Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10–15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.

Key points

  • Amyotrophic lateral sclerosis (ALS), with a lifetime risk of ~1/350, represents an area of huge unmet need and is a useful model of neurodegeneration, with measurable changes in motor function over a relatively short time frame.

  • The field of ALS has advanced significantly over the last decade, with rapid progress in understanding the genetic architecture and the pathophysiological mechanisms of the disease, and in the development of robust, exploitable preclinical model systems.

  • Potential biomarkers of phenotypic conversion, target engagement and therapeutic efficacy have now emerged. Plasma and cerebrospinal fluid (CSF) neurofilament protein levels look particularly promising and may improve the efficiency of future clinical trials and allow identification of responder subgroups.

  • The identification of several biological pathways with the potential to be tackled therapeutically has generated a promising pipeline of preclinical approaches and clinical trials.

  • Genetic therapy trials are now poised for successful translation. In addition, combination therapies or therapies with the potential to ameliorate several pathophysiological mechanisms contributing to motor neuron injury are now being evaluated.

  • Recent innovations in trial design are poised to enhance outcome measures, and patient selection and randomization, while minimizing the impact of disease heterogeneity and increasing statistical power.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALS pathophysiology, genetic causes and risk factors.
Fig. 2: The major ALS pathophysiological targets currently being pursued.
Fig. 3: A rational and enhanced preclinical efficacy screening cascade for ALS.

Similar content being viewed by others

References

  1. Longinetti, E. & Fang, F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr. Opin. Neurol. 32, 771–776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brown, C. A., Lally, C., Kupelian, V. & Flanders, W. D. Estimated prevalence and incidence of amyotrophic lateral sclerosis and SOD1 and C9orf72 genetic variants. Neuroepidemiology 55, 342–353 (2021).

    Article  PubMed  Google Scholar 

  3. Ryan, M., Heverin, M., McLaughlin, R. L. & Hardiman, O. Lifetime risk and heritability of amyotrophic lateral sclerosis. JAMA Neurol. 76, 1367–1374 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. GBD 2016 Motor Neuron Disease Collaborators. Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 1083–1097 (2018).

    Article  Google Scholar 

  5. Masrori, P. & Van Damme, P. Amyotrophic lateral sclerosis: a clinical review. Eur. J. Neurol. 27, 1918–1929 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elamin, M. et al. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 80, 1590–1597 (2013).

    Article  PubMed  Google Scholar 

  7. Phukan, J. et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J. Neurol. Neurosurg. Psychiatry 83, 102–108 (2012).

    Article  PubMed  Google Scholar 

  8. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan, R. H., Ke, Y. D., Ittner, L. M. & Halliday, G. M. ALS/FTLD: experimental models and reality. Acta Neuropathol. 133, 177–196 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17085 (2017).

    Article  PubMed  Google Scholar 

  12. Mackenzie, I. R. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007). This paper highlights the important molecular features of SOD1-ALS, which is not a TDP-43 proteinopathy and may partially explain why treatments evaluated in SOD1-transgenic mouse models have not generally translated well to the clinic.

    Article  CAS  PubMed  Google Scholar 

  13. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kato, S. et al. Copper chaperone for superoxide dismutase co-aggregates with superoxide dismutase 1 (SOD1) in neuronal Lewy body-like hyaline inclusions: an immunohistochemical study on familial amyotrophic lateral sclerosis with SOD1 gene mutation. Acta Neuropathol. 102, 233–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ramos-Campoy, O. et al. Systematic screening of ubiquitin/p62 aggregates in cerebellar cortex expands the neuropathological phenotype of the C9orf72 expansion mutation. J. Neuropathol. Exp. Neurol. 77, 703–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Turner, M. R. & Talbot, K. Mimics and chameleons in motor neurone disease. Pract. Neurol. 13, 153–164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brooks, B. R., Miller, R. G., Swash, M. & Munsat, T. L. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 1, 293–299 (2000).

    Article  CAS  Google Scholar 

  18. de Carvalho, M. et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 119, 497–503 (2008).

    Article  PubMed  Google Scholar 

  19. Shefner, J. M. et al. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol. 131, 1975–1978 (2020).

    Article  PubMed  Google Scholar 

  20. Petrov, D., Mansfield, C., Moussy, A. & Hermine, O. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front. Aging Neurosci. 9, 68 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lacomblez, L. et al. A confirmatory dose-ranging study of riluzole in ALS. ALS/Riluzole Study Group-II. Neurology 47, S242–S250 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lacomblez, L., Bensimon, G., Leigh, P. N., Guillet, P. & Meininger, V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347, 1425–1431 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Bensimon, G., Lacomblez, L. & Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330, 585–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Kretschmer, B. D., Kratzer, U. & Schmidt, W. J. Riluzole, a glutamate release inhibitor, and motor behavior. Naunyn Schmiedebergs Arch. Pharmacol. 358, 181–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, S. J., Wang, K. Y. & Wang, W. C. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 125, 191–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Andrews, J. A. et al. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 509–518 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. The Writing Group on behalf of the Edaravone (MCI-186) ALS 19 Study Group Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 16, 505–512 (2017).

    Article  Google Scholar 

  28. Sawada, H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert. Opin. Pharmacother. 18, 735–738 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Bourke, S. C. et al. Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol. 5, 140–147 (2006).

    Article  PubMed  Google Scholar 

  30. Lechtzin, N. et al. Early use of non-invasive ventilation prolongs survival in subjects with ALS. Amyotroph. Lateral Scler. 8, 185–188 (2007).

    Article  PubMed  Google Scholar 

  31. Rosen, D. R. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Ranganathan, R. et al. Multifaceted genes in amyotrophic lateral sclerosis-frontotemporal dementia. Front. Neurosci. 14, 684 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat. Genet. 53, 1636–1648 (2021). This paper demonstrates that the genetic architecture of ALS is largely based on rare variants and that powerful new genetic insights can arise through the analysis of large numbers of cases available through the Project MinE consortium.

    Article  PubMed  PubMed Central  Google Scholar 

  34. van Rheenen, W. et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat. Genet. 48, 1043–1048 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shepheard, S. R. et al. Value of systematic genetic screening of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 92, 510–518 (2021). This prospective study demonstrates the importance of offering genetic screening to all patients with ALS irrespective of a family history of the disease. Clinically reportable genetic changes can frequently be found in patients with apparently sporadic disease.

    Article  PubMed  Google Scholar 

  36. Zhang, S. et al. Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron 110, 992–1008.e11 (2022). This paper describes the use of machine learning to identify ALS risk genes by integrating GWAS and epigenetic data, which led to a fivefold increase in recovered heritability.

    Article  CAS  PubMed  Google Scholar 

  37. Al-Chalabi, A. et al. Analysis of amyotrophic lateral sclerosis as a multistep process: a population-based modelling study. Lancet Neurol. 13, 1108–1113 (2014). This paper highlights the importance of gene–environment interactions in the multistep process required for ALS to manifest clinically.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Julian, T. H. et al. A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 145, 832–842 (2021).

    Article  PubMed Central  Google Scholar 

  39. Julian, T. H. et al. Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 68, 103397 (2021). This study provides evidence that Mendelian randomization can overcome some of the confounding factors that have been identified in previous studies attempting to identify environmental risk factors for ALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bandres-Ciga, S. et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Ann. Neurol. 85, 470–481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. McKay, K. A. et al. Military service and related risk factors for amyotrophic lateral sclerosis. Acta Neurol. Scand. 143, 39–50 (2021).

    Article  PubMed  Google Scholar 

  42. Ingre, C., Roos, P. M., Piehl, F., Kamel, F. & Fang, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 7, 181–193 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Lacorte, E. et al. Physical activity, and physical activity related to sports, leisure and occupational activity as risk factors for ALS: a systematic review. Neurosci. Biobehav. Rev. 66, 61–79 (2016).

    Article  PubMed  Google Scholar 

  44. Armon, C. Smoking may be considered an established risk factor for sporadic ALS. Neurology 73, 1693–1698 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Barber, S. C. & Shaw, P. J. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free. Radic. Biol. Med. 48, 629–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Ferraiuolo, L., Kirby, J., Grierson, A. J., Sendtner, M. & Shaw, P. J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7, 616–630 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. D’Amico, E., Factor-Litvak, P., Santella, R. M. & Mitsumoto, H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic. Biol. Med. 65, 509–527 (2013).

    Article  PubMed  Google Scholar 

  48. Mitsumoto, H. et al. Oxidative stress biomarkers in sporadic ALS. Amyotroph. Lateral Scler. 9, 177–183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim, K. Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyotrophic lateral sclerosis. Antioxidants 10, 1011 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cuadrado, A. et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18, 295–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Jimenez-Villegas, J. et al. NRF2 as a therapeutic opportunity to impact in the molecular roadmap of ALS. Free Radic. Biol. Med. 173, 125–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Cohen, T. J. et al. An acetylation switch controls TDP-43 function and aggregation propensity. Nat. Commun. 6, 5845 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Colombrita, C. et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J. Neurochem. 111, 1051–1061 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Goh, C. W. et al. Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. J. Biol. Chem. 293, 163–176 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Zuo, X. et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat. Struct. Mol. Biol. 28, 132–142 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Kazama, M. et al. Astrocytes release glutamate via cystine/glutamate antiporter upregulated in response to increased oxidative stress related to sporadic amyotrophic lateral sclerosis. Neuropathology 40, 587–598 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Deora, V. et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia 68, 407–421 (2020).

    Article  PubMed  Google Scholar 

  58. Benatar, M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol. Dis. 26, 1–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. King, A. E., Woodhouse, A., Kirkcaldie, M. T. & Vickers, J. C. Excitotoxicity in ALS: overstimulation, or overreaction? Exp. Neurol. 275, 162–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Van Damme, P., Dewil, M., Robberecht, W. & Van Den Bosch, L. Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener. Dis. 2, 147–159 (2005).

    Article  PubMed  Google Scholar 

  61. Lewerenz, J. et al. The cystine/glutamate antiporter system xc in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18, 522–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams, T. L., Day, N. C., Ince, P. G., Kamboj, R. K. & Shaw, P. J. Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 42, 200–207 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Ince, P. et al. Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol. 19, 291–299 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Lauriat, T. L. & McInnes, L. A. EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol. Psychiatry 12, 1065–1078 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Pajarillo, E., Rizor, A., Lee, J., Aschner, M. & Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: potential targets for neurotherapeutics. Neuropharmacology 161, 107559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Selvaraj, B. T. et al. C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca2+-permeable AMPA receptor-mediated excitotoxicity. Nat. Commun. 9, 347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dafinca, R. et al. Impairment of mitochondrial calcium buffering links mutations in C9ORF72 and TARDBP in iPS-derived motor neurons from patients with ALS/FTD. Stem Cell Rep. 14, 892–908 (2020).

    Article  CAS  Google Scholar 

  69. Vucic, S., Pavey, N., Haidar, M., Turner, B. J. & Kiernan, M. C. Cortical hyperexcitability: diagnostic and pathogenic biomarker of ALS. Neurosci. Lett. 759, 136039 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Lamanauskas, N. & Nistri, A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro. Eur. J. Neurosci. 27, 2501–2514 (2008).

    Article  PubMed  Google Scholar 

  71. Dyer, A. M. & Smith, A. Riluzole 5 mg/mL oral suspension: for optimized drug delivery in amyotrophic lateral sclerosis. Drug. Des. Devel Ther. 11, 59–64 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Battaglia, G. & Bruno, V. Metabotropic glutamate receptor involvement in the pathophysiology of amyotrophic lateral sclerosis: new potential drug targets for therapeutic applications. Curr. Opin. Pharmacol. 38, 65–71 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Cabral-Costa, J. V. & Kowaltowski, A. J. Neurological disorders and mitochondria. Mol. Asp. Med. 71, 100826 (2020).

    Article  CAS  Google Scholar 

  74. Jhanji, R., Behl, T., Sehgal, A. & Bungau, S. Mitochondrial dysfunction and traffic jams in amyotrophic lateral sclerosis. Mitochondrion 58, 102–110 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Debska-Vielhaber, G. et al. Impairment of mitochondrial oxidative phosphorylation in skin fibroblasts of SALS and FALS patients is rescued by in vitro treatment with ROS scavengers. Exp. Neurol. 339, 113620 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Bernard-Marissal, N., Chrast, R. & Schneider, B. L. Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis. 9, 333 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jankovic, M. et al. Current concepts on genetic aspects of mitochondrial dysfunction in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 22, 9832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi, S. Y. et al. C9ORF72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo. Nat. Neurosci. 22, 851–862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, T. et al. C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. Cell Metab. 33, 531–546.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Izumikawa, K. et al. TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Sci. Rep. 7, 7709 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cudkowicz, M. E. et al. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurol. 12, 1059–1067 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Pastula, D. M., Moore, D. H. & Bedlack, R. S. Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 12, CD005225 (2012).

    PubMed  Google Scholar 

  83. Kaufmann, P. et al. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann. Neurol. 66, 235–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lenglet, T. et al. A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur. J. Neurol. 21, 529–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Elia, A. E. et al. Tauroursodeoxycholic acid in the treatment of patients with amyotrophic lateral sclerosis. Eur. J. Neurol. 23, 45–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Paganoni, S. et al. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve 63, 31–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Paganoni, S. et al. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N. Engl. J. Med. 383, 919–930 (2020). This phase II clinical trial provided some evidence of benefit on decline in the ALSFRS-R and used a combination of agents to tackle several pathophysiological disease mechanisms. This drug combination has been licensed for use in the USA and Canada.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choi, S. Y. et al. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis. 11, 888 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sassani, M. et al. Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis. Brain 143, 3603–3618 (2020).

    Article  PubMed  Google Scholar 

  90. Webster, C. P., Smith, E. F., Shaw, P. J. & De Vos, K. J. Protein homeostasis in amyotrophic lateral sclerosis: therapeutic opportunities? Front. Mol. Neurosci. 10, 123 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ramesh, N. & Pandey, U. B. Autophagy dysregulation in ALS: when protein aggregates get out of hand. Front. Mol. Neurosci. 10, 263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Montibeller, L., Tan, L. Y., Kim, J. K., Paul, P. & de Belleroche, J. Tissue-selective regulation of protein homeostasis and unfolded protein response signalling in sporadic ALS. J. Cell Mol. Med. 24, 6055–6069 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oakes, J. A., Davies, M. C. & Collins, M. O. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol. Brain 10, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Webster, C. P. et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35, 1656–1676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Foster, A. D. & Rea, S. L. The role of sequestosome 1/p62 protein in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Neural Regen. Res. 15, 2186–2194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ying, H. & Yue, B. Y. Optineurin: the autophagy connection. Exp. Eye Res. 144, 73–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Rothenberg, C. et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy. Hum. Mol. Genet. 19, 3219–3232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, J. J. et al. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc. Natl Acad. Sci. USA 117, 15230–15241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nguyen, D. K. H., Thombre, R. & Wang, J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci. Lett. 697, 34–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Brockington, A. et al. Unravelling the enigma of selective vulnerability in neurodegeneration: motor neurons resistant to degeneration in ALS show distinct gene expression characteristics and decreased susceptibility to excitotoxicity. Acta Neuropathol. 125, 95–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Yerbury, J. J., Farrawell, N. E. & McAlary, L. Proteome homeostasis dysfunction: a unifying principle in ALS pathogenesis. Trends Neurosci. 43, 274–284 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Suk, T. R. & Rousseaux, M. W. C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener. 15, 45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mitra, J. et al. Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc. Natl Acad. Sci. USA 116, 4696–4705 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nagano, S. et al. TDP-43 transports ribosomal protein mRNA to regulate axonal local translation in neuronal axons. Acta Neuropathol. 140, 695–713 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Brown, A. L. e. a. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603, 131–137 (2022). This paper provides new insights into the consequences of loss of the normal nuclear function of TDP-43 that occurs as a result of nuclear depletion during the process of motor neuron injury and TDP-43 proteinopathy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dyer, M. S. et al. Mislocalisation of TDP-43 to the cytoplasm causes cortical hyperexcitability and reduced excitatory neurotransmission in the motor cortex. J. Neurochem. 157, 1300–1315 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Boeynaems, S. et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65, 1044–1055.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ratti, A. et al. Chronic stress induces formation of stress granules and pathological TDP-43 aggregates in human ALS fibroblasts and iPSC-motoneurons. Neurobiol. Dis. 145, 105051 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Baradaran-Heravi, Y., Van Broeckhoven, C. & van der Zee, J. Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiol. Dis. 134, 104639 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Nahm, M. et al. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci. Transl. Med. 12, eaax3993 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Gwon, Y. et al. Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372, eabf6548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Buratti, E. Targeting TDP-43 proteinopathy with drugs and drug-like small molecules. Br. J. Pharmacol. 178, 1298–1315 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Kalmar, B. & Greensmith, L. Cellular chaperones as therapeutic targets in ALS to restore protein homeostasis and improve cellular function. Front. Mol. Neurosci. 10, 251 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. GlobalData Healthcare. Orphazyme’s arimoclomol fails to show efficacy in a specific ALS population. Clinical Trials Arena https://www.clinicaltrialsarena.com/comment/orphazyme-arimoclomol-als/ (2021).

  115. Wang, I. F., Tsai, K. J. & Shen, C. K. Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy 9, 239–240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, Y. et al. Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience 298, 12–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Barmada, S. J. et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 10, 677–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fang, M. Y. et al. Small-molecule modulation of TDP-43 recruitment to stress granules prevents persistent TDP-43 accumulation in ALS/FTD. Neuron 103, 802–819.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dubinski, A. & Vande Velde, C. Altered stress granule disassembly: links to neurodegenerative disease? Trends Neurosci. 44, 765–766 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Appel, S. H., Beers, D. R. & Zhao, W. Amyotrophic lateral sclerosis is a systemic disease: peripheral contributions to inflammation-mediated neurodegeneration. Curr. Opin. Neurol. 34, 765–772 (2021).

    Article  PubMed  Google Scholar 

  121. Vu, L. et al. Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. J. Neurol. Neurosurg. Psychiatry 91, 350–358 (2020).

    Article  PubMed  Google Scholar 

  122. Westergard, T. & Rothstein, J. D. Astrocyte diversity: current insights and future directions. Neurochem. Res. 45, 1298–1305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yamanaka, K. & Komine, O. The multi-dimensional roles of astrocytes in ALS. Neurosci. Res. 126, 31–38 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Meyer, K. et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc. Natl Acad. Sci. USA 111, 829–832 (2014). This paper demonstrates the advantages of direct reprogramming of ALS patient fibroblasts, via induced neural progenitor cells, into astrocytes, which are toxic to motor neurons in coculture and are non-clonal and retain the epigenetic features of ageing.

    Article  CAS  PubMed  Google Scholar 

  125. Ferraiuolo, L. et al. Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134, 2627–2641 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Butovsky, O. & Weiner, H. L. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci. 19, 622–635 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cassina, P., Miquel, E., Martinez-Palma, L. & Cassina, A. Glial metabolic reprogramming in amyotrophic lateral sclerosis. Neuroimmunomodulation 28, 204–212 (2021).

    Article  CAS  PubMed  Google Scholar 

  128. Haukedal, H. & Freude, K. Implications of microglia in amyotrophic lateral sclerosis and frontotemporal dementia. J. Mol. Biol. 431, 1818–1829 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Liao, B., Zhao, W., Beers, D. R., Henkel, J. S. & Appel, S. H. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol. 237, 147–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Du, Y. et al. Increased activation ability of monocytes from ALS patients. Exp. Neurol. 328, 113259 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Haidet-Phillips, A. M. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29, 824–828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Frakes, A. E. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smethurst, P. et al. Distinct responses of neurons and astrocytes to TDP-43 proteinopathy in amyotrophic lateral sclerosis. Brain 143, 430–440 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Svahn, A. J. et al. Nucleo-cytoplasmic transport of TDP-43 studied in real time: impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons. Acta Neuropathol. 136, 445–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jara, J. H. et al. MCP1-CCR2 and neuroinflammation in the ALS motor cortex with TDP-43 pathology. J. Neuroinflammation 16, 196 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Yu, C. H. et al. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183, 636–649.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lee, J. D. & Woodruff, T. M. TDP-43 puts the STING in ALS. Trends Neurosci. 44, 81–82 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Morello, G., Spampinato, A. G. & Cavallaro, S. Neuroinflammation and ALS: transcriptomic insights into molecular disease mechanisms and therapeutic targets. Mediators Inflamm. 2017, 7070469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Pang, W. & Hu, F. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD. J. Neurochem. 157, 334–350 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. McCauley, M. E. et al. C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 585, 96–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Werry, E. L. et al. Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. Int. J. Mol. Sci. 20, 3161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kok, J. R., Palminha, N. M., Dos Santos Souza, C., El-Khamisy, S. F. & Ferraiuolo, L. DNA damage as a mechanism of neurodegeneration in ALS and a contributor to astrocyte toxicity. Cell Mol. Life Sci. 78, 5707–5729 (2021). This paper highlights the importance of DNA damage as a contributory pathophysiological mechanism in ALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ferrante, R. J. et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074 (1997).

    Article  CAS  PubMed  Google Scholar 

  144. Bogdanov, M. et al. Increased oxidative damage to DNA in ALS patients. Free. Radic. Biol. Med. 29, 652–658 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, B. W., Jeong, Y. E., Wong, M. & Martin, L. J. DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol. Commun. 8, 7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Farg, M. A., Konopka, A., Soo, K. Y., Ito, D. & Atkin, J. D. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum. Mol. Genet. 26, 2882–2896 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Lopez-Gonzalez, R. et al. Poly(GR) in C9ORF72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron 92, 383–391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Walker, C. et al. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci. 20, 1225–1235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Konopka, A. et al. Impaired NHEJ repair in amyotrophic lateral sclerosis is associated with TDP-43 mutations. Mol. Neurodegener. 15, 51 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Giannini, M. et al. TDP-43 mutations link amyotrophic lateral sclerosis with R-loop homeostasis and R loop-mediated DNA damage. PLoS Genet. 16, e1009260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, H. et al. Mutant FUS causes DNA ligation defects to inhibit oxidative damage repair in amyotrophic lateral sclerosis. Nat. Commun. 9, 3683 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Higelin, J. et al. NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient-derived motoneurons. Stem Cell Res. 30, 150–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Butti, Z. & Patten, S. A. RNA dysregulation in amyotrophic lateral sclerosis. Front. Genet. 9, 712 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee, Y. B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178–1186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cooper-Knock, J. et al. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137, 2040–2051 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl Acad. Sci. USA 110, E4530–E4539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hautbergue, G. M. et al. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat. Commun. 8, 16063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Boeynaems, S. et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD. Sci. Rep. 6, 20877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Freibaum, B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jovicic, A. et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18, 1226–1229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, K. et al. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958–971.e17 (2018). This paper demonstrates the importance of dysregulation of stress granule dynamics and its interaction with nucleocytoplasmic transport as a pathophysiological mechanism contributing to motor neuron injury in models of ALS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Anand, A. A. & Walter, P. Structural insights into ISRIB, a memory-enhancing inhibitor of the integrated stress response. FEBS J. 287, 239–245 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ederle, H. et al. Nuclear egress of TDP-43 and FUS occurs independently of exportin-1/CRM1. Sci. Rep. 8, 7084 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Lee, J. et al. LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biol. 18, e3001002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. De Vos, K. J., Grierson, A. J., Ackerley, S. & Miller, C. C. Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008).

    Article  PubMed  Google Scholar 

  170. Nicolas, A. et al. Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 1268–1283.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liao, Y. C. et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell 179, 147–164.e20 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gibbs, K. L. et al. Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. Cell Death Dis. 9, 596 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Fellows, A. D., Rhymes, E. R., Gibbs, K. L., Greensmith, L. & Schiavo, G. IGF1R regulates retrograde axonal transport of signalling endosomes in motor neurons. EMBO Rep. 21, e49129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Guo, W. et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 8, 861 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Sleigh, J. N. et al. Mice carrying ALS mutant TDP-43, but not mutant FUS, display in vivo defects in axonal transport of signaling endosomes. Cell Rep. 30, 3655–3662.e2 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Coleman, M. P. & Hoke, A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat. Rev. Neurosci. 21, 183–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. White, M. A. et al. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathol. Commun. 7, 166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Becker, L. A. et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367–371 (2017). The demonstration that depletion of ataxin 2 ameliorates TDP-43 proteinopathy has led to genetic therapy approaches in preclinical models and a clinical trial. It may theoretically be beneficial for patients with sporadic ALS as well as those with ALS with known genetic causes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ray, F. Ionis Opening Phase 3 Trial of ION363, Antisense Therapy for FUS-ALS. ALS https://alsnewstoday.com/news/ionis-opening-phase-3-trial-ion363-antisense-therapy-for-fus-als/ (2021).

  180. Cudkowicz, M. E. et al. A randomized placebo-controlled phase 3 study of mesenchymal stem cells induced to secrete high levels of neurotrophic factors in amyotrophic lateral sclerosis. Muscle Nerve 65, 291–302 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Shefner, J. M. et al. A phase 2, double-blind, randomized, dose-ranging trial of reldesemtiv in patients with ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 287–299 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Berry, J. D. et al. NurOwn, phase 2, randomized, clinical trial in patients with ALS: safety, clinical, and biomarker results. Neurology 93, e2294–e2305 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Gothelf, Y., Abramov, N., Harel, A. & Offen, D. Safety of repeated transplantations of neurotrophic factors-secreting human mesenchymal stromal stem cells. Clin. Transl. Med. 3, 21 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Petrou, P. et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 73, 337–344 (2016). This was one of the first cellular therapy approaches to be taken into a randomized clinical trial with evidence of safety and tolerability.

    Article  PubMed  Google Scholar 

  185. McCampbell, A. et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J. Clin. Invest. 128, 3558–3567 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Iannitti, T. et al. Translating SOD1 gene silencing toward the clinic: a highly efficacious, off-target-free, and biomarker-supported strategy for fALS. Mol. Ther. Nucleic Acids 12, 75–88 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Miller, T. et al. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 383, 109–119 (2020). A clinical trial of the ASO tofersen in 50 patients with SOD1-ALS showed evidence of target engagement. NFL levels were also lowered suggesting motor neuron protection, and exploratory clinical end points looked favourable in the high-dose arm.

    Article  CAS  PubMed  Google Scholar 

  188. Miller, T., Cudkowicz, M., on behalf of the VALOR Working Group. Results from the phase 3 VALOR study and its open-label extension: evaluating the clinical efficacy and safety of tofersen in adults with ALS and confirmed SOD1 mutation. Biogen https://biogen.gcs-web.com/static-files/b2154d4e-f69f-49d4-9a61-e834387293ea (2021).

  189. Miller, T. M. et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 387, 1099–1110 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Sonobe, Y. et al. Translation of dipeptide repeat proteins from the C9ORF72 expanded repeat is associated with cellular stress. Neurobiol. Dis. 116, 155–165 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Van den Berg, L. H., et al. Results from the phase 1 trial and open-label extension evaluating BIIB078 in adults with C9orf72-ALS. Presented at ENCALS Meeting (2022).

  192. Suaud, L. et al. 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells. J. Biol. Chem. 286, 45083–45092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Rodrigues, C. M., Sola, S., Sharpe, J. C., Moura, J. J. & Steer, C. J. Tauroursodeoxycholic acid prevents Bax-induced membrane perturbation and cytochrome c release in isolated mitochondria. Biochemistry 42, 3070–3080 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Mullard, A. Amylyx’s ALS therapy secures FDA approval, as regulatory flexibility trumps underwhelming data. Nat. Rev. Drug Discov. 21, 786 (2022).

    PubMed  Google Scholar 

  195. FDA Briefing Document NDA# 216660 (Peripheral and Central Nervous System Drugs Advisory Committee, 2022); https://www.fda.gov/media/161378/download

  196. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Camu, W. et al. Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial. EBioMedicine 59, 102844 (2020). This short phase IIa IMODALS trial, as a prelude to the phase IIb/III MIROCALS trial, showed that low-dose IL-2 (aldesleukin) produces a robust upregulation of the peripheral Treg cell count and a lowering of at least one inflammatory mediator (MCP-1/CCL2).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Giovannelli, I. et al. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Commun. 3, fcab141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Dalakas, M. C., Alexopoulos, H. & Spaeth, P. J. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat. Rev. Neurol. 16, 601–617 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Bahia El Idrissi, N. et al. Complement activation at the motor end-plates in amyotrophic lateral sclerosis. J. Neuroinflammation 13, 72 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wainger, B. J. et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 7, 1–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wainger, B. J. et al. Effect of ezogabine on cortical and spinal motor neuron excitability in amyotrophic lateral sclerosis: a randomized clinical trial. JAMA Neurol. 78, 186–196 (2021).

    Article  PubMed  Google Scholar 

  203. Campbell, A., Baldessarini, R. J., Teicher, M. H. & Neumeyer, J. L. S(+)apomorphines. selective inhibition of excitatory effects of dopamine injected into the limbic system of the rat. Neuropharmacology 24, 391–399 (1985).

    Article  CAS  PubMed  Google Scholar 

  204. Schaus, J. M., Titus, R. D., Foreman, M. M., Mason, N. R. & Truex, L. L. Aporphines as antagonists of dopamine D-1 receptors. J. Med. Chem. 33, 600–607 (1990).

    Article  CAS  PubMed  Google Scholar 

  205. Mead, R. J. et al. S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radic. Biol. Med. 61, 438–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dinkova-Kostova, A. T., Kostov, R. V. & Kazantsev, A. G. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J. 285, 3576–3590 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Satoh, T. et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J. Neurochem. 104, 1116–1131 (2008).

    Article  CAS  PubMed  Google Scholar 

  208. Satoh, T. et al. Dual neuroprotective pathways of a pro-electrophilic compound via HSF-1-activated heat-shock proteins and Nrf2-activated phase 2 antioxidant response enzymes. J. Neurochem. 119, 569–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mead, R. J., Shaw, P. J., Ogoe, C., Shan, N. & Ferraiuolo, L. Treatment of neurological diseases. Patent PCT/US2019/056996 (2020).

  210. Mead, R. J., Shaw, . J., Ogoe, C., Shan, N. & Ferraiuolo, L. Treatment of neurological diseases. WO patent WO 2020/081973 A1 (2020).

  211. Coya_Non-Confidential_Deck_2022.05.16 (Coya Therapeutics, 2022). https://coyatherapeutics.com

  212. Zheng, Q., Zhang, S., Guo, W. Z. & Li, X. K. The unique immunomodulatory properties of MSC-derived exosomes in organ transplantation. Front. Immunol. 12, 659621 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Thome, A. D. et al. Extracellular vesicles derived from ex vivo expanded regulatory T cells modulate in vitro and in vivo inflammation. Front. Immunol. 13, 875825 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. De Cesco, S., Davis, J. B. & Brennan, P. E. TargetDB: a target information aggregation tool and tractability predictor. PLoS ONE 15, e0232644 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Myszczynska, M. A. et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16, 440–456 (2020).

    Article  PubMed  Google Scholar 

  216. Smith, D. P. et al. Expert-augmented computational drug repurposing identified baricitinib as a treatment for COVID-19. Front. Pharmacol. 12, 709856 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. 12, eaay1359 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Begley, C. G. et al. Drug repurposing: misconceptions, challenges, and opportunities for academic researchers. Sci. Transl. Med. 13, eabd5524 (2021).

    Article  CAS  PubMed  Google Scholar 

  219. Gatto, N. et al. Directly converted astrocytes retain the ageing features of the donor fibroblasts and elucidate the astrocytic contribution to human CNS health and disease. Aging Cell 20, e13281 (2021).

    Article  CAS  PubMed  Google Scholar 

  220. Stopford, M. J., Allen, S. P. & Ferraiuolo, L. A high-throughput and pathophysiologically relevant astrocyte-motor neuron co-culture assay for amyotrophic lateral sclerosis therapeutic discovery. Bio. Protoc. 9, e3353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Braems, E., Tziortzouda, P. & Van Den Bosch, L. Exploring the alternative: fish, flies and worms as preclinical models for ALS. Neurosci. Lett. 759, 136041 (2021).

    Article  CAS  PubMed  Google Scholar 

  222. Zhang, K., Coyne, A. N. & Lloyd, T. E. Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Res. 1693, 109–120 (2018).

    Article  CAS  PubMed  Google Scholar 

  223. Shaw, M. P. et al. Stable transgenic C9orf72 zebrafish model key aspects of the ALS/FTD phenotype and reveal novel pathological features. Acta Neuropathol. Commun. 6, 125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. van den Berg, L. H. et al. Revised Airlie House consensus guidelines for design and implementation of ALS clinical trials. Neurology 92, e1610–e1623 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Verber, N. & Shaw, P. J. Biomarkers in amyotrophic lateral sclerosis: a review of new developments. Curr. Opin. Neurol. 33, 662–668 (2020).

    Article  CAS  PubMed  Google Scholar 

  226. van Blitterswijk, M. et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 3776–3784 (2012).

    Article  PubMed  Google Scholar 

  227. Fournier, C. N. et al. Development and validation of the Rasch-built Overall Amyotrophic Lateral Sclerosis Disability Scale (ROADS). JAMA Neurol. 77, 480–488 (2020).

    Article  PubMed  Google Scholar 

  228. Balendra, R., Al Khleifat, A., Fang, T. & Al-Chalabi, A. A standard operating procedure for King’s ALS clinical staging. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 159–164 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Al-Chalabi, A. et al. Clinical staging in amyotrophic lateral sclerosis: analysis of Edaravone Study 19. J. Neurol. Neurosurg. Psychiatry 92, 165–171 (2021).

    Article  PubMed  Google Scholar 

  230. Westeneng, H. J. et al. Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol. 17, 423–433 (2018).

    Article  PubMed  Google Scholar 

  231. Berry, J. D. et al. Improved stratification of ALS clinical trials using predicted survival. Ann. Clin. Transl. Neurol. 5, 474–485 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. van Eijk, R. P. A. et al. Innovating clinical trials for amyotrophic lateral sclerosis: challenging the established order. Neurology 97, 528–536 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. van Eijk, R. P. A. et al. An old friend who has overstayed their welcome: the ALSFRS-R total score as primary endpoint for ALS clinical trials. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 300–307 (2021).

    Article  PubMed  Google Scholar 

  234. Paganoni, S. et al. Adaptive platform trials to transform ALS therapy development. Ann. Neurol. 91, 165–175 (2022).

    Article  PubMed  Google Scholar 

  235. Kiernan, M. C. et al. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat. Rev. Neurol. 17, 104–118 (2021). This is an excellent review of strategies with the potential to improve the prospects for clinical trials to deliver beneficial outcomes for patients with ALS.

    Article  PubMed  Google Scholar 

  236. Rutkove, S. B. et al. Improved ALS clinical trials through frequent at-home self-assessment: a proof of concept study. Ann. Clin. Transl. Neurol. 7, 1148–1157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Govindarajan, R., Berry, J. D., Paganoni, S., Pulley, M. T. & Simmons, Z. Optimizing telemedicine to facilitate amyotrophic lateral sclerosis clinical trials. Muscle Nerve 62, 321–326 (2020).

    Article  PubMed  Google Scholar 

  238. US Department of Health and Human Services. Adaptive designs for clinical trials of drugs and biologics: guidance for industry. FDA https://www.fda.gov/media/78495/download (2019).

  239. Verber, N. S. et al. Biomarkers in motor neuron disease: a state of the art review. Front. Neurol. 10, 291 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Vissers, M., Heuberger, J. & Groeneveld, G. J. Targeting for success: demonstrating proof-of-concept with mechanistic early phase clinical pharmacology studies for disease-modification in neurodegenerative disorders. Int. J. Mol. Sci. 22, 1615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Rosen, D. R. et al. A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 981–987 (1994).

    Article  CAS  PubMed  Google Scholar 

  242. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  243. Scott, S. et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph. Lateral Scler. 9, 4–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  244. Ludolph, A. C. et al. Guidelines for preclinical animal research in ALS/MND: a consensus meeting. Amyotroph. Lateral Scler. 11, 38–45 (2010).

    Article  PubMed  Google Scholar 

  245. Turner, B. J. et al. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy. BMC Neurosci. 9, 104 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Gurney, M. E., Fleck, T. J., Himes, C. S. & Hall, E. D. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 50, 62–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  247. Ito, H. et al. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp. Neurol. 213, 448–455 (2008).

    Article  CAS  PubMed  Google Scholar 

  248. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Gendron, T. F. & Petrucelli, L. Rodent models of TDP-43 proteinopathy: investigating the mechanisms of TDP-43-mediated neurodegeneration. J. Mol. Neurosci. 45, 486–499 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Xu, Z. S. Does a loss of TDP-43 function cause neurodegeneration? Mol. Neurodegener. 7, 27 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl Acad. Sci. USA 110, E736–E745 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Watkins, J. A., Alix, J. J. P., Shaw, P. J. & Mead, R. J. Extensive phenotypic characterisation of a human TDP-43(Q331K) transgenic mouse model of amyotrophic lateral sclerosis (ALS). Sci. Rep. 11, 16659 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. White, M. A. et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat. Neurosci. 21, 552–563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Lin, Z. et al. MRI-guided histology of TDP-43 knock-in mice implicates parvalbumin interneuron loss, impaired neurogenesis and aberrant neurodevelopment in amyotrophic lateral sclerosis-frontotemporal dementia. Brain Commun. 3, fcab114 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Devoy, A. et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice. Brain 140, 2797–2805 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Peters, O. M. et al. Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88, 902–909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Liu, Y. et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90, 521–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  259. Nguyen, L. et al. Survival and motor phenotypes in FVB C9-500 ALS/FTD BAC transgenic mice reproduced by multiple labs. Neuron 108, 784–796.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Mordes, D. A. et al. Absence of survival and motor deficits in 500 repeat C9ORF72 BAC mice. Neuron 108, 775–783.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Ferraiuolo, L. & Maragakis, N. J. Mini-review: induced pluripotent stem cells and the search for new cell-specific ALS therapeutic targets. Neurosci. Lett. 755, 135911 (2021).

    Article  CAS  PubMed  Google Scholar 

  262. Imamura, K. et al. The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Sci. Transl. Med. 9, aaf3962 (2017).

    Article  Google Scholar 

  263. Fujimori, K. et al. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat. Med. 24, 1579–1589 (2018).

    Article  CAS  PubMed  Google Scholar 

  264. Boillee, S., Vande Velde, C. & Cleveland, D. W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52, 39–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  265. Lapasset, L. et al. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Pereira, J. D. et al. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat. Commun. 12, 4744 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Morgan, S. et al. A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain 140, 1611–1618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Cooper-Knock, J. et al. Targeted genetic screen in amyotrophic lateral sclerosis reveals novel genetic variants with synergistic effect on clinical phenotype. Front. Mol. Neurosci. 10, 370 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Li, C., Ou, R., Wei, Q. & Shang, H. Shared genetic links between amyotrophic lateral sclerosis and obesity-related traits: a genome-wide association study. Neurobiol. Aging 102, 211.e1–211.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  270. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Prudencio, M. et al. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J. Clin. Invest. 130, 6080–6092 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Smith, B. N. et al. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci. Transl. Med. 9, eaad9157 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Cooper-Knock, J. et al. Rare variant burden analysis within enhancers identifies CAV1 as an ALS risk gene. Cell Rep. 33, 108456 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Cooper-Knock, J. et al. Mutations in the glycosyltransferase domain of GLT8D1 are associated with familial amyotrophic lateral sclerosis. Cell Rep. 26, 2298–2306.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Farhan, S. M. K. et al. Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein. Nat. Neurosci. 22, 1966–1974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Mohassel, P. et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 27, 1197–1204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Johnson, J. O. et al. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol. 78, 1236–1248 (2021).

    Article  PubMed  Google Scholar 

  279. Nakamura, R. et al. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis. Commun. Biol. 3, 526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Iacoangeli, A. et al. Genome-wide meta-analysis finds the ACSL5-ZDHHC6 locus is associated with ALS and links weight loss to the disease genetics. Cell Rep. 33, 108323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  282. Kenna, K. P. et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 48, 1037–1042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Chow, C. Y. et al. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am. J. Hum. Genet. 84, 85–88 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017). This landmark gene replacement trial for patients with SMA showed that motor neuron degenerative disorders are potentially treatable conditions.

    Article  CAS  PubMed  Google Scholar 

  285. Gendron, T. F. et al. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. 9, eaai7866 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Benatar, M. et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 95, e59–e69 (2020). This publication provides validated evidence that neurofilament proteins can serve as biomarkers to subclassify disease severity in patients with ALS and also as markers of phenoconversion in pre-symptomatic carriers of pathogenic mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Zucchi, E. et al. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol. Neurodegener. 15, 58 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Poesen, K. & Van Damme, P. Diagnostic and prognostic performance of neurofilaments in ALS. Front. Neurol. 9, 1167 (2018).

    Article  PubMed  Google Scholar 

  289. Lu, C. H. et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84, 2247–2257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Lu, C. H. et al. Plasma neurofilament heavy chain levels and disease progression in amyotrophic lateral sclerosis: insights from a longitudinal study. J. Neurol. Neurosurg. Psychiatry 86, 565–573 (2015).

    Article  PubMed  Google Scholar 

  291. Mitsumoto, H., Brooks, B. R. & Silani, V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. 13, 1127–1138 (2014).

    Article  PubMed  Google Scholar 

  292. Cudkowicz, M. E. et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann. Neurol. 60, 22–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  293. Forgrave, L. M., Ma, M., Best, J. R. & DeMarco, M. L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Alzheimers Dement. 11, 730–743 (2019).

    Google Scholar 

  294. Gagliardi, D. et al. Diagnostic and prognostic role of blood and cerebrospinal fluid and blood neurofilaments in amyotrophic lateral sclerosis: a review of the literature. Int. J. Mol. Sci. 20, 4152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Thompson, A. G. et al. Multicentre appraisal of amyotrophic lateral sclerosis biofluid biomarkers shows primacy of blood neurofilament light chain. Brain Commun. 4, fcac029 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Benatar, M., Wuu, J., Andersen, P. M., Lombardi, V. & Malaspina, A. Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann. Neurol. 84, 130–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  297. Magen, I. et al. Circulating miR-181 is a prognostic biomarker for amyotrophic lateral sclerosis. Nat. Neurosci. 24, 1534–1541 (2021).

    Article  CAS  PubMed  Google Scholar 

  298. Neuwirth, C. et al. Tracking motor neuron loss in a set of six muscles in amyotrophic lateral sclerosis using the Motor Unit Number Index (MUNIX): a 15-month longitudinal multicentre trial. J. Neurol. Neurosurg. Psychiatry 86, 1172–1179 (2015).

    Article  PubMed  Google Scholar 

  299. Pinto, S. & de Carvalho, M. Symmetry of phrenic nerve motor response in amyotrophic lateral sclerosis. Muscle Nerve 42, 822–825 (2010).

    Article  PubMed  Google Scholar 

  300. de Carvalho, M. et al. A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 11, 456–460 (2010).

    Article  PubMed  Google Scholar 

  301. Ellis, C. M. et al. A proton magnetic resonance spectroscopic study in ALS: correlation with clinical findings. Neurology 51, 1104–1109 (1998).

    Article  CAS  PubMed  Google Scholar 

  302. Pagani, M. et al. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology 83, 1067–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  303. De Vocht, J. et al. Use of multimodal imaging and clinical biomarkers in presymptomatic carriers of C9orf72 repeat expansion. JAMA Neurol. 77, 1008–1017 (2020).

    Article  PubMed  Google Scholar 

  304. Zurcher, N. R. et al. Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [11C]-PBR28. Neuroimage Clin. 7, 409–414 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Ikawa, M., Okazawa, H., Nakamoto, Y. & Yoneda, M. PET imaging for oxidative stress in neurodegenerative disorders associated with mitochondrial dysfunction. Antioxidants 9, 861 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Malpetti, M. et al. Synaptic density in carriers of C9orf72 mutations: a [11C]UCB-J PET study. Ann. Clin. Transl. Neurol. 8, 1515–1523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.J.S. is supported as an Emeritus NIHR Senior Investigator and by the NIHR Sheffield Biomedical Research Centre (IS-BRC-1215-20017), the Motor Neurone Disease Association (AMBRoSIA MNDA 974-797) the Medical Research Council (MRC COEN 4017), the EU Horizon 2020 programme (H2020-633413) and the My Name’5 Doddie Foundation (DOD/14/43). N.S., P.J.S. and R.J.M. are funded by FightMND Australia (03_DDG_2020_Shan). The authors thank L. Evans for her skilled assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.J.M., N.S. and P.J.S. researched data for the article. All authors contributed substantially to discussion of the content. R.J.M., N.S. and P.J.S. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Pamela J. Shaw.

Ethics declarations

Competing interests

R.J.M. is cofounder of and holds shares in Keapstone Therapeutics, collaborates and receives funding from BenevolentAI, Quell Therapeutics, Sosei Heptares and MSD, is a consultant to Aclipse Therapeutics, has shares in Aclipse One Inc and is an inventor on patents related to M102. N.S. is an employee and shareholder of Aclipse Therapeutics. H.J.R. is the chairman of the Board of Aclipse Therapeutics. F.M. is an employee and shareholder of Merck and Co. P.J.S. is an advisory board member and consultant for Biogen, Aclipse Therapeutics, Quell Therapeutics, BenevolentAI, QurAlis, Astex, GeniUS and Eli Lilly and collaborates with and receives research funding from Quell Therapeutics, Aclipse Therapeutics, Pfizer and SwanBio. She is a cofounder of and holds shares in Keapstone Therapeutics and holds shares in Aclipse One Inc. She is an inventor on patents related to low-dose IL-2, SRSF1 and M102. Support for clinical trials participation in the last five years has been received from Biogen, Alexion, Orion Pharma, WAVE, the EU Horizon 2020 programme and UK NIHR.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BenevolentAI: https://www.benevolent.com/amyotrophic-lateral-sclerosis

Supplementary information

Glossary

Cryptic exon

An exon that is not normally included in the final mRNA transcript of a gene but which can be included under certain circumstances such as mutations elsewhere in the gene, changes in the state of the cell or loss of factors that normally regulate exon splicing.

DNA damage response

The process by which cells maintain genomic integrity in the face of continuous mutation-causing insults. It comprises both DNA repair mechanisms and cell-cycle checkpoint regulation.

Embedded experimental medicine approach

Incorporation of multiple readouts of a biological mechanism related to the therapeutic approach being tested within a clinical trial in order to understand the impact of the therapeutic agent on disease processes.

Heat shock response

A rapid cellular response to stress that increases, usually via transcriptional activation, the availability of molecular chaperones to enable cytoprotection.

Inflammasome

Multiprotein complex of innate immune receptors which are required for activation of inflammatory responses and specifically lead to maturation and secretion of IL-1β and IL-18.

Proteinopathy

The accumulation of a specific protein, either the wild-type or a mutant variety, in excess with altered conformations that facilitate aggregation.

Rasch model

A mathematical framework against which test developers can compare empirical data to assess an instrument’s capacity to emulate the properties of fundamental measurement (invariance and unidimensionality) and thus serve as a tool for quantifying unobservable human conditions.

Repeat-associated non-AUG (RAN) translation

The initiation of protein translation in the absence of a classic AUG start codon in the RNA species being translated. It is often associated with GC-rich repetitive sequences and can occur in multiple reading frames.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mead, R.J., Shan, N., Reiser, H.J. et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 22, 185–212 (2023). https://doi.org/10.1038/s41573-022-00612-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-022-00612-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing