Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Beyond PI3Ks: targeting phosphoinositide kinases in disease

Abstract

Lipid phosphoinositides are master regulators of almost all aspects of a cell’s life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phosphoinositides and the phosphoinositide kinases that generate them.
Fig. 2: Structure–function, inhibition and therapeutic targeting of PIKfyve.
Fig. 3: Structure–function, and inhibition of the PI4P5Ks and PI5P4Ks.
Fig. 4: Structure–function, inhibition and therapeutic targeting of PI4KA and PI4KB.
Fig. 5: Structure–function, inhibition and therapeutic targeting of class II PI3Ks.
Fig. 6: Structure–function, inhibition and therapeutic targeting of class III PI3Ks.

Similar content being viewed by others

References

  1. Balla, T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93, 1019–1137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dickson, E. J. & Hille, B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem. J. 476, 1–23 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Schink, K. O., Tan, K.-W. & Stenmark, H. Phosphoinositides in control of membrane dynamics. Annu. Rev. Cell Dev. Biol. 32, 143–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Hasegawa, J., Strunk, B. S. & Weisman, L. S. PI5P and PI(3,5)P2: minor, but essential phosphoinositides. Cell Struct. Funct. 42, 49–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gozzelino, L., De Santis, M. C., Gulluni, F., Hirsch, E. & Martini, M. PI(3,4)P2 signaling in cancer and metabolism. Front. Oncol. 10, 360 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Batrouni, A. G. & Baskin, J. M. The chemistry and biology of phosphatidylinositol 4-phosphate at the plasma membrane. Bioorg. Med. Chem. 40, 116190 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hammond, G. R. V. & Burke, J. E. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr. Opin. Cell Biol. 63, 57–67 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baba, T. & Balla, T. Emerging roles of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate as regulators of multiple steps in autophagy. J. Biochem. 168, 329–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vasan, N. & Cantley, L. C. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat. Rev. Clin. Oncol. 19, 471–485 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Li, J. et al. PI-273, a substrate-competitive, specific small molecule inhibitor of PI4KIIα, inhibits the growth of breast cancer cells. Cancer Res. 77, 6253–6266 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Sengupta, N. et al. A large scale high-throughput screen identifies chemical inhibitors of phosphatidylinositol 4-kinase type II alpha. J. Lipid Res. 60, 683–693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zolov, S. N. et al. In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. Proc. Natl Acad. Sci. USA 109, 17472–17477 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giridharan, S. S. P. et al. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes. eLife 11, e69709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rutherford, A. C. et al. The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J. Cell Sci. 119, 3944–3957 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Cabezas, A., Pattni, K. & Stenmark, H. Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. Gene 371, 34–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Dong, X. et al. PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat. Commun. 1, 38 (2010).

    Article  PubMed  Google Scholar 

  18. de Lartigue, J. et al. PIKfyve regulation of endosome-linked pathways. Traffic 10, 883–893 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oppelt, A. et al. Production of phosphatidylinositol 5-phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep. 14, 57–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Bissig, C., Hurbain, I., Raposo, G. & van Niel, G. PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic 18, 747–757 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Choy, C. H. et al. Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence. J. Cell Sci. 131, jcs213587 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sbrissa, D., Ikonomov, O. C. & Shisheva, A. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomenbrane localization. J. Biol. Chem. 277, 6073–6079 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Shisheva, A., Sbrissa, D. & Ikonomov, O. Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol. Cell Biol. 19, 623–634 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sbrissa, D., Ikonomov, O. C. & Shisheva, A. PIKfyve lipid kinase is a protein kinase: downregulation of 5′-phosphoinositide product formation by autophosphorylation. Biochemistry 39, 15980–15989 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Ikonomov, O. C. et al. The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve−/− embryos but normality of PIKfyve+/− mice. J. Biol. Chem. 286, 13404–13413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takasuga, S. et al. Critical roles of type III phosphatidylinositol phosphate kinase in murine embryonic visceral endoderm and adult intestine. Proc. Natl Acad. Sci. USA 110, 1726–1731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin, N. et al. VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J. 27, 3221–3234 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sbrissa, D. et al. A mammalian ortholog of Saccharomyces cerevisiae Vac14 that associates with and up-regulates PIKfyve phosphoinositide 5-kinase activity. Mol. Cell Biol. 24, 10437–10447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sbrissa, D. et al. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J. Biol. Chem. 282, 23878–23891 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Duex, J. E., Tang, F. & Weisman, L. S. The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J. Cell Biol. 172, 693–704 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rudge, S. A., Anderson, D. M. & Emr, S. D. Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol. Biol. Cell 15, 24–36 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y. et al. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc. Natl Acad. Sci. USA 104, 17518–17523 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chow, C. Y. et al. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448, 68–72 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lenk, G. M. et al. Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. 7, e1002104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chow, C. Y. et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85–88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, X. et al. Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131, 1990–2001 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lenk, G. M. et al. Biallelic mutations of VAC14 in pediatric-onset neurological disease. Am. J. Hum. Genet. 99, 188–194 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lees, J. A., Li, P., Kumar, N., Weisman, L. S. & Reinisch, K. M. Insights into lysosomal PI(3,5)P2 homeostasis from a structural-biochemical analysis of the PIKfyve lipid kinase complex. Mol. Cell 80, 736–743.e4 (2020). This article provides the first molecular and biochemical insight into the assembly and regulation of the PIKfyve–Sac1–Vac14 signalling complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hayakawa, M. et al. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem. 14, 6847–6858 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Jefferies, H. B. J. et al. A selective PIKfyve inhibitor blocks PtdIns(3,5)P2 production and disrupts endomembrane transport and retroviral budding. EMBO Rep. 9, 164–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wada, Y. et al. Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 109, 1156–1164 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Cai, X. et al. PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chem. Biol. 20, 912–921 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayakawa, N. et al. Structure-activity relationship study, target identification, and pharmacological characterization of a small molecular IL-12/23 inhibitor, APY0201. Bioorg. Med. Chem. 22, 3021–3029 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Sharma, G. et al. A family of PIKFYVE inhibitors with therapeutic potential against autophagy-dependent cancer cells disrupt multiple events in lysosome homeostasis. Autophagy 15, 1694–1718 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trabbic, C. J. et al. Synthesis and biological evaluation of indolyl-pyridinyl-propenones having either methuosis or microtubule disruption activity. J. Med. Chem. 58, 2489–2512 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho, H. et al. Indolyl-pyridinyl-propenone-induced methuosis through the inhibition of PIKFYVE. ACS Omega 3, 6097–6103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hudkins, R. L. et al. Synthesis and biological profile of the pan-vascular endothelial growth factor receptor/tyrosine kinase with immunoglobulin and epidermal growth factor-like homology domains 2 (VEGF-R/TIE-2) inhibitor 11-(2-methylpropyl)-12,13-dihydro-2-methyl-8-(pyrimidin-2-ylamino)-4H-indazolo[5,4-a]pyrrolo[3,4-c]carbazol-4-one (CEP-11981): a novel oncology therapeutic agent. J. Med. Chem. 55, 903–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Qiao, Y. et al. Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer. Nat. Cancer 2, 978–993 (2021). This article identifies PIKfyve as the direct target of the anti-cancer candidate ESK981, with it inhibiting autophagy and resulting in an enhanced therapeutic response to immune checkpoint blockade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guerrero-Valero, M. et al. Dysregulation of myelin synthesis and actomyosin function underlies aberrant myelin in CMT4B1 neuropathy. Proc. Natl Acad. Sci. USA 118, e2009469118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sawade, L. et al. Rab35-regulated lipid turnover by myotubularins represses mTORC1 activity and controls myelin growth. Nat. Commun. 11, 2835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soares, A. C. et al. PIKfyve activity is required for lysosomal trafficking of tau aggregates and tau seeding. J. Biol. Chem. 296, 100636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bowles, K. R. et al. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell 184, 4547–4563.e17 (2021). This article shows that treatment of organoids expressing mutant microtubule-associated protein tau with the PIKfyve inhibitor apilimod prevented glutamatergic toxicity, suggesting a potential therapeutic approach for FTD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. See, S. K. et al. PIKfyve inhibition blocks endolysosomal escape of α-synuclein fibrils and spread of α-synuclein aggregation. Preprint available at bioRxiv https://doi.org/10.1101/2021.01.21.427704 (2021).

  55. Shi, Y. et al. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24, 313–325 (2018). This article shows using patient-derived human induced motor neurons expressing C9ORF72, which is a model of ALS, that treatment with a PIKfyve inhibitor apilimod or YM201636 improves neuron survival, and ameliorates neurodegeneration in mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lenk, G. M. et al. Cerebral hypomyelination associated with biallelic variants of FIG4. Hum. Mutat. 40, 619–630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lakkaraju, A. K. K. et al. Loss of PIKfyve drives the spongiform degeneration in prion diseases. EMBO Mol. Med. 13, e14714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nelson, E. A. et al. The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection. PLoS Negl. Trop. Dis. 11, e0005540 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qiu, S. et al. Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry. Virology 513, 17–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Kang, Y.-L. et al. Inhibition of PIKfyve kinase prevents infection by Zaire Ebolavirus and SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 20803–20813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ou, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Riva, L. et al. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 586, 113–119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bouhaddou, M. et al. The global phosphorylation landscape of SARS-CoV-2 Infection. Cell 182, 685–712.e19 (2020). Together, articles 61–64 provide the first insight into the role of PIKfyve as a crucial host factor in cell entry for SARS coronaviruses, and identified inhibitors of PIKfyve as potential antivirals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dayam, R. M. et al. The lipid kinase PIKfyve coordinates the neutrophil immune response through the activation of the Rac GTPase. J. Immunol. 199, 2096–2105 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Gayle, S. et al. Identification of apilimod as a first-in-class PIKfyve kinase inhibitor for treatment of B-cell non-Hodgkin lymphoma. Blood 129, 1768–1778 (2017). This article described the application of the PIKfyve specific inhibitor apilimod as a potential therapeutic in B-NHL through disruption of lysosome homeostasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Campos, C. B. et al. Identification of PIKfyve kinase as a target in multiple myeloma. Haematologica 105, 1641–1649 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Milan, E., Fabbri, M. & Cenci, S. Autophagy in plasma cell ontogeny and malignancy. J. Clin. Immunol. 36 (Suppl. 1), 18–24 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hou, J.-Z. et al. Inhibition of PIKfyve using YM201636 suppresses the growth of liver cancer via the induction of autophagy. Oncol. Rep. 41, 1971–1979 (2019).

    CAS  PubMed  Google Scholar 

  70. Loijens, J. C., Boronenkov, I. V., Parker, G. J. & Anderson, R. A. The phosphatidylinositol 4-phosphate 5-kinase family. Adv. Enzym. Regul. 36, 115–140 (1996).

    Article  CAS  Google Scholar 

  71. Rameh, L. E., Tolias, K. F., Duckworth, B. C. & Cantley, L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390, 192–196 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Bazenet, C. E., Ruano, A. R., Brockman, J. L. & Anderson, R. A. The human erythrocyte contains two forms of phosphatidylinositol-4-phosphate 5-kinase which are differentially active toward membranes. J. Biol. Chem. 265, 18012–18022 (1990).

    Article  CAS  PubMed  Google Scholar 

  73. Ling, L. E., Schulz, J. T. & Cantley, L. C. Characterization and purification of membrane-associated phosphatidylinositol-4-phosphate kinase from human red blood cells. J. Biol. Chem. 264, 5080–5088 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Lundquist, M. R. et al. Phosphatidylinositol-5-phosphate 4-kinases regulate cellular lipid metabolism by facilitating autophagy. Mol. Cell 70, 531–544.e9 (2018). This article shows defects in fasting autophagy in mice lacking both PI5P4Kα and PI5P4Kβ and in Caenorhabditis elegans lacking PI5P4K owing to a defect in clearing of autophagosomes, and highlights an important evolutionarily conserved role of the PI5P4Ks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, A. et al. PIP4K2A regulates intracellular cholesterol transport through modulating PI(4,5)P2 homeostasis. J. Lipid Res. 59, 507–514 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ishihara, H. et al. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J. Biol. Chem. 271, 23611–23614 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Loijens, J. C. & Anderson, R. A. Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J. Biol. Chem. 271, 32937–32943 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Oude Weernink, P. A., Schmidt, M. & Jakobs, K. H. Regulation and cellular roles of phosphoinositide 5-kinases. Eur. J. Pharmacol. 500, 87–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. van den Bout, I. & Divecha, N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J. Cell. Sci. 122, 3837–3850 (2009).

    Article  PubMed  Google Scholar 

  80. Rao, V. D., Misra, S., Boronenkov, I. V., Anderson, R. A. & Hurley, J. H. Structure of type II beta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Clarke, J. H. & Irvine, R. F. The activity, evolution and association of phosphatidylinositol 5-phosphate 4-kinases. Adv. Biol. Regul. 52, 40–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Emerling, B. M. et al. Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors. Cell 155, 844–857 (2013). This article shows that PI5P4Kα and PI5P4Kβ are essential for tumour survival in the absence of the tumour suppressor p53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shim, H. et al. Deletion of the gene Pip4k2c, a novel phosphatidylinositol kinase, results in hyperactivation of the immune system. Proc. Natl Acad. Sci. USA 113, 7596–7601 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lamia, K. A. et al. Increased insulin sensitivity and reduced adiposity in phosphatidylinositol 5-phosphate 4-kinase beta-/- mice. Mol. Cell Biol. 24, 5080–5087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Clarke, J. H. & Irvine, R. F. Evolutionarily conserved structural changes in phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) isoforms are responsible for differences in enzyme activity and localization. Biochem. J. 454, 49–57 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Bulley, S. J. et al. In B cells, phosphatidylinositol 5-phosphate 4-kinase-α synthesizes PI(4,5)P2 to impact mTORC2 and Akt signaling. Proc. Natl Acad. Sci. USA 113, 10571–10576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sumita, K. et al. The lipid kinase PI5P4Kβ is an intracellular GTP sensor for metabolism and tumorigenesis. Mol. Cell 61, 187–198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bultsma, Y., Keune, W.-J. & Divecha, N. PIP4Kbeta interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Biochem. J. 430, 223–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Jones, D. R. et al. Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol. Cell 23, 685–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Keune, W.-J. et al. Regulation of phosphatidylinositol-5-phosphate signaling by Pin1 determines sensitivity to oxidative stress. Sci. Signal. 5, ra86 (2012).

    Article  PubMed  Google Scholar 

  91. Mackey, A. M., Sarkes, D. A., Bettencourt, I., Asara, J. M. & Rameh, L. E. PIP4kγ is a substrate for mTORC1 that maintains basal mTORC1 signaling during starvation. Sci. Signal. 7, ra104–ra104 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Semenas, J. et al. The role of PI3K/AKT-related PIP5K1α and the discovery of its selective inhibitor for treatment of advanced prostate cancer. Proc. Natl Acad. Sci. USA 111, E3689–E3698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wright, B. D. et al. The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron 82, 836–847 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Andrews, D. M. et al. Identification and optimization of a novel series of selective PIP5K inhibitors. Bioorg. Med. Chem. 54, 116557 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Sarwar, M. et al. The role of PIP5K1α/pAKT and targeted inhibition of growth of subtypes of breast cancer using PIP5K1α inhibitor. Oncogene 38, 375–389 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Adhikari, H. & Counter, C. M. Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nat. Commun. 9, 3646 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Choi, S., Chen, M., Cryns, V. L. & Anderson, R. A. A nuclear phosphoinositide kinase complex regulates p53. Nat. Cell Biol. 21, 462–475 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Muscolini, M. et al. Phosphatidylinositol 4-phosphate 5-kinase α activation critically contributes to CD28-dependent signaling responses. J. Immunol. 190, 5279–5286 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Muscolini, M. et al. Phosphatidylinositol 4-phosphate 5-kinase α and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions. J. Immunol. 194, 1323–1333 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Camperio, C. et al. CD28 ligation in the absence of TCR stimulation up-regulates IL-17A and pro-inflammatory cytokines in relapsing-remitting multiple sclerosis T lymphocytes. Immunol. Lett. 158, 134–142 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, S. et al. Pharmacological inhibition of PI5P4Kα/β disrupts cell energy metabolism and selectively kills p53-null tumor cells. Proc. Natl Acad. Sci. USA 118, e2002486118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ravi, A. et al. PI5P4Ks drive metabolic homeostasis through peroxisome-mitochondria interplay. Dev. Cell 56, 1661–1676.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kitagawa, M. et al. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. Nat. Commun. 8, 2200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sivakumaren, S. C. et al. Targeting the PI5P4K lipid kinase family in cancer using covalent inhibitors. Cell Chem. Biol. 27, 525–537.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Manz, T. D. et al. Discovery and structure-activity relationship study of (Z)-5-methylenethiazolidin-4-one derivatives as potent and selective Pan-phosphatidylinositol 5-phosphate 4-kinase inhibitors. J. Med. Chem. 63, 4880–4895 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Davis, M. I. et al. A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation. PLoS ONE 8, e54127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wortmann, L. et al. Discovery and characterization of the potent and highly selective 1,7-naphthyridine-based inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A. J. Med. Chem. 64, 15883–15911 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Voss, M. D. et al. Discovery and pharmacological characterization of a novel small molecule inhibitor of phosphatidylinositol-5-phosphate 4-kinase, type II, beta. Biochem. Biophys. Res. Commun. 449, 327–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Clarke, J. H. et al. The function of phosphatidylinositol 5-phosphate 4-kinase γ (PI5P4Kγ) explored using a specific inhibitor that targets the PI5P-binding site. Biochem. J. 466, 359–367 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Al-Ramahi, I. et al. Inhibition of PIP4Kγ ameliorates the pathological effects of mutant huntingtin protein. eLife 6, e29123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Manz, T. D. et al. Structure-activity relationship study of covalent Pan-phosphatidylinositol 5-phosphate 4-kinase inhibitors. ACS Med. Chem. Lett. 11, 346–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. See, C. S. et al. Discovery of the cancer cell selective dual acting anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131). Eur. J. Med. Chem. 156, 344–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Boffey, H. K. et al. Development of selective phosphatidylinositol 5-phosphate 4-kinase γ inhibitors with a non-ATP-competitive, allosteric binding mode. J. Med. Chem. 65, 3359–3370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Arora, G. K., Palamiuc, L. & Emerling, B. M. Expanding role of PI5P4Ks in cancer: a promising druggable target. FEBS Lett. 596, 3–16 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Luoh, S.-W., Venkatesan, N. & Tripathi, R. Overexpression of the amplified Pip4k2beta gene from 17q11-12 in breast cancer cells confers proliferation advantage. Oncogene 23, 1354–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Keune, W.-J. et al. Low PIP4K2B expression in human breast tumors correlates with reduced patient survival: a role for PIP4K2B in the regulation of E-cadherin expression. Cancer Res. 73, 6913–6925 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lima, K. et al. PIP4K2A and PIP4K2C transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genet. 233–234, 56–66 (2019).

    Article  PubMed  Google Scholar 

  118. Jude, J. G. et al. A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival. Oncogene 34, 1253–1262 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Shin, Y. J. et al. PIP4K2A as a negative regulator of PI3K in PTEN-deficient glioblastoma. J. Exp. Med. 216, 1120–1134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, D. G. et al. PIP4Ks suppress insulin signaling through a catalytic-independent mechanism. Cell Rep. 27, 1991–2001.e5 (2019). This article shows the crucial catalytic-independent roles of the PI5P4Ks in decreasing insulin signalling through suppressing PIP2 generation by the PI4P5Ks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 13, 397–406 (2014).

    Article  CAS  Google Scholar 

  122. Poli, A. et al. PIP4Ks impact on PI3K, FOXP3, and UHRF1 signaling and modulate human regulatory T cell proliferation and immunosuppressive activity. Proc. Natl Acad. Sci. USA 118, e2010053118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. He, Z. et al. The PIP5K2A gene and schizophrenia in the Chinese population-a case-control study. Schizophr. Res. 94, 359–365 (2007).

    Article  PubMed  Google Scholar 

  124. Thiselton, D. L. et al. Association analysis of the PIP4K2A gene on chromosome 10p12 and schizophrenia in the Irish study of high density schizophrenia families (ISHDSF) and the Irish case-control study of schizophrenia (ICCSS). Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 323–331 (2010).

    CAS  PubMed  Google Scholar 

  125. Schwab, S. G. et al. Evidence for association of DNA sequence variants in the phosphatidylinositol-4-phosphate 5-kinase IIalpha gene (PIP5K2A) with schizophrenia. Mol. Psychiatry 11, 837–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Noch, E. K., Yim, I., Milner, T. A. & Cantley, L. C. Distribution and localization of phosphatidylinositol 5-phosphate, 4-kinase alpha and beta in the brain. J. Comp. Neurol. 529, 434–449 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Balla, T. et al. Isolation and molecular cloning of wortmannin-sensitive bovine type III phosphatidylinositol 4-kinases. J. Biol. Chem. 272, 18358–18366 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Boura, E. & Nencka, R. Phosphatidylinositol 4-kinases: function, structure, and inhibition. Exp. Cell Res. 337, 136–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Dornan, G. L., McPhail, J. A. & Burke, J. E. Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease. Biochemical Soc. Trans. 44, 260–266 (2016).

    Article  CAS  Google Scholar 

  130. Tan, J. & Brill, J. A. Cinderella story: PI4P goes from precursor to key signaling molecule. Crit. Rev. Biochem. Mol. Biol. 49, 33–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Burke, J. E. Structural basis for regulation of phosphoinositide kinases and their involvement in human disease. Mol. Cell 71, 653–673 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Nakatsu, F. et al. PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. J. Cell Biol. 199, 1003–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bojjireddy, N. et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J. Biol. Chem. 289, 6120–6132 (2014). This article shows that knock-down of PI4KA activity at the plasma membrane either pharmacologically or genetically is lethal owing to severe intestinal necrosis, revealing the essential role of PI4KA in maintaining PI4P and PIP2 levels at the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nakagawa, T., Goto, K. & Kondo, H. Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J. Biol. Chem. 271, 12088–12094 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Lees, J. A. et al. Architecture of the human PI4KIIIα lipid kinase complex. Proc. Natl Acad. Sci. USA 114, 13720–13725 (2017). This study reveals molecular insight into the architechture and assembly of the PI4KA–TTC7–FAM126 complex that generates PI4P at the plasma membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wu, X. et al. Structural insights into assembly and regulation of the plasma membrane phosphatidylinositol 4-kinase complex. Dev. Cell 28, 19–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Baskin, J. M. et al. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane. Nat. Cell Biol. 18, 132–138 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Raghu, P., Joseph, A., Krishnan, H., Singh, P. & Saha, S. Phosphoinositides: regulators of nervous system function in health and disease. Front. Mol. Neurosci. 12, 208 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pagnamenta, A. T. et al. Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Hum. Mol. Genet. 24, 3732–3741 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Salter, C. G. et al. Biallelic PI4KA variants cause neurological, intestinal and immunological disease. Brain 144, 3597–3610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bigorgne, A. E. et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Invest. 124, 328–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Avitzur, Y. et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146, 1028–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, R. et al. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias. J. Allergy Clin. Immunol. 132, 656–664.e17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Berger, K. L. et al. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc. Natl Acad. Sci. USA 106, 7577–7582 (2009). This is one of the first studies to identify the role of PI4KA and its product PI4P as essential in the viral replication of HCV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dorobantu, C. M. et al. Modulation of the host lipid landscape to promote RNA virus replication: the picornavirus encephalomyocarditis virus converges on the pathway used by hepatitis C virus. PLoS Pathog. 11, e1005185 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Burke, J. E. et al. Structures of PI4KIIIβ complexes show simultaneous recruitment of Rab11 and its effectors. Science 344, 1035–1038 (2014). This study reveals molecular insight into the structure and inhibition of PI4KB, and how it can be regulated by protein-binding partners.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McPhail, J. A., Ottosen, E. H., Jenkins, M. L. & Burke, J. E. The molecular basis of Aichi virus 3A protein activation of phosphatidylinositol 4 kinase IIIβ, PI4KB, through ACBD3. Structure 25, 121–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Klima, M. et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci. Rep. 6, 23641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hausser, A. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIbeta at the Golgi complex. Nat. Cell Biol. 7, 880–886 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chalupská, D. et al. Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins. Sci. Rep. 9, 567 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. McPhail, J. A. et al. Characterization of the c10orf76-PI4KB complex and its necessity for Golgi PI4P levels and enterovirus replication. EMBO Rep. 21, e48441 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Mesmin, B. et al. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. EMBO J. 36, 3156–3174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Brill, J. A., Hime, G. R., Scharer-Schuksz, M. & Fuller, M. T. A phospholipid kinase regulates actin organization and intercellular bridge formation during germline cytokinesis. Development 127, 3855–3864 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Baba, T. et al. Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc. Natl Acad. Sci. USA 117, 28102–28113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. van der Schaar, H. M., Dorobantu, C. M., Albulescu, L., Strating, J. R. P. M. & van Kuppeveld, F. J. M. Fat(al) attraction: picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol. 24, 535–546 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Altan-Bonnet, N. & Balla, T. Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends Biochem. Sci. 37, 293–302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hsu, N.-Y. et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141, 799–811 (2010). This is one of the first studies to identify the role of PI4KB and its product PI4P as essential in the viral replication of enteroviruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nakanishi, S., Catt, K. J. & Balla, T. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc. Natl Acad. Sci. USA 92, 5317–5321 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nakanishi, S., Catt, K. J. & Balla, T. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc. Natl Acad. Sci. USA 92, 5317–5321 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Meyers, R. & Cantley, L. C. Cloning and characterization of a wortmannin-sensitive human phosphatidylinositol 4-kinase. J. Biol. Chem. 272, 4384–4390 (1997).

    Article  CAS  PubMed  Google Scholar 

  161. Bianco, A. et al. Metabolism of phosphatidylinositol 4-kinase IIIα-dependent PI4P Is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog. 8, e1002576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vaillancourt, F. H. et al. Evaluation of phosphatidylinositol-4-kinase IIIα as a hepatitis C virus drug target. J. Virol. 86, 11595–11607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Leivers, A. L. et al. Discovery of selective small molecule type III phosphatidylinositol 4-kinase alpha (PI4KIIIα) inhibitors as anti hepatitis C (HCV) agents. J. Med. Chem. 57, 2091–2106 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Raubo, P. et al. Discovery of potent, selective small molecule inhibitors of α-subtype of type III phosphatidylinositol-4-kinase (PI4KIIIα). Bioorg. Med. Chem. Lett. 25, 3189–3193 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Waring, M. J. et al. Potent, selective small molecule inhibitors of type III phosphatidylinositol-4-kinase α- but not β-inhibit the phosphatidylinositol signaling cascade and cancer cell proliferation. Chem. Commun. 50, 5388–5390 (2014).

    Article  CAS  Google Scholar 

  166. Knight, Z. et al. A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125, 733–747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rutaganira, F. U. et al. Design and structural characterization of potent and selective inhibitors of phosphatidylinositol 4 kinase IIIβ. J. Med. Chem. 59, 1830–1839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Phillpotts, R. J., Wallace, J., Tyrrell, D. A. & Tagart, V. B. Therapeutic activity of enviroxime against rhinovirus infection in volunteers. Antimicrob. Agents Chemother. 23, 671–675 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Arita, M. et al. Phosphatidylinositol 4-kinase III beta is a target of enviroxime-like compounds for antipoliovirus activity. J. Virol. 85, 2364–2372 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. van der Schaar, H. M. et al. A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIβ. Antimicrob. Agents Chemother. 57, 4971–4981 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Mejdrová, I. et al. Highly selective phosphatidylinositol 4-Kinase IIIβ inhibitors and structural insight into their mode of action. J. Med. Chem. 58, 3767–3793 (2015).

    Article  PubMed  Google Scholar 

  172. Mejdrová, I. et al. Rational design of novel highly potent and selective phosphatidylinositol 4-Kinase IIIβ (PI4KB) inhibitors as broad-spectrum antiviral agents and tools for chemical biology. J. Med. Chem. 60, 100–118 (2017).

    Article  PubMed  Google Scholar 

  173. McPhail, J. A. & Burke, J. E. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic https://doi.org/10.1111/tra.12841 (2022).

    Article  PubMed  Google Scholar 

  174. Lamarche, M. J. et al. Anti-hepatitis C virus activity and toxicity of type III phosphatidylinositol-4-kinase beta inhibitors. Antimicrob. Agents Chemother. 56, 5149–5156 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Reuberson, J. et al. Discovery of a potent, orally bioavailable PI4KIIIβ inhibitor (UCB9608) able to significantly prolong allogeneic organ engraftment in vivo. J. Med. Chem. 61, 6705–6723 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Spickler, C. et al. Phosphatidylinositol 4-kinase III beta is essential for replication of human rhinovirus and its inhibition causes a lethal phenotype in vivo. Antimicrob. Agents Chemother. 57, 3358–3368 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. McNamara, C. W. et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504, 248–253 (2013). This is the first study to report that inhibition of the Plasmodium variant of PI4KB was a potential therapeutic approach for malaria across all Plasmodium lifecycle stages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Manjunatha, U. H. et al. A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis. Nature 546, 376–380 (2017). This article shows that small-molecule inhibition of the Cryptosporidium variant of PI4K shows therapeutic promise in the treatment of cryptosporidiosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ghidelli-Disse, S. et al. Identification of Plasmodium PI4 kinase as target of MMV390048 by chemoproteomics. Malar. J. 13, P38 (2014).

    Article  PubMed Central  Google Scholar 

  180. Kato, N. et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 538, 344–349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Paquet, T. et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med. 9, eaad9735 (2017). This article describes the pre-clinical efficacy of the first plasmodium PI4K inhibitor to enter clinical trials as a potential therapeutic towards malaria.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Fienberg, S. et al. Structural basis for inhibitor potency and selectivity of Plasmodium falciparum phosphatidylinositol 4-kinase inhibitors. ACS Infect. Dis. 6, 3048–3063 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Arendse, L. B., Wyllie, S., Chibale, K. & Gilbert, I. H. Plasmodium kinases as potential drug targets for malaria: challenges and opportunities. ACS Infect. Dis. 7, 518–534 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Brunschwig, C. et al. UCT943, a next-generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria. Antimicrob. Agents Chemother. 62, 62 (2018).

    Google Scholar 

  185. Adhikari, H. et al. Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Nat. Commun. 12, 5248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kattan, W. E. et al. Components of the phosphatidylserine endoplasmic reticulum to plasma membrane transport mechanism as targets for KRAS inhibition in pancreatic cancer. Proc. Natl Acad. Sci. USA 118, e2114126118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Shi, L. et al. Addiction to Golgi-resident PI4P synthesis in chromosome 1q21.3-amplified lung adenocarcinoma cells. Proc. Natl Acad. Sci. USA 118, e2023537118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tan, X. et al. PI4KIIIβ is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci. Transl. Med. 12, eaax3772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gupta, S. et al. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Gulluni, F., De Santis, M. C., Margaria, J. P., Martini, M. & Hirsch, E. Class II PI3K functions in cell biology and disease. Trends Cell Biol. 29, 339–359 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Lo, W.-T. et al. Structural basis of phosphatidylinositol 3-kinase C2α function. Nat. Struct. Mol. Biol. 29, 218–228 (2022). This study describes the first molecular insight into how the class II PI3Ks are regulated by inhibitory interactions with their regulatory domains, and into their inhibition by small-molecule inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Gaidarov, I., Smith, M. E., Domin, J. & Keen, J. H. The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol. Cell 7, 443–449 (2001).

    Article  CAS  PubMed  Google Scholar 

  193. Wang, H. et al. Autoregulation of class II Alpha PI3K activity by its lipid-binding PX-C2 domain module. Mol. Cell 71, 343–351.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Chen, K.-E., Tillu, V. A., Chandra, M. & Collins, B. M. Molecular basis for membrane recruitment by the PX and C2 domains of class II phosphoinositide 3-kinase-C2α. Structure 26, 1612–1625.e4 (2018).

    Article  CAS  PubMed  Google Scholar 

  195. Posor, Y. et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3, 4-bisphosphate. Nature 499, 233–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Yoshioka, K. et al. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat. Med. 18, 1560–1569 (2012). This study reveals the crucial role of the PIK3C2A isoform of class II PI3K in angiogenesis, and as a potential therapeutic target in vascular disease.

    Article  CAS  PubMed  Google Scholar 

  197. Franco, I. et al. PI3K class II α controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev. Cell 28, 647–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Alliouachene, S. et al. Inactivation of class II PI3K-C2α induces leptin resistance, age-dependent insulin resistance and obesity in male mice. Diabetologia 59, 1503–1512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Boukhalfa, A. et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat. Commun. 11, 294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tiosano, D. et al. Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet. 15, e1008088 (2019). This work identifies loss-of-function mutations in PIK3C2A in patients that lead to developmental disorders, highlighting a crucial role of class II PI3K in growth, vision and skeletal and/or neurological development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gulluni, F. et al. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science 374, eabk0410 (2021). This work identifies the crucial role of PIK3C2A in cytokinetic abscission in the lens of the eye, identifying the pathogenic mechanism of cataract development in patients with loss-of-function mutations in PIK3C2A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Alliouachene, S. et al. Inactivation of the class II PI3K-C2β potentiates insulin signaling and sensitivity. Cell Rep. 13, 1881–1894 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Anquetil, T. et al. PI3KC2β inactivation stabilizes VE-cadherin junctions and preserves vascular integrity. EMBO Rep. 22, e51299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Posor, Y. et al. Local synthesis of the phosphatidylinositol-3,4-bisphosphate lipid drives focal adhesion turnover. Dev. Cell 57, 1694–1711.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sabha, N. et al. PIK3C2B inhibition improves function and prolongs survival in myotubular myopathy animal models. J. Clin. Invest. 126, 3613–3625 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Marat, A. L. et al. mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate. Science 356, 968–972 (2017).

    Article  CAS  PubMed  Google Scholar 

  207. Gozzelino, L. et al. Defective lipid signalling caused by mutations in PIK3C2B underlies focal epilepsy. Brain 145, 2313–2331 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Domin, J. et al. Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem. J. 326, 139–147 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Selvadurai, M. V. et al. Disrupting the platelet internal membrane via PI3KC2α inhibition impairs thrombosis independently of canonical platelet activation. Sci. Transl. Med. 12, eaar8430 (2020). This study reveals the potential of class II PI3K inhibitors as potent anti-thrombotic agents, with limited effect on activation-dependent platelet function.

    Article  CAS  PubMed  Google Scholar 

  210. Li, H. et al. Phosphoinositide conversion inactivates R-RAS and drives metastases in breast cancer. Adv. Sci. 9, e2103249 (2022).

    Article  Google Scholar 

  211. Lo, W.-T. et al. Development of selective inhibitors of phosphatidylinositol 3-kinase C2α. Nat. Chem. Biol. https://doi.org/10.1038/s41589-022-01118-z (2022). This study reports the identification and structural characterization of the first truly selective class II PI3K inhibitors, opening up the possibilities of class II PI3K inhibitors as therapeutics.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Mountford, J. K. et al. The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nat. Commun. 6, 6535 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Valet, C. et al. Essential role of class II PI3K-C2α in platelet membrane morphology. Blood 126, 1128–1137 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Gulluni, F. et al. Mitotic spindle assembly and genomic stability in breast cancer require PI3K-C2α scaffolding function. Cancer Cell 32, 444–459.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Ryan, E. L., Shelford, J., Massam-Wu, T., Bayliss, R. & Royle, S. J. Defining endogenous TACC3-chTOG-clathrin-GTSE1 interactions at the mitotic spindle using induced relocalization. J. Cell Sci. 134, jcs255794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ohashi, Y., Tremel, S. & Williams, R. L. VPS34 complexes from a structural perspective. J. Lipid Res. 60, 229–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Rostislavleva, K. et al. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350, aac7365 (2015). This study reveals the first molecular insight into the assembly of complex II of the class III PI3K complex, providing unique insight into its architechture and regulation.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Stjepanovic, G., Baskaran, S., Lin, M. G. & Hurley, J. H. Vps34 kinase domain dynamics regulate the autophagic PI 3-kinase complex. Mol. Cell 67, 528–534.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Young, L. N., Goerdeler, F. & Hurley, J. H. Structural pathway for allosteric activation of the autophagic PI 3-kinase complex I. Proc. Natl Acad. Sci. USA 116, 21508–21513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Tremel, S. et al. Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nat. Commun. 12, 1564 (2021). This article reports on the molecular basis for how class III PI3Ks are activated on membranes by Rab GTPases, and reveals crucial differences between complex I and complex II that may be exploited for complex-specific targeting.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–998 (2000).

    Article  CAS  PubMed  Google Scholar 

  222. Bago, R. et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem. J. 463, 413–427 (2014).

    Article  CAS  PubMed  Google Scholar 

  223. Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014).

    Article  CAS  PubMed  Google Scholar 

  224. Ronan, B. et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat. Chem. Biol. 10, 1013–1019 (2014).

    Article  CAS  PubMed  Google Scholar 

  225. Dyczynski, M. et al. Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Lett. 435, 32–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Hu, D. X. et al. Structure-based design of potent, selective, and orally bioavailable VPS34 kinase inhibitors. J. Med. Chem. 65, 11500–11512 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Klionsky, D. J. et al. Autophagy in major human diseases. EMBO J. 40, e108863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Liu, X. et al. Simultaneous inhibition of Vps34 kinase would enhance PI3Kδ inhibitor cytotoxicity in the B-cell malignancies. Oncotarget 7, 53515–53525 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Meunier, G. et al. Antileukemic activity of the VPS34-IN1 inhibitor in acute myeloid leukemia. Oncogenesis 9, 94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Noman, M. Z. et al. Inhibition of Vps34 reprograms cold into hot inflamed tumors and improves anti–PD-1/PD-L1 immunotherapy. Sci. Adv. 6, eaax7881 (2020). This article describes the potential of class III PI3K inhibitors as anti-cancer therapeutics based on mouse models of melanoma and colorectal cancer tumours, specifically in combination with immunotherapy approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Schlütermann, D. et al. Targeting urothelial carcinoma cells by combining cisplatin with a specific inhibitor of the autophagy-inducing class III PtdIns3K complex. Urol. Oncol. 36, 160.e1–160.e13 (2018).

    Article  PubMed  Google Scholar 

  232. Henley, Z. A. et al. Optimization of orally bioavailable PI3Kδ inhibitors and identification of Vps34 as a key selectivity target. J. Med. Chem. 63, 638–655 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Bilanges, B. et al. Vps34 PI 3-kinase inactivation enhances insulin sensitivity through reprogramming of mitochondrial metabolism. Nat. Commun. 8, 1804 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  234. André, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    Article  PubMed  Google Scholar 

  235. Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Ikonomov, O. C., Sbrissa, D., Fenner, H. & Shisheva, A. PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J. Biol. Chem. 284, 35794–35806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Botelho, R. J., Efe, J. A., Teis, D. & Emr, S. D. Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol. Biol. Cell 19, 4273–4286 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Hansen, S. D., Lee, A. A., Duewell, B. R. & Groves, J. T. Membrane-mediated dimerization potentiates PIP5K lipid kinase activity. eLife 11, e73747 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Kunz, J. et al. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell 5, 1–11 (2000).

    Article  CAS  PubMed  Google Scholar 

  240. Kunz, J., Fuelling, A., Kolbe, L. & Anderson, R. A. Stereo-specific substrate recognition by phosphatidylinositol phosphate kinases is swapped by changing a single amino acid residue. J. Biol. Chem. 277, 5611–5619 (2002).

    Article  CAS  PubMed  Google Scholar 

  241. Hu, J. et al. Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled. Nat. Commun. 6, 8205 (2015).

    Article  CAS  PubMed  Google Scholar 

  242. Wills, R. C. et al. A novel homeostatic mechanism tunes PI(4,5)P 2-dependent signaling at the plasma membrane. Preprint available at bioRxiv https://doi.org/10.1101/2022.06.30.498262 (2022).

    Article  Google Scholar 

  243. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Rathinaswamy, M. K. et al. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. Sci. Adv. 7, eabj4282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Vadas, O., Burke, J. E., Zhang, X., Berndt, A. & Williams, R. L. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci. Signal. 4, 1–13 (2011).

    Article  Google Scholar 

  247. Burke, J. E. & Williams, R. L. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 40, 88–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. Dornan, G. L. & Burke, J. E. Molecular mechanisms of human disease mediated by oncogenic and primary immunodeficiency mutations in class IA phosphoinositide 3-kinases. Front. Immunol. 9, 575 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Dyment, D. A. et al. Mutations in PIK3R1 cause SHORT syndrome. Am. J. Hum. Genet. 93, 158–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Thauvin-Robinet, C. et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am. J. Hum. Genet. 93, 141–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Chudasama, K. K. et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am. J. Hum. Genet. 93, 150–157 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Thian, M. et al. Germline biallelic PIK3CG mutations in a multifaceted immunodeficiency with immune dysregulation. Haematologica 105, e488 (2020).

    Article  PubMed  Google Scholar 

  253. Takeda, A. J. et al. Human PI3Kγ deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat. Commun. 10, 4364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561–573 (2005).

    Article  CAS  PubMed  Google Scholar 

  256. Urick, M. E. et al. PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 71, 4061–4067 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Jaiswal, B. S. et al. Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell 16, 463–474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Madsen, R. R. et al. Oncogenic PIK3CA promotes cellular stemness in an allele dose-dependent manner. Proc. Natl Acad. Sci. USA 116, 8380–8389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Vasan, N. et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 366, 714–723 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Castillo, S. D. et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci. Transl. Med. 8, 332ra43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Lindhurst, M. J. et al. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat. Genet. 44, 928–933 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Jia, S. et al. Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454, 776–779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Wee, S. et al. PTEN-deficient cancers depend on PIK3CB. Proc. Natl Acad. Sci. USA 105, 13057–13062 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Angulo, I. et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Lucas, C. L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  266. Takeda, A. J. et al. Novel PIK3CD mutations affecting N-terminal residues of p110δ cause activated PI3Kδ syndrome (APDS) in humans. J. Allergy Clin. Immunol. 140, 1152–1156.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Lucas, C. L. et al. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J. Exp. Med. 211, 2537–2547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Deau, M.-C. et al. A human immunodeficiency caused by mutations in the PIK3R1 gene. J. Clin. Invest. 124, 3923–3928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Dornan, G. L. et al. Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc. Natl Acad. Sci. Usa. 114, 1982–1987 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Kaneda, M. M. et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Campa, C. C. et al. Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nat. Commun. 9, 5232 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Liu, N. et al. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models. Mol. Cancer Ther. 12, 2319–2330 (2013).

    Article  CAS  PubMed  Google Scholar 

  274. Venot, Q. et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 558, 540–546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Gopal, A. K. et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 370, 1008–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Brown, J. R. et al. Idelalisib, an inhibitor of phosphatidylinositol 3 kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia. Blood 123, 3390–3397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Flinn, I. W. et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-δ, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 123, 3406–3413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Kahl, B. S. et al. Results of a phase I study of idelalisib, a PI3Kδ inhibitor, in patients with relapsed or refractory mantle cell lymphoma (MCL). Blood 123, 3398–3405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Fowler, N. H. et al. Umbralisib, a dual PI3Kδ/CK1ε inhibitor in patients with relapsed or refractory indolent lymphoma. J. Clin. Oncol. 39, 1609–1618 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Flinn, I. W. et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood 131, 877–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Chakrabarty, A., Sánchez, V., Kuba, M. G., Rinehart, C. & Arteaga, C. L. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc. Natl Acad. Sci. USA 109, 2718–2723 (2012).

    Article  CAS  PubMed  Google Scholar 

  283. Bosch, A. et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer. Sci. Transl. Med. 7, 283ra51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Toska, E. et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 355, 1324–1330 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Eschweiler, S. et al. Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs. Nature 605, 741–746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Song, K. W. et al. RTK-dependent inducible degradation of mutant PI3Ka drives GDC-0077 (Inavolisib) efficacy. Cancer Discov. 12, 204–219 (2022).

    Article  CAS  PubMed  Google Scholar 

  288. Brown, J. R. & Auger, K. R. Phylogenomics of phosphoinositide lipid kinases: perspectives on the evolution of second messenger signaling and drug discovery. BMC Evolut. Biol. 11, 4 (2011).

    Article  CAS  Google Scholar 

  289. Burke, J. E. et al. Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Structure 19, 1127–1137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Burke, J. E., Perisic, O., Masson, G. R., Vadas, O. & Williams, R. L. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl Acad. Sci. USA 109, 15259–15264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Dbouk, H. A. et al. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci. Signal. 5, ra89 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Vadas, O. et al. Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc. Natl Acad. Sci. USA 110, 18862–18867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.E.B. is supported by the Natural Science and Engineering Research Council (Discovery grant NSERC-2020-04241), the Michael Smith Foundation for Health Research (Scholar Award 17686), the Canadian Institute of Health Research (CIHR Project grant 168998) and the Cancer Research Society (operating grant CRS-843232). J.T. is supported by the Swiss National Science Foundation (#310030_207635). B.M.E. receives research funding from NCI (R01 CA237536, CBC under contract no. 75N91019D00024, task order no. 75N91020F00003) and ACS (RSG-20-064-01-TBE, TLC-21-156-01). G.R.V.H. receives funding from NIGMS (R35 GM119412) and NCATS (R03TR003624). The authors are grateful to R. Wills, A. Shaw and C. Weckerly for valuable discussions and suggestions for the manuscript. They apologize to all authors whose work could not be mentioned because of the limitations on the number of references that could be cited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John E. Burke, Brooke M. Emerling or Gerald R. V. Hammond.

Ethics declarations

Competing interests

J.E.B. reports personal fees from Scorpion Therapeutics and Olema Oncology; and research grants from Novartis. J.T., B.M.E. and G.R.V.H. declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acute myeloid leukaemia

(AML). A fast-growing cancer of the blood and bone marrow.

Alzheimer disease

A progressive brain disorder that affects memory and other cognitive abilities.

Amyotrophic lateral sclerosis

(ALS). A rare neurological disease that affects neurons responsible for controlling voluntary muscle movement.

B cell non-Hodgkin lymphoma

(B-NHL). Cancer that arises when B cells, a type of lymphocyte that normally fights infections by producing antibodies to neutralize foreign invaders, start to grow uncontrollably, eventually overwhelming healthy cells.

Charcot–Marie–Tooth disease

A group of inherited disorders that cause nerve damage. Also referred to as hereditary motor and sensory neuropathy.

Creutzfeldt–Jacob disease

(CJD). A rapidly progressive degenerative brain disorder that leads to dementia and death.

Cryptosporidiosis

A diarrhoeal disease caused by a microscopic parasite called Cryptosporidium, with particular prevalence in children and immunocompromised individuals.

Endocytosis

A cellular process by which cells internalize substances from their external environment.

Frontotemporal dementia

(FTD). An uncommon type of dementia that is a result of damage to neurons in the frontal and temporal lobes of the brain, which causes problems in behaviour and language.

Glioblastoma

(GBM). A fast-growing type of central nervous system tumour that forms from the glial tissue of the brain and spinal cord.

Macroautophagy

A fundamental degradative pathway for cytosolic components, such as proteins, RNA, DNA, lipids and organelles. It involves the sequestering of such cytosolic material in double-membraned structures called autophagosomes, followed by membrane trafficking to the lysosome for degradation and recycling.

Malaria

A disease transmitted by the bite of infected female mosquitoes caused by Plasmodium parasites (five species infect humans, with two species, Plasmodium vivax and Plasmodium falciparum, posing the largest threat).

Parkinson disease

A central nervous system disorder which is associated with a deficiency of the neurotransmitter dopamine and affects movement often resulting in tremors.

Primary lateral sclerosis

(PLS). A rare neuromuscular disease that affects the central motor neurons and is characterized by the gradual weakness and stiffness of muscles.

p53 null tumours

Tumours that are deficient in either the tumour suppressor TP53 gene or the functional p53 protein product, which induces apoptosis, cell cycle arrest or senescence in response to distinct stimuli.

TTC7A deficiency

A rare genetic disorder caused by dysfunction of a gene (TTC7A), which causes diarrhoea, inflammation of the intestines, bowel obstructions, immune dysfunction and an inability to absorb nutrients.

Viral pathogens

Viruses that can infect and replicate within human cells and cause disease.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, J.E., Triscott, J., Emerling, B.M. et al. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 22, 357–386 (2023). https://doi.org/10.1038/s41573-022-00582-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-022-00582-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research