Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thinking outside the box: non-canonical targets in multiple sclerosis

Abstract

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood–brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targets of current disease-modifying therapies in MS.
Fig. 2: Role of oligodendrocytes in MS.
Fig. 3: Blood–brain barrier disruption in MS.
Fig. 4: Overview of metabolic adaptations in MS.
Fig. 5: Alteration of the coagulation system in MS.
Fig. 6: Tolerance induction in MS.

Similar content being viewed by others

References

  1. Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sorensen, P. S. et al. The apparently milder course of multiple sclerosis: changes in the diagnostic criteria, therapy and natural history. Brain 143, 2637–2652 (2020).

    Article  PubMed  Google Scholar 

  5. Cree, B. A. C. et al. Secondary progressive multiple sclerosis: new insights. Neurology 97, 378–388 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lublin, F. D., Coetzee, T., Cohen, J. A., Marrie, R. A. & Thompson, A. J. The 2013 clinical course descriptors for multiple sclerosis. Neurology 94, 1088–1092 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mitchell, T. W. et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 269–285 (2019).

    Article  Google Scholar 

  8. Lassmann, H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 9, 3116 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pardini, M., Brown, J. W. L., Magliozzi, R., Reynolds, R. & Chard, D. T. Surface-in pathology in multiple sclerosis: a new view on pathogenesis? Brain 144, 1646–1654 (2021).

    Article  PubMed  Google Scholar 

  10. Vollmer, T. L., Nair, K. V., Williams, I. M. & Alvarez, E. Multiple sclerosis phenotypes as a continuum: the role of neurologic reserve. Neurol. Clin. Pract. 11, 342–351 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bar-Or, A. & Li, R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol. 20, 470–483 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thompson, A. J., Baranzini, S. E., Geurts, J., Hemmer, B. & Ciccarelli, O. Multiple sclerosis. Lancet 391, 1622–1636 (2018).

    Article  PubMed  Google Scholar 

  14. McGinley, M. P., Goldschmidt, C. H. & Rae-Grant, A. D. Diagnosis and treatment of multiple sclerosis: a review. JAMA 325, 765–779 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Tintore, M., Vidal-Jordana, A. & Sastre-Garriga, J. Treatment of multiple sclerosis — success from bench to bedside. Nat. Rev. Neurol. 15, 53–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, J. W. L. et al. Association of initial disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 321, 175–187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amato, M. P. et al. Disease-modifying drugs can reduce disability progression in relapsing multiple sclerosis. Brain 143, 3013–3024 (2020).

    Article  PubMed  Google Scholar 

  18. Rollot, F. et al. Cumulative effects of therapies on disability in relapsing multiple sclerosis. Mult. Scler. J. 27, 1760–1770 (2021).

    Article  CAS  Google Scholar 

  19. Martin, R., Sospedra, M., Eiermann, T. & Olsson, T. Multiple sclerosis: doubling down on MHC. Trends Genet 37, 784–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100.e23 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wekerle, H. B cells in multiple sclerosis. Autoimmunity 50, 57–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Mundt, S., Greter, M., Flügel, A. & Becher, B. The CNS immune landscape from the viewpoint of a T cell. Trends Neurosci. 42, 667–679 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Dendrou, C. A., Fugger, L. & Friese, M. A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, J. et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 183, 1264–1281.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl Acad. Sci. USA 114, 10719–10724 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 10713–10718 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jangi, S. et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bar-Or, A. et al. Epstein–Barr virus in multiple sclerosis: theory and emerging immunotherapies. Trends Mol. Med. 26, 296–310 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Absinta, M. et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology 85, 18–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  31. Li, R., Patterson, K. R. & Bar-Or, A. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 19, 696–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Michel, L. et al. B cells in the multiple sclerosis central nervous system: trafficking and contribution to CNS-compartmentalized inflammation. Front. Immunol. 6, 636 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Graf, J. et al. Targeting B cells to modify MS, NMOSD, and MOGAD. Neurol. Neuroimmunol. Neuroinflamm. 8, e918 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Machado-Santos, J. et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 141, 2066–2082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pardo, G. & Jones, D. E. The sequence of disease-modifying therapies in relapsing multiple sclerosis: safety and immunologic considerations. J. Neurol. 264, 2351–2374 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jakimovski, D., Kolb, C., Ramanathan, M., Zivadinov, R. & Weinstock-Guttman, B. Interferon β for multiple sclerosis. Cold Spring Harb. Perspect. Med. 8, 165–172 (2018).

    Article  CAS  Google Scholar 

  40. Prod’homme, T. & Zamvil, S. S. The evolving mechanisms of action of glatiramer acetate. Cold Spring Harb. Perspect. Med. 9, a029249 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tsai, J. J. et al. Nrf2 regulates haematopoietic stem cell function. Nat. Cell Biol. 15, 309–316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, D.-H., Stangel, M., Gold, R. & Linker, R. A. The fumaric acid ester BG-12: a new option in MS therapy. Expert Rev. Neurother. 13, 951–958 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Lebrun, C. & Rocher, F. Cancer risk in patients with multiple sclerosis: potential impact of disease-modifying drugs. CNS Drugs 32, 939–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Rae-Grant, A. et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology 90, 777–788 (2018).

    Article  PubMed  Google Scholar 

  46. Vermersch, P. et al. Teriflunomide vs injectable disease modifying therapies for relapsing forms of MS. Mult. Scler. Relat. Disord. 43, 102158 (2020).

    Article  PubMed  Google Scholar 

  47. Ruck, T., Bittner, S., Wiendl, H. & Meuth, S. G. Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int. J. Mol. Sci. 16, 16414–16439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Comi, G. et al. Role of B cells in multiple sclerosis and related disorders. Ann. Neurol. 89, 13–23 (2021).

    Article  PubMed  Google Scholar 

  49. Hawker, K. et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 66, 460–471 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Derfuss, T. et al. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurol. 19, 336–347 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Sellner, J. & Rommer, P. S. Immunological consequences of “immune reconstitution therapy” in multiple sclerosis: a systematic review. Autoimmun. Rev. 19, 102492 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Wekerle, H., Linington, C., Lassmann, H. & Meyermann, R. Cellular immune reactivity within the CNS. Trends Neurosci. 9, 271–277 (1986).

    Article  Google Scholar 

  54. Zamvil, S. S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Stern, J. N. H. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl Med. 6, 248ra107 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin. Nature 356, 63–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Roy, R., Alotaibi, A. A. & Freedman, M. S. Sphingosine 1-phosphate receptor modulators for multiple sclerosis. CNS Drugs 35, 385–402 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Cree, B. A. et al. Siponimod: disentangling disability and relapses in secondary progressive multiple sclerosis. Mult. Scler. J. 27, 1564–1576 (2020).

    Article  Google Scholar 

  61. Aktas, O., Küry, P., Kieseier, B. & Hartung, H.-P. Fingolimod is a potential novel therapy for multiple sclerosis. Nat. Rev. Neurol. 6, 373–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Faissner, S. & Gold, R. Progressive multiple sclerosis: latest therapeutic developments and future directions. Ther. Adv. Neurol. Disord. 12, 1756286419878323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Burman, J. Delaying the inevitable: are disease modifying drugs for progressive MS worthwhile? Mult. Scler. Relat. Disord. 54, 103134 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Ciotti, J. R. & Cross, A. H. Disease-modifying treatment in progressive multiple sclerosis. Curr. Treat. Options Neurol. 20, 12 (2018).

    Article  PubMed  Google Scholar 

  65. Philips, T. & Rothstein, J. D. Oligodendroglia: metabolic supporters of neurons. J. Clin. Invest. 127, 3271–3280 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mishra, M. K. et al. Harnessing the benefits of neuroinflammation: generation of macrophages/microglia with prominent remyelinating properties. J. Neurosci. 41, 3366–3385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cignarella, F. et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 140, 513–534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    Article  PubMed  Google Scholar 

  69. Franklin, R. J. M., Frisén, J. & Lyons, D. A. Revisiting remyelination: towards a consensus on the regeneration of CNS myelin. Semin. Cell Dev. Biol. 116, 3–9 (2020).

    Article  PubMed  Google Scholar 

  70. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Prozorovski, T., Schneider, R., Berndt, C., Hartung, H.-P. & Aktas, O. Redox-regulated fate of neural stem progenitor cells. Biochim. Biophys. Acta 1850, 1543–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Babbe, H. et al. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Göttle, P. et al. Teriflunomide promotes oligodendroglial differentiation and myelination. J. Neuroinflamm. 15, 76 (2018).

    Article  CAS  Google Scholar 

  75. Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kremer, D., Göttle, P., Hartung, H.-P. & Küry, P. Pushing forward: remyelination as the new frontier in CNS diseases. Trends Neurosci. 39, 246–263 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Thomas, L. & Pasquini, L. A. Galectin-3 exerts a pro-differentiating and pro-myelinating effect within a temporal window spanning precursors and pre-oligodendrocytes: insights into the mechanisms of action. Mol. Neurobiol. 57, 976–987 (2019).

    Article  PubMed  CAS  Google Scholar 

  78. Suo, N., Guo, Y., He, B., Gu, H. & Xie, X. Inhibition of MAPK/ERK pathway promotes oligodendrocytes generation and recovery of demyelinating diseases. Glia 67, 1320–1332 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Falcão, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2019).

    Article  CAS  Google Scholar 

  81. Nikić, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    Article  PubMed  CAS  Google Scholar 

  82. Saab, A. S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rone, M. B. et al. Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival. J. Neurosci. 36, 4698–4707 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ziabreva, I. et al. Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 58, 1827–1837 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Voskuhl, R. R. et al. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc. Natl Acad. Sci. USA 116, 10130–10139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dimas, P. et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife 8, e44702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cadavid, D. et al. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 18, 845–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Cadavid, D. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 16, 189–199 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Calabresi, P. et al. Efficacy and safety of opicinumab in participants with relapsing multiple sclerosis: a randomized, placebo-controlled, phase 2 trial (AFFINITY part 1). Presented at the European Committee for Treatment and Research in Multiple Sclerosis Conference (2021).

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03222973 (2022).

  91. Stangel, M., Kuhlmann, T., Matthews, P. M. & Kilpatrick, T. J. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat. Rev. Neurol. 13, 742–754 (2017).

    Article  PubMed  Google Scholar 

  92. Mei, F. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20, 954–960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Deshmukh, V. A. et al. A regenerative approach to the treatment of multiple sclerosis. Nature 502, 327–332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Welliver, R. R. et al. Muscarinic receptor M3R signaling prevents efficient remyelination by human and mouse oligodendrocyte progenitor cells. J. Neurosci. 38, 6921–6932 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Najm, F. J. et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522, 216–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cerina, M. et al. The quality of cortical network function recovery depends on localization and degree of axonal demyelination. Brain Behav. Immun. 59, 103–117 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Wuerfel, J. et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain J. Neurol. 127, 111–119 (2004).

    Article  Google Scholar 

  100. Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R. & Zlokovic, B. V. Blood–brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21–78 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  102. Odoardi, F. et al. T cells become licensed in the lung to enter the central nervous system. Nature 488, 675–679 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Hiltensperger, M. et al. Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nat. Immunol. 22, 880–892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Engelhardt, B. & Ransohoff, R. M. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 33, 579–589 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Brocke, S., Piercy, C., Steinman, L., Weissman, I. L. & Veromaa, T. Antibodies to CD44 and integrin α4, but not l-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc. Natl Acad. Sci. USA 96, 6896–6901 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Döring, A., Wild, M., Vestweber, D., Deutsch, U. & Engelhardt, B. E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J. Immunol. 179, 8470–8479 (2007).

  107. Cayrol, R. et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat. Immunol. 9, 137–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Wagner, M. et al. ALCAM — novel multiple sclerosis locus interfering with HLA-DRB1*1501. J. Neuroimmunol. 258, 71–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Schneider-Hohendorf, T. et al. VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J. Exp. Med. 211, 1833–1846 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Göbel, K. et al. Plasma kallikrein modulates immune cell trafficking during neuroinflammation via PAR2 and bradykinin release. Proc. Natl Acad. Sci. USA 116, 271–276 (2019).

    Article  PubMed  CAS  Google Scholar 

  111. Bittner, S. et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat. Med. 19, 1161–1165 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Lengfeld, J. E. et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc. Natl Acad. Sci. USA 114, E1168–E1177 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Niu, J. et al. Aberrant oligodendroglial-vascular interactions disrupt the blood–brain barrier, triggering CNS inflammation. Nat. Neurosci. 22, 709–718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, H. K. et al. Apcdd1 stimulates oligodendrocyte differentiation after white matter injury. Glia 63, 1840–1849 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Niu, J. et al. Oligodendroglial ring finger protein Rnf43 is an essential injury-specific regulator of oligodendrocyte maturation. Neuron 109, 3104–3118.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Chavali, M. et al. Wnt-dependent oligodendroglial-endothelial interactions regulate white matter vascularization and attenuate injury. Neuron 108, 1130–1145.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wouters, E. et al. Liver X receptor alpha is important in maintaining blood–brain barrier function. Front. Immunol. 10, 1811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lertkiatmongkol, P., Liao, D., Mei, H., Hu, Y. & Newman, P. J. Endothelial functions of PECAM-1 (CD31). Curr. Opin. Hematol. 23, 253–259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Graesser, D. et al. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice. J. Clin. Invest. 109, 383–392 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wimmer, I. et al. PECAM-1 stabilizes blood-brain barrier integrity and favors paracellular T-cell diapedesis across the blood–brain barrier during neuroinflammation. Front. Immunol. 10, 711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Getter, T. et al. Novel inhibitors of leukocyte transendothelial migration. Bioorg. Chem. 92, 103250 (2019).

    Article  PubMed  CAS  Google Scholar 

  122. Argaw, A. T., Gurfein, B. T., Zhang, Y., Zameer, A. & John, G. R. VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc. Natl Acad. Sci. USA 106, 1977–1982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Paul, D. et al. Appearance of claudin-5+ leukocytes in the central nervous system during neuroinflammation: a novel role for endothelial-derived extracellular vesicles. J. Neuroinflammation 13, 292 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Mandel, I. et al. Tight junction proteins expression and modulation in immune cells and multiple sclerosis. J. Cell. Mol. Med. 16, 765–775 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dohgu, S. et al. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Res. 1038, 208–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, S.-W. et al. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9, 900–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Wosik, K. et al. Angiotensin II controls occludin function and is required for blood–brain barrier maintenance: relevance to multiple sclerosis. J. Neurosci. 27, 9032–9042 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rempe, R. G., Hartz, A. M. & Bauer, B. Matrix metalloproteinases in the brain and blood–brain barrier: versatile breakers and makers. J. Cereb. Blood Flow Metab. 36, 1481–1507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gerwien, H. et al. Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood–brain barrier. Sci. Transl Med. 8, 364ra152 (2016).

    Article  PubMed  CAS  Google Scholar 

  131. Dubois, B. et al. Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. J. Clin. Invest. 104, 1507–1515 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fields, G. B. The rebirth of matrix metalloproteinase inhibitors: moving beyond the dogma. Cells 8, 984 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  133. Bar-Or, A. et al. Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126, 2738–2749 (2003).

    Article  PubMed  Google Scholar 

  134. Yen, J.-H., Kong, W. & Ganea, D. IFN-β inhibits dendritic cell migration through STAT-1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. J. Immunol. 184, 3478–3486 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Ma, Z., Qin, H. & Benveniste, E. N. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-γ and IFN-β: critical role of STAT-1α. J. Immunol. 167, 5150–5159 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Stüve, O. et al. Interferon β-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9. Ann. Neurol. 40, 853–863 (1996).

    Article  PubMed  Google Scholar 

  137. Alt, C., Laschinger, M. & Engelhardt, B. Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood–brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 32, 2133–2144 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. McCandless, E. E., Wang, Q., Woerner, B. M., Harper, J. M. & Klein, R. S. CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J. Immunol. 177, 8053–8064 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. McCandless, E. E. et al. Pathological expression of CXCL12 at the blood–brain barrier correlates with severity of multiple sclerosis. Am. J. Pathol. 172, 799–808 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cruz-Orengo, L. et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 208, 327–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Winkler, E. A., Bell, R. D. & Zlokovic, B. V. Central nervous system pericytes in health and disease. Nat. Neurosci. 14, 1398–1405 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cheng, J. et al. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. 136, 507–523 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rustenhoven, J., Jansson, D., Smyth, L. C. & Dragunow, M. Brain pericytes as mediators of neuroinflammation. Trends Pharmacol. Sci. 38, 291–304 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Padel, T. et al. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson’s disease. Neurobiol. Dis. 94, 95–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Kang, E. & Shin, J. W. Pericyte-targeting drug delivery and tissue engineering. Int. J. Nanomed. 11, 2397–2406 (2016).

    Article  CAS  Google Scholar 

  146. Gugliandolo, A., Bramanti, P. & Mazzon, E. Mesenchymal stem cells in multiple sclerosis: recent evidence from pre-clinical to clinical studies. Int. J. Mol. Sci. 21, 8662 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  147. Do, P. T., Wu, C.-C., Chiang, Y.-H., Hu, C.-J. & Chen, K.-Y. Mesenchymal stem/stromal cell therapy in blood–brain barrier preservation following ischemia: molecular mechanisms and prospects. Int. J. Mol. Sci. 22, 10045 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Logsdon, A. F., Erickson, M. A., Rhea, E. M., Salameh, T. S. & Banks, W. A. Gut reactions: how the blood–brain barrier connects the microbiome and the brain. Exp. Biol. Med. 243, 159–165 (2018).

    Article  CAS  Google Scholar 

  150. Fleischer, V. et al. Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc. Natl Acad. Sci. USA 118, e2025000118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bhargava, P. & Calabresi, P. A. Metabolomics in multiple sclerosis. Mult. Scler. J. 22, 451–460 (2016).

    Article  CAS  Google Scholar 

  152. Kasakin, M. F. et al. Targeted metabolomics approach for identification of relapsing–remitting multiple sclerosis markers and evaluation of diagnostic models. Medchemcomm 10, 1803–1809 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tisell, A. et al. Increased concentrations of glutamate and glutamine in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. PLoS ONE 8, e61817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fitzgerald, K. C. et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2, 100424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Levi, I. et al. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Rep. Med. 2, 100246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nourbakhsh, B. et al. Altered tryptophan metabolism is associated with pediatric multiple sclerosis risk and course. Ann. Clin. Transl. Neurol. 5, 1211–1221 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen, T., Noto, D., Hoshino, Y., Mizuno, M. & Miyake, S. Butyrate suppresses demyelination and enhances remyelination. J. Neuroinflammation 16, 165 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Bhargava, P. et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J. Clin. Invest. 130, 3467–3482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Crick, P. J. et al. Reduced plasma levels of 25-hydroxycholesterol and increased cerebrospinal fluid levels of bile acid precursors in multiple sclerosis patients. Mol. Neurobiol. 54, 8009–8020 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Parodi, B. & Kerlero de Rosbo, N. The gut–brain axis in multiple sclerosis. is its dysfunction a pathological trigger or a consequence of the disease? Front. Immunol. 12, 718220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kadowaki, A. & Quintana, F. J. The gut–CNS axis in multiple sclerosis. Trends Neurosci. 43, 622–634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dopkins, N., Nagarkatti, P. S. & Nagarkatti, M. The role of gut microbiome and associated metabolome in the regulation of neuroinflammation in multiple sclerosis and its implications in attenuating chronic inflammation in other inflammatory and autoimmune disorders. Immunology 154, 178–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Takewaki, D. & Yamamura, T. Gut microbiome research in multiple sclerosis. Neurosci. Res. 168, 28–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Cocco, E. et al. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 3, e185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Monaco, F., Fumero, S., Mondino, A. & Mutani, R. Plasma and cerebrospinal fluid tryptophan in multiple sclerosis and degenerative diseases. J. Neurol. Neurosurg. Psychiat. 42, 640–641 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Polyák, H. et al. Cuprizone markedly decreases kynurenic acid levels in the rodent brain tissue and plasma. Heliyon 7, e06124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Gaetani, L. et al. Host and microbial tryptophan metabolic profiling in multiple sclerosis. Front. Immunol. 11, 157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang, Y.-S., Ogbechi, J., Clanchy, F. I., Williams, R. O. & Stone, T. W. IDO and kynurenine metabolites in peripheral and CNS disorders. Front. Immunol. 11, 388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Majláth, Z., Annus, Á. & Vécsei, L. Kynurenine system and multiple sclerosis, pathomechanism and drug targets with an emphasis on laquinimod. Curr. Drug Targets 19, 1873–5592 (2018).

    Article  CAS  Google Scholar 

  170. Lovelace, M. D. et al. Current evidence for a role of the kynurenine pathway of tryptophan metabolism in multiple sclerosis. Front. Immunol. 7, 246 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Lim, C. K. et al. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 7, 1–9 (2017).

    CAS  Google Scholar 

  172. Rejdak, K. et al. Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci. Lett. 331, 63–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Leclercq, S., Schwarz, M., Delzenne, N. M., Stärkel, P. & de Timary, P. Alterations of kynurenine pathway in alcohol use disorder and abstinence: a link with gut microbiota, peripheral inflammation and psychological symptoms. Transl. Psychiat. 11, 1–9 (2021).

    Article  CAS  Google Scholar 

  174. Nogueras, L. et al. Lipid profile of cerebrospinal fluid in multiple sclerosis patients: a potential tool for diagnosis. Sci. Rep. 9, 11313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Pieragostino, D. et al. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol. Biosyst. 11, 1563–1572 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Law, S.-H. et al. An updated review of lysophosphatidylcholine metabolism in human diseases. Int. J. Mol. Sci. 20, 1149 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  177. Chalbot, S. et al. Cerebrospinal fluid secretory Ca2+-dependent phospholipase A2 activity: a biomarker of blood–cerebrospinal fluid barrier permeability. Neurosci. Lett. 478, 179–183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Trotter, A. et al. The role of phospholipase A2 in multiple sclerosis: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 27, 206–213 (2019).

    Article  PubMed  Google Scholar 

  179. Thakker, P. et al. Cytosolic phospholipase A2α blockade abrogates disease during the tissue-damage effector phase of experimental autoimmune encephalomyelitis by its action on APCs. J. Immunol. 187, 1986–1997 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Qiao, J. et al. Lysophosphatidylcholine impairs endothelial barrier function through the G protein-coupled receptor GPR4. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L91–L101 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Emwas, A.-H. et al. NMR spectroscopy for metabolomics research. Metabolites 9, 123 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  182. Konjar, Š. & Veldhoen, M. Dynamic metabolic state of tissue resident CD8 T cells. Front. Immunol. 10, 1683 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Reboldi, A. et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Puniya, B. L. et al. Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders. NPJ Syst. Biol. Appl. 7, 4 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. La Rocca, C. et al. Immunometabolic profiling of T cells from patients with relapsing-remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration. Metabolism 77, 39–46 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Klotz, L. et al. Teriflunomide treatment for multiple sclerosis modulates T cell mitochondrial respiration with affinity-dependent effects. Sci. Transl Med. 11, eaao5563 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Shin, B. et al. Mitochondrial oxidative phosphorylation regulates the fate decision between pathogenic Th17 and regulatory T cells. Cell Rep. 30, 1898–1909.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cluxton, D., Petrasca, A., Moran, B. & Fletcher, J. M. Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis. Front. Immunol. 10, 115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kono, M. et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight 4, e127395 (2019).

    Article  PubMed Central  Google Scholar 

  192. Angiari, S. et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metab. 31, 391–405.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kornberg, M. D. et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 360, 449–453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Li, W. et al. Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters. Front. Immunol. 10, 833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kono, M., Yoshida, N., Maeda, K. & Tsokos, G. C. Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc. Natl Acad. Sci. USA 115, 2478–2483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Xu, T. et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Stathopoulou, C., Nikoleri, D. & Bertsias, G. Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy 11, 813–829 (2019).

    Article  CAS  PubMed  Google Scholar 

  201. Bogie, J. F. J., Haidar, M., Kooij, G. & Hendriks, J. J. A. Fatty acid metabolism in the progression and resolution of CNS disorders. Adv. Drug Deliv. Rev. 159, 198–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Zhang, J., Jin, H., Xu, Y. & Shan, J. Rapamycin modulate Treg/Th17 balance via regulating metabolic pathways: a study in mice. Transplant. Proc. 51, 2136–2140 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  204. Mørkholt, A. S. et al. CPT1A plays a key role in the development and treatment of multiple sclerosis and experimental autoimmune encephalomyelitis. Sci. Rep. 9, 1–11 (2019).

    Article  CAS  Google Scholar 

  205. Shriver, L. P. & Manchester, M. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci. Rep. 1, 79 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Trabjerg, M. S. et al. Dysregulation of metabolic pathways by carnitine palmitoyl-transferase 1 plays a key role in central nervous system disorders: experimental evidence based on animal models. Sci. Rep. 10, 15583 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Roy, D. G. et al. Methionine metabolism shapes T helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Andrejeva, G. et al. Metabolomics analysis reveals differential T cell serine metabolism as a target in autoimmunity. J. Immunol. 200, 167.7 (2018).

    Google Scholar 

  211. Bruggeman, Y. et al. Targeting citrullination in autoimmunity: insights learned from preclinical mouse models. Expert Opin. Ther. Targets 0, 1–13 (2021).

    CAS  Google Scholar 

  212. Sarswat, A. et al. Inhibitors of protein arginine deiminases and their efficacy in animal models of multiple sclerosis. Bioorg. Med. Chem. 25, 2643–2656 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Sun, B. et al. Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight 4, e129687 (2019).

    Article  PubMed Central  Google Scholar 

  214. Robinson, R. R., Dietz, A. K., Maroof, A. M., Asmis, R. & Forsthuber, T. G. The role of glial–neuronal metabolic cooperation in modulating progression of multiple sclerosis and neuropathic pain. Immunotherapy 11, 129–147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Pellerin, L. & Magistretti, P. J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 10625–10629 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Vallée, A., Lecarpentier, Y., Guillevin, R. & Vallée, J.-N. Demyelination in multiple sclerosis: reprogramming energy metabolism and potential PPARγ agonist treatment approaches. Int. J. Mol. Sci. 19, 1212 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  218. Alizadeh, A., Dyck, S. M. & Karimi-Abdolrezaee, S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front. Mol. Neurosci. 8, 35 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Chao, C.-C. et al. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179, 1483–1498.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Michaličková, D., Šíma, M. & Slanař, O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol. Res. 69, 1–19 (2020).

    Article  PubMed  CAS  Google Scholar 

  221. Zipp, F. & Aktas, O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29, 518–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  222. Lepka, K. et al. Iron-sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia 65, 1521–1534 (2017).

    Article  PubMed  Google Scholar 

  223. Alba-Arbalat, S. et al. In vivo molecular changes in the retina of patients with multiple sclerosis. Invest. Ophthalmol. Vis. Sci. 62, 11–11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Braidy, N., Lim, C. K., Grant, R., Brew, B. J. & Guillemin, G. J. Serum nicotinamide adenine dinucleotide levels through disease course in multiple sclerosis. Brain Res. 1537, 267–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Biller, A. et al. Sodium MRI in multiple sclerosis is compatible with intracellular sodium accumulation and inflammation-induced hyper-cellularity of acute brain lesions. Sci. Rep. 6, 31269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Paling, D. et al. Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain 136, 2305–2317 (2013).

    Article  PubMed  Google Scholar 

  227. Dutta, R. et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann. Neurol. 59, 478–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  228. Han, M. H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    Article  CAS  PubMed  Google Scholar 

  229. Ziliotto, N. et al. Plasma levels of protein C pathway proteins and brain magnetic resonance imaging volumes in multiple sclerosis. Eur. J. Neurol. 27, 235–243 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Davalos, D. et al. Early detection of thrombin activity in neuroinflammatory disease. Ann. Neurol. 75, 303–308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Göbel, K. et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat. Commun. 7, 11626 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Göbel, K. et al. Prothrombin and factor X are elevated in multiple sclerosis patients. Ann. Neurol. 80, 946–951 (2016).

    Article  PubMed  CAS  Google Scholar 

  233. Merker, M. et al. Rivaroxaban ameliorates disease course in an animal model of multiple sclerosis. J. Neuroimmunol. 313, 125–128 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Chen, R. et al. Dabigatran suppresses PAR-1/SphK/S1P activation of astrocytes in experimental autoimmune encephalomyelitis model. Front. Mol. Neurosci. 13, 114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Akassoglou, K. & Strickland, S. Nervous system pathology: the fibrin perspective. Biol. Chem. 383, 37–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  236. Magliozzi, R. et al. Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Ann. Clin. Transl. Neurol. 6, 2150–2163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Marik, C., Felts, P. A., Bauer, J., Lassmann, H. & Smith, K. J. Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain J. Neurol. 130, 2800–2815 (2007).

    Article  Google Scholar 

  238. Petersen, M. A., Ryu, J. K. & Akassoglou, K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 19, 283–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Plantone, D., Inglese, M., Salvetti, M. & Koudriavtseva, T. A perspective of coagulation dysfunction in multiple sclerosis and in experimental allergic encephalomyelitis. Front. Neurol. 9, 1175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Gur-Wahnon, D. et al. The plasminogen activator system: involvement in central nervous system inflammation and a potential site for therapeutic intervention. J. Neuroinflamm. 10, 891 (2013).

    Article  CAS  Google Scholar 

  242. Dahl, L. C. et al. The influence of differentially expressed tissue-type plasminogen activator in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. PLoS ONE 11, e0158653 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Mizrachi, T., Gur-Wahnon, D., Al-Roof Higazi, A. & Brenner, T. Role of tissue plasminogen activator in clinical aggravation of experimental autoimmune encephalomyelitis and its therapeutic potential. Cell. Immunol. 348, 104040 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Xu, Y. et al. Factor XIIa inhibition by Infestin-4: in vitro mode of action and in vivo antithrombotic benefit. Thromb. Haemost. 111, 694–704 (2014).

    Article  CAS  PubMed  Google Scholar 

  245. Hohlfeld, R., Dornmair, K., Meinl, E. & Wekerle, H. The search for the target antigens of multiple sclerosis. Part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol. 15, 317–331 (2016).

    Article  CAS  PubMed  Google Scholar 

  246. Hohlfeld, R., Dornmair, K., Meinl, E. & Wekerle, H. The search for the target antigens of multiple sclerosis. Part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 15, 198–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Sospedra, M. & Martin, R. Immunology of multiple sclerosis. Semin. Neurol. 36, 115–127 (2016).

    Article  PubMed  Google Scholar 

  248. Baxter, A. G. The origin and application of experimental autoimmune encephalomyelitis. Nat. Rev. Immunol. 7, 904–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  249. Lutterotti, A., Hayward-Koennecke, H., Sospedra, M. & Martin, R. Antigen-specific immune tolerance in multiple sclerosis — promising approaches and how to bring them to patients. Front. Immunol. 12, 640935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Alves Sousa, A. et al. Comprehensive analysis of TCR-β repertoire in patients with neurological immune-mediated disorders. Sci. Rep. 9, 344 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Vanderlugt, C. L. & Miller, S. D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  252. Goebels, N. et al. Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain 123, 508–518 (2000).

    Article  PubMed  Google Scholar 

  253. Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide–coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl Med. 5, 188ra75 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Miller, S. D., Turley, D. M. & Podojil, J. R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol. 7, 665–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  255. Walker, L. S. K. & Abbas, A. K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  256. Turley, D. M. & Miller, S. D. Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J. Immunol. 178, 2212–2220 (2007).

    Article  CAS  PubMed  Google Scholar 

  257. Serra, P. & Santamaria, P. Antigen-specific therapeutic approaches for autoimmunity. Nat. Biotechnol. 37, 238–251 (2019).

    Article  CAS  PubMed  Google Scholar 

  258. Garren, H. et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann. Neurol. 63, 611–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  259. Weiner, H. L. et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259, 1321–1324 (1993).

    Article  CAS  PubMed  Google Scholar 

  260. Goodkin, D. E. et al. A phase I trial of solubilized DR2:MBP84-102 (AG284) in multiple sclerosis. Neurology 54, 1414–1420 (2000).

    Article  CAS  PubMed  Google Scholar 

  261. Freedman, M. S. et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 77, 1551–1560 (2011).

    Article  CAS  PubMed  Google Scholar 

  262. Hohol, M. J. et al. Three-year open protocol continuation study of oral tolerization with myelin antigens in multiple sclerosis and design of a phase III pivotal trial. Ann. NY Acad. Sci. 778, 243–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  263. Medaer, R., Stinissen, P., Raus, J., Zhang, J. & Truyen, L. Depletion of myelin-basic-protein autoreactive T cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet 346, 807–808 (1995).

    Article  CAS  PubMed  Google Scholar 

  264. Warren, K. G., Catz, I., Ferenczi, L. Z. & Krantz, M. J. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur. J. Neurol. 13, 887–895 (2006).

    Article  CAS  PubMed  Google Scholar 

  265. Bar-Or, A. et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch. Neurol. 64, 1407–1415 (2007).

    Article  PubMed  Google Scholar 

  266. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6, 1167–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  267. Walczak, A., Siger, M., Ciach, A., Szczepanik, M. & Selmaj, K. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 70, 1105–1109 (2013).

    Article  PubMed  Google Scholar 

  268. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Casella, G. et al. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci. Transl Med. 12, eaba0599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Vyshkina, T. & Kalman, B. Autoantibodies and neurodegeneration in multiple sclerosis. Lab. Invest. 88, 796–807 (2008).

    Article  CAS  PubMed  Google Scholar 

  271. Sauer, B., Schmalstieg, W. & Howe, C. Axons are injured by antigen-specific CD8+ T cells through a MHC class I-and granzyme B-dependent mechanism. Neurobiol. Dis. 59, 194–205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Oliveira, M. C. B., de Brito, M. H. & Simabukuro, M. M. Central nervous system demyelination associated with immune checkpoint inhibitors: review of the literature. Front. Neurol. 11, 538695 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Khoury, S. J. et al. ACCLAIM: a randomized trial of abatacept (CTLA4-Ig) for relapsing-remitting multiple sclerosis. Mult. Scler. J. 23, 686–695 (2017).

    Article  CAS  Google Scholar 

  274. Saresella, M. et al. A role for the TIM-3/GAL-9/BAT3 pathway in determining the clinical phenotype of multiple sclerosis. FASEB J. 28, 5000–5009 (2014).

    Article  CAS  PubMed  Google Scholar 

  275. Salama, A. D. et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med. 198, 71–78 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Li, H. et al. PD-1/PD-L1 axis as a potential therapeutic target for multiple sclerosis: a T cell perspective. Front. Cell. Neurosci. 15, 267 (2021).

    CAS  Google Scholar 

  277. Rimkus, C. M. et al. Drug-related demyelinating syndromes: understanding risk factors, pathophysiological mechanisms and magnetic resonance imaging findings. Mult. Scler. Relat. Disord. 55, 103146 (2021).

    Article  CAS  PubMed  Google Scholar 

  278. Fleming, J. et al. Probiotic helminth administration in relapsing–remitting multiple sclerosis: a phase 1 study. Mult. Scler. 17, 743–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Summers, R. W., Elliott, D. E., Urban, J. F., Thompson, R. & Weinstock, J. V. Trichuris suis therapy in Crohn’s disease. Gut 54, 87–90 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Correale, J. & Farez, M. Association between parasite infection and immune responses in multiple sclerosis. Ann. Neurol. 61, 97–108 (2007).

    Article  CAS  PubMed  Google Scholar 

  281. Voldsgaard, A. et al. Trichuris suis ova therapy in relapsing multiple sclerosis is safe but without signals of beneficial effect. Mult. Scler. J. 21, 1723–1729 (2015).

    Article  CAS  Google Scholar 

  282. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  283. Quintana, F. J. et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 107, 20768–20773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Vollmer, T. L. et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J. Neurol. 261, 773–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  286. Filippi, M. et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J. Neurol. Neurosurg. Psychiatry 85, 851–858 (2014).

    Article  PubMed  Google Scholar 

  287. Comi, G. et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N. Engl. J. Med. 66, 1000–9 (2012).

    Article  Google Scholar 

  288. Comi, G. et al. CONCERTO: a randomized, placebo-controlled trial of oral laquinimod in relapsing-remitting multiple sclerosis. Mult. Scler. J. 28, 608–619 (2021).

    Article  CAS  Google Scholar 

  289. Kenison, J. E. et al. Tolerogenic nanoparticles suppress central nervous system inflammation. Proc. Natl Acad. Sci. USA 117, 32017–32028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Haase, S., Haghikia, A., Wilck, N., Müller, D. N. & Linker, R. A. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology 154, 230–238 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Park, M.-J. et al. Myeloid-derived suppressor cells therapy enhance immunoregulatory properties in acute graft versus host disease with combination of regulatory T cells. J. Transl. Med. 18, 483 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Eggenhuizen, P. J., Ng, B. H. & Ooi, J. D. Treg enhancing therapies to treat autoimmune diseases. Int. J. Mol. Sci. 21, 7015 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  293. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  294. Selck, C. & Dominguez-Villar, M. Antigen-specific regulatory T cell therapy in autoimmune diseases and transplantation. Front. Immunol. 12, 661875 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Ruck, T. et al. K2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Res. 32, 72–88 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  297. Wekerle, H. Brain autoimmunity and intestinal microbiota: 100 trillion game changers. Trends Immunol. 38, 483–497 (2017).

    Article  CAS  PubMed  Google Scholar 

  298. Cox, L. M. et al. Gut microbiome in progressive multiple sclerosis. Ann. Neurol. 89, 1195–1211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Weiner, H. L., Cunha, A. P., da, Quintana, F. & Wu, H. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Duscha, A. et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180, 1067–1080.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  301. Schepici, G., Silvestro, S., Bramanti, P. & Mazzon, E. The gut microbiota in multiple sclerosis: an overview of clinical trials. Cell Transpl. 28, 1507–1527 (2019).

    Article  Google Scholar 

  302. Zhu, W., Dykstra, K., Zhang, L. & Xia, Z. Gut microbiome as potential therapeutics in multiple sclerosis. Curr. Treat. Options Neurol. 23, 37 (2021).

    Article  Google Scholar 

  303. Tankou, S. K. et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann. Neurol. 83, 1147–1161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43, 655–661 (1993).

  305. Johnson, K. P. et al. (The Copolymer 1 Multiple Sclerosis Study Group) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. Neurology 45, 1268–1276 (1995).

    Article  CAS  PubMed  Google Scholar 

  306. Jacobs, L. D. et al. (The Multiple Sclerosis Collaborative Research Group, MSCRG) Intramuscular interferon β-1a for disease progression in relapsing multiple sclerosis. Ann. Neurol. 39, 285–294 (1996).

    Article  CAS  PubMed  Google Scholar 

  307. Ebers, G. C. Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet 352, 1498–1504 (1998).

    Article  CAS  Google Scholar 

  308. Hartung, H.-P. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360, 2018–2025 (2002).

    Article  PubMed  Google Scholar 

  309. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  310. Cohen, J. A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  311. Calabresi, P. A. et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 545–556 (2014).

    Article  CAS  PubMed  Google Scholar 

  312. Giovannoni, G. et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N. Engl. J. Med. 362, 416–426 (2010).

    Article  CAS  PubMed  Google Scholar 

  313. O’Connor, P. et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365, 1293–1303 (2011).

    Article  PubMed  Google Scholar 

  314. Miller, A. E. et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 977–986 (2014).

    Article  CAS  PubMed  Google Scholar 

  315. Confavreux, C. et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 247–256 (2014).

    Article  CAS  PubMed  Google Scholar 

  316. Fox, R. J. et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367, 1087–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  317. Gold, R. et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367, 1098–1107 (2012).

    Article  CAS  PubMed  Google Scholar 

  318. CAMMS223 Trial Investigators. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Article  Google Scholar 

  319. Cohen, J. A. et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 380, 1819–1828 (2012).

    Article  CAS  PubMed  Google Scholar 

  320. Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018).

    Article  CAS  PubMed  Google Scholar 

  321. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  322. Comi, G. et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 18, 1009–1020 (2019).

    Article  CAS  PubMed  Google Scholar 

  323. Kappos, L. et al. Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study: a randomized clinical trial. JAMA Neurol. 78, 558 (2021).

    Article  PubMed  Google Scholar 

  324. Tremlett, H. & Marrie, R. A. The multiple sclerosis prodrome: emerging evidence, challenges, and opportunities. Mult. Scler. J. 27, 6–12 (2021).

    Article  Google Scholar 

  325. Lublin, F. D. et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83, 278–286 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.B., H.-P.H., O.A., T.R. and S.G.M. researched data, discussed the content, wrote the article and edited/reviewed the manuscript before submission. M.R. edited and reviewed the manuscript before submission.

Corresponding author

Correspondence to Sven G. Meuth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Excitotoxicity

Neuronal damage or death that is caused by excessive release of neurotransmitters such as glutamate or aspartate.

Experimental autoimmune encephalomyelitis

(EAE). An inflammatory, autoimmune demyelinating disease of the central nervous system in rodents that has high pathological and clinical similarities to human multiple sclerosis and is the most used experimental model for the disease.

Glia limitans

Also called the glia limiting membrane; defined as a barrier that surrounds the brain and spinal cord and is formed by astrocytic endfeet processes that limit the perivascular space.

T helper 1 cells

(TH1 cells). A subgroup of T helper cells (also known as CD4+ cells) that is mainly involved in the cell-mediated immune response against intracellular pathogens such as bacteria by maximizing the efficacy of macrophages and cytotoxic T cells. The main effector cytokines of TH1 cells are IFNγ and IL-2.

TH2 cells

A subgroup of T helper cells that is involved in the humoral immune system. TH2 cells secrete IL-4 and IL-10 (among others), are involved in the recognition of extracellular pathogens and activate the B cell-mediated antibody response.

TH17 cells

A subgroup of T helper cells that is developmentally distinct from TH1 and TH2 cells and is defined by production of IL-17. TH17 cells are involved in host defence against extracellular pathogens, but also contribute to the pathogenesis of immune-mediated diseases such as MS.

Regulatory T (Treg) cells

A subpopulation of CD4+ T cells, also known as suppressor T cells, characterized by the expression of CD4 and CD25. Treg cells have a critical role in preventing autoimmunity by controlling the immune response to self-antigens and can inhibit T cell proliferation and cytokine production.

Epitope spreading

The development/expansion of the immune response against the initial dominant epitope to include a secondary epitope over time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bierhansl, L., Hartung, HP., Aktas, O. et al. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 21, 578–600 (2022). https://doi.org/10.1038/s41573-022-00477-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-022-00477-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing