Inhibition of inflammasome activation by a clinical strain of Klebsiella pneumoniae impairs efferocytosis and leads to bacterial dissemination. Cell Death Dis. 9, 1–14 (2018).

    Article  CAS  Google Scholar 

  159. Hashimoto, Y., Moki, T., Takizawa, T., Shiratsuchi, A. & Nakanishi, Y. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J. Immunol. 178, 2448–2457 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Lim, K. et al. In situ neutrophil efferocytosis shapes T cell immunity to influenza infection. Nat. Immunol. 21, 1046–1057 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Doitsh, G. et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505, 509–514 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Terai, C., Kornbluth, R., Pauza, C. D., Richman, D. D. & Carson, D. A. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J. Clin. Invest. 87, 1710–1715 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Chua, B. A. et al. Protein S and Gas6 induce efferocytosis of HIV-1-infected cells. Virology 515, 176–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Larsson, M. et al. Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. Aids 16, 1319–1329 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Czuczman, M. A. et al. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature 509, 230–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dallenga, T. et al. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by macrophages. Cell Host Microbe 22, 519–530.e3 (2017). This study highlights the nature of the infecting strain and cell death modality of the host cell in M. tuberculosis infections, with implications for efferocytic clearance of bacteria.

    Article  CAS  PubMed  Google Scholar 

  168. Ribeiro-Gomes, F. et al. Apoptotic cell clearance of Leishmania major-infected neutrophils by dendritic cells inhibits CD8+ T-cell priming in vitro by Mer tyrosine kinase-dependent signaling. Cell Death Dis. 6, e2018–e2018 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. van Zandbergen, G. et al. Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J. Immunol. 173, 6521–6525 (2004).

    Article  PubMed  Google Scholar 

  170. Freire-de-Lima, C. G. et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 403, 199–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  171. Sims, B. et al. Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells. Int. J. Nanomed. 12, 4823 (2017).

    Article  CAS  Google Scholar 

  172. Brunton, B. et al. TIM-1 serves as a receptor for Ebola virus in vivo, enhancing viremia and pathogenesis. PLoS Negl. Trop. Dis. 13, e0006983 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kondratowicz, A. S. et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl Acad. Sci. USA 108, 8426–8431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Meertens, L. et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Evans, J. P. & Liu, S.-L. Multifaceted roles of TIM-family proteins in virus–host interactions. Trends Microbiol. 28, 224–235 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Morizono, K. et al. The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry. Cell Host Microbe 9, 286–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Song, D.-H. et al. Development of a blocker of the universal phosphatidylserine- and phosphatidylethanolamine-dependent viral entry pathways. Virology 560, 17–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  178. Li, M. et al. TIM-family proteins inhibit HIV-1 release. Proc. Natl Acad. Sci. USA 111, E3699–E3707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Das, S. et al. ELMO1 has an essential role in the internalization of Salmonella Typhimurium into enteric macrophages that impacts disease outcome. Cell. Mol. Gastroenterol. Hepatol. 1, 311–324 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sarkar, A. et al. ELMO1 regulates autophagy induction and bacterial clearance during enteric infection. J. Infect. Dis. 216, 1655–1666 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Billings, E. A. et al. The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Sci. Signal. 9, ra14 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Tamgue, O. et al. Differential targeting of c-Maf, Bach-1, and Elmo-1 by microRNA-143 and microRNA-365 promotes the intracellular growth of Mycobacterium tuberculosis in alternatively IL-4/IL-13 activated macrophages. Front. Immunol. 10, 421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46, 191–201 (2002).

    Article  PubMed  Google Scholar 

  184. Thorp, E. et al. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem. 286, 33335–33344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Orme, J. J. et al. Heightened cleavage of Axl receptor tyrosine kinase by ADAM metalloproteases may contribute to disease pathogenesis in SLE. Clin. Immunol. 169, 58–68 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ballantine, L. et al. Increased soluble phagocytic receptors sMer, sTyro3 and sAxl and reduced phagocytosis in juvenile-onset systemic lupus erythematosus. Pediatr. Rheumatol. 13, 1–11 (2015).

    Article  Google Scholar 

  187. Roumenina, L. T. et al. Functional complement C1q abnormality leads to impaired immune complexes and apoptotic cell clearance. J. Immunol. 187, 4369–4373 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Sullivan, K., Petri, M., Schmeckpeper, B., McLean, R. & Winkelstein, J. Prevalence of a mutation causing C2 deficiency in systemic lupus erythematosus. J. Rheumatol. 21, 1128–1133 (1994).

    CAS  PubMed  Google Scholar 

  189. Jorge, A. M. et al. SCARF1-induced efferocytosis plays an immunomodulatory role in humans, and autoantibodies targeting SCARF1 are produced in patients with systemic lupus erythematosus. J. Immunol. 208, 955–967 (2021).

    Article  CAS  Google Scholar 

  190. Hartl, J. et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus. J. Exp. Med. 218, e20201138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kawano, M. & Nagata, S. Lupus-like autoimmune disease caused by a lack of Xkr8, a caspase-dependent phospholipid scramblase. Proc. Natl Acad. Sci. USA 115, 2132–2137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Noelia, A. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009). This important study highlights the role of nuclear receptors in anti-inflammatory effects of efferocytosis and plausible therapeutic advantages of targeting the pathway.

    Article  CAS  Google Scholar 

  193. Zhao, W. et al. The peroxisome proliferator-activated receptor γ agonist pioglitazone improves cardiometabolic risk and renal inflammation in murine lupus. J. Immunol. 183, 2729–2740 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Lee, Y. Y. et al. Long-acting nanoparticulate DNase-1 for effective suppression of SARS-CoV-2-mediated neutrophil activities and cytokine storm. Biomaterials 267, 120389 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Zhen, Y., Lee, I. J., Finkelman, F. D. & Shao, W.-H. Targeted inhibition of Axl receptor tyrosine kinase ameliorates anti-GBM-induced lupus-like nephritis. J. Autoimmun. 93, 37–44 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Navarini, L. et al. Role of the specialized proresolving mediator resolvin D1 in systemic lupus erythematosus: preliminary results. J. Immunol. Res. https://doi.org/10.1155/2018/5264195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Khanna, S. et al. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE 5, e9539 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Li, S. et al. Defective phagocytosis of apoptotic cells by macrophages in atherosclerotic lesions of ob/ob mice and reversal by a fish oil diet. Circ. Res. 105, 1072–1082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Babu, S. S. et al. microRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci. Rep. 6, 1–12 (2016).

    CAS  Google Scholar 

  200. Luo, B., Wang, Z., Zhang, Z., Shen, Z. & Zhang, Z. The deficiency of macrophage erythropoietin signaling contributes to delayed acute inflammation resolution in diet-induced obese mice. Biochim. Biophys. Acta 1865, 339–349 (2019).

    Article  CAS  Google Scholar 

  201. Luo, B. et al. Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance. Immunity 44, 287–302 (2016). This study highlights the role of S1P–EPO signalling in efferocytosis.

    Article  CAS  PubMed  Google Scholar 

  202. Zhou, F. et al. Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan. Biomater. Sci. 4, 849–856 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Martin, C. J. et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12, 289–300 (2012). This work introduces the concept of the role of efferocytosis as a potential anti-bacterial mechanism; see also ref.163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Harrison, S. A. et al. Safety, tolerability, and biologic activity of AXA1125 and AXA1957 in subjects with nonalcoholic fatty liver disease. ACG 10, 14309 (2021).

    Google Scholar 

  205. Phapale, P. Pharmaco-metabolomics opportunities in drug development and clinical research. Anal. Sci. Adv. 2, 611–616 (2021).

    Article  Google Scholar 

  206. Bohan, D. et al. Targeting the receptor AXL by bemcentinib prevents SARS-CoV-2 infection. Top. Antivir. Med. 29, 137–138 (2021).

    Google Scholar 

  207. Bohan, D. et al. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog. 17, e1009743 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Vouri, M., An, Q., Birt, M., Pilkington, G. J. & Hafizi, S. Small molecule inhibition of Axl receptor tyrosine kinase potently suppresses multiple malignant properties of glioma cells. Oncotarget 6, 16183 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Chen, F., Song, Q. & Yu, Q. Axl inhibitor R428 induces apoptosis of cancer cells by blocking lysosomal acidification and recycling independent of Axl inhibition. Am. J. Cancer Res. 8, 1466 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Woo, S. M. et al. Axl inhibitor R428 enhances TRAIL-mediated apoptosis through downregulation of c-FLIP and survivin expression in renal carcinoma. Int. J. Mol. Sci. 20, 3253 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  211. Felip, E. et al. A phase II study of bemcentinib (BGB324), a first-in-class highly selective AXL inhibitor, with pembrolizumab in pts with advanced NSCLC: OS for stage I and preliminary stage II efficacy [abstract 9098]. J. Clin. Oncol. 37, no. 15_suppl 2630–2630 (2019).

  212. Mita, M. et al. Phase 1B study of amuvatinib in combination with five standard cancer therapies in adults with advanced solid tumors. Cancer Chemother. Pharmacol. 74, 195–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  213. Tibes, R. et al. A phase I, first-in-human dose-escalation study of amuvatinib, a multi-targeted tyrosine kinase inhibitor, in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 71, 463–471 (2013).

    Article  CAS  PubMed  Google Scholar 

  214. Asiedu, M. K. et al. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 33, 1316–1324 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Aveic, S. et al. TP-0903 inhibits neuroblastoma cell growth and enhances the sensitivity to conventional chemotherapy. Eur. J. Pharmacol. 818, 435–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Sarantopoulos, J. et al. A phase 1a / 1b first-in-human, open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of oral TP-0903, a potent inhibitor of AXL kinase, administered daily for 21 days to patients with advanced solid tumors [abstract TPS2612]. J. Clin. Oncol. https://doi.org/10.1200/JCO.2018.36.15_suppl.TPS2612 (2018).

  217. Jeon, J. Y. et al. TP-0903 is active in models of drug-resistant acute myeloid leukemia. JCI Insight 5, e140169 (2020).

    Article  PubMed Central  Google Scholar 

  218. Patel, V., Keating, M. J., Wierda, W. G. & Gandhi, V. Preclinical combination of TP-0903, an AXL inhibitor and B-PAC-1, a procaspase-activating compound with ibrutinib in chronic lymphocytic leukemia. Leuk. Lymphoma 57, 1494–1497 (2016).

    Article  PubMed  Google Scholar 

  219. Huelse, J. M., Fridlyand, D. M., Earp, S., DeRyckere, D. & Graham, D. K. MERTK in cancer therapy: targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol. Ther. 213, 107577 (2020).

    Article  CAS  PubMed  Google Scholar 

  220. Ghazi, N. G. et al. Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum. Genet. 135, 327–343 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Conlon, T. J. et al. Preclinical potency and safety studies of an AAV2-mediated gene therapy vector for the treatment of MERTK associated retinitis pigmentosa. Hum. Gene. Ther. Clin. Dev. 24, 23–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Alexander, J. J. & Hauswirth, W. W. Adeno-associated viral vectors and the retina. Adv. Exp. Med. Biol. 613, 121–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  223. Fisher, G. A. et al. A phase Ib/II study of the anti-CD47 antibody magrolimab with cetuximab in solid tumor and colorectal cancer patients [abstract 114]. J. Clin. Oncol. 38, no. 4_suppl 114–114 (2020).

  224. Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A. & Ng, L. F. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Giamarellos-Bourboulis, E. J. et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 27, 992–1000.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lagunas-Rangel, F. A. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J. Med. Virol. 92, 1733–1734 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Grégoire, M. et al. Impaired efferocytosis and neutrophil extracellular trap clearance by macrophages in ARDS. Eur. Respir. J. 52, 1702590 (2018).

    Article  PubMed  CAS  Google Scholar 

  229. Middleton, E. A. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 136, 1169–1179 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. dos-Santos, D. et al. Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory programming and continual clearance of apoptotic cells. medRxiv https://doi.org/10.1101/2021.02.18.21251504 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Braga, L. et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 Spike-induced syncytia. Nature 594, 88–93 (2021). This important study highlights the role of TMEM16 PS scramblase(s) in SARS-CoV-2 infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Dutta, S., Mukherjee, A. & Nongthomba, U. Before the “cytokine storm”: boosting efferocytosis as an effective strategy against SARS-CoV-2 infection and associated complications. Cytokine Growth Factor Rev. 63, 108–118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Ravichandran laboratory for numerous discussions. This work was supported by Fonds Wetenschappelijk Onderzoek (FWO) Odysseus grant G0F5716N, EOS DECODE 30837538, Special Research Fund UGent (iBOF BOF20/IBF/037), European Research Council (ERC) (grant agreement no. 835243) and grants from the National Heart, Lung, and Blood Institute (NHLBI) (P01HL120840), National Institute of Allergy and Infectious Diseases (NIAID) (R01AI159551) and National Institute of General Medical Sciences (NIGMS) (R35GM122542). P.M. is supported by a FWO Postdoctoral Fellowship (1227220N).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the discussion, writing, preparation, and editing of this manuscript.

Corresponding author

Correspondence to Kodi S. Ravichandran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Apoptosis

A process of cell death triggered by either extrinsic or intrisic cues that ultimately result in activation of executioner caspases and caspase-dependent cleavage of cellular substrates, leading to an ordered cellular demise.

Necroptosis

A regulated form of lytic cell death, requiring the function of receptor interacting protein 1/3 and their substrate, MLKL, oligomerization-induced plasma membrane pore formation and eventual loss of membrane integrity.

Pyroptosis

Inflammatory caspase-driven lytic cell death, usually triggered by pathogenic insults. This involves inflammasome assembly, which via caspase 1 induces Gasdermin D activation. Gasdermin D proteins form pores in the plasma membrane, leading to membrane rupture and lytic cell death accompanied by the release of IL-1β and IL-18.

Ferroptosis

A form of caspase-independent lytic cell death induced by excess free intracellular iron inducing lipid peroxidation, causing plasma membrane pore formation and osmotic cell rupture.

Fc receptor-mediated phagocytosis

The process in which a cell-surface immune cell receptor recognizes and binds to the Fc fragment of antibodies, allowing for phagocytosis of the antibody-coated particles.

Solute carrier (SLC) family

A superfamily of membrane transporters that carry a wide number of substrates across the plasma membrane, and membranes of intracellular organelles.

Chemokines

Secreted proteins that act as chemoattractants and induce immune cell migration.

Pannexin channels

Heptameric plasma membrane channels that are activated in apoptotic cells by caspase 3 cleavage (or other modes in live cells) allowing the release of metabolites, including ATP.

Purinergic receptor P2Y

A G-protein-coupled receptor that is activated by extracellular adenine and uridine nucleotides, and UDP-glucose. The P2Y family consists of eight receptors that can engage in intracellular signalling via adenylate cyclase or phospholipase C.

Liver-X receptors (LXRs) α/β

Transcription factors belonging to the nuclear receptor family. The receptors are activated by the presence of oxysterols and form heterodimers with retinoic acid receptors to initiate transcriptional changes.

PPARγ

A transcription factor belonging to the members of the nuclear receptor family, involved in regulating cellular metabolism and immune cell behaviour, and anti-inflammatory responses.

Foam cells

Macrophages carrying high lipid and cholesterol burden seen in atherosclerotic plaques, due to enhanced lipoprotein uptake.

ADAM family proteases

(A disintegrin and metalloprotease (ADAM) family of proteins). A family of transmembrane proteins with strong proteolytic activity. The substrates for ADAM proteases are very often the extracellular domains of transmembrane proteins.

Specialized pro-resolvin mediators

(SPMs). A class of immunologically active lipid derivates that limit acute inflammatory responses and aid in inflammation resolution. The family includes lipoxins, E-series and D-series resolvins, protectins and maresins.

Senotherapies

Therapies aimed at killing senescent cells and diminishing the effects of the senescence-associated secretory phenotype that is a key driver of sterile inflammation during ageing.

Pore-induced intracellular traps

The cellular debris emanating from a pyroptotic cell that entrap the intracellular bacteria as they are released during pyroptosis of the host cell.

ARDS

(Acute respiratory distress syndrome). A form of severe respiratory trauma and failure characterized by inflammation and oedema in the alveolar spaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrotra, P., Ravichandran, K.S. Drugging the efferocytosis process: concepts and opportunities. Nat Rev Drug Discov 21, 601–620 (2022). https://doi.org/10.1038/s41573-022-00470-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-022-00470-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research