Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting cytokine networks in neuroinflammatory diseases

Abstract

In neuroinflammatory diseases, systemic (blood-borne) leukocytes invade the central nervous system (CNS) and lead to tissue damage. A causal relationship between neuroinflammatory diseases and dysregulated cytokine networks is well established across several preclinical models. Cytokine dysregulation is also observed as an inadvertent effect of cancer immunotherapy, where it often leads to neuroinflammation. Neuroinflammatory diseases can be separated into those in which a pathogen is at the centre of the immune response and those of largely unknown aetiology. Here, we discuss the pathophysiology, cytokine networks and therapeutic landscape of ‘sterile’ neuroinflammatory diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), neurosarcoidosis and immune effector cell-associated neurotoxicity syndrome (ICANS) triggered by cancer immunotherapy. Despite successes in targeting cytokine networks in preclinical models of neuroinflammation, the clinical translation of targeting cytokines and their receptors has shown mixed and often paradoxical responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytokine networks in the pathophysiology of multiple sclerosis.
Fig. 2: Cytokine networks in the pathophysiology of neuromyelitis optica spectrum disorder.
Fig. 3: Cytokine networks in the pathogenesis of sarcoid granuloma in the central nervous system.

Similar content being viewed by others

References

  1. Tuzlak, S. et al. Repositioning TH cell polarization from single cytokines to complex help. Nat. Immunol. 22, 1210–1217 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, Y., Zhang, K., Ma, X. & Xie, Z. Efficacy and safety of secukinumab for the treatment of psoriasis: a meta-analysis of pivotal phase III trials. Dermatology 240, 271–281 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Zwicky, P., Unger, S. & Becher, B. Targeting interleukin-17 in chronic inflammatory disease: a clinical perspective. J. Exp. Med. 217, e20191123 (2020).

    Article  PubMed  Google Scholar 

  4. Zipp, F., Bittner, S. & Schafer, D. P. Cytokines as emerging regulators of central nervous system synapses. Immunity 56, 914–925 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mundt, S., Greter, M. & Becher, B. The CNS mononuclear phagocyte system in health and disease. Neuron 110, 3497–3512 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ribeiro, M. et al. Meningeal gammadelta T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4, eaay5199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He, D. et al. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 55, 159–173.e159 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen, Y. et al. CCR5 closes the temporal window for memory linking. Nature 606, 146–152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, L., Huh, J. R. & Choi, G. B. One messenger shared by two systems: how cytokines directly modulate neurons. Curr. Opin. Neurobiol. 80, 102708 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395.e386 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Waisman, A., Liblau, R. S. & Becher, B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 14, 945–955 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. International Multiple Sclerosis Genetics, C. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    Article  Google Scholar 

  17. Lantz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022).

    Article  Google Scholar 

  18. Lang, H. L. E. et al. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3, 940–943 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100.e123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lodygin, D. et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature 566, 503–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Bronge, M. et al. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Sci. Adv. 8, eabn1823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schnell, A. et al. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 184, 6281–6298.e6223 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Regen, T. et al. IL-17 controls central nervous system autoimmunity through the intestinal microbiome. Sci. Immunol. 6, eaaz6563 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Hauser, S. L. & Cree, B. A. C. Treatment of multiple sclerosis: a review. Am. J. Med. 133, 1380–1390.e1382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Ulutekin, C. et al. B cell depletion attenuates CD27 signaling of T helper cells in multiple sclerosis. Cell Rep. Med. 5, 101351 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Yshii, L. et al. IFN-gamma is a therapeutic target in paraneoplastic cerebellar degeneration. JCI Insight 4, e127001 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Di Liberto, G. et al. Neurons under T cell attack coordinate phagocyte-mediated synaptic stripping. Cell 175, 458–471.e419 (2018).

    Article  PubMed  Google Scholar 

  30. Falcao, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Willenborg, D. O., Fordham, S., Bernard, C. C., Cowden, W. B. & Ramshaw, I. A. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J. Immunol. 157, 3223–3227 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Willenborg, D. O., Fordham, S. A., Staykova, M. A., Ramshaw, I. A. & Cowden, W. B. IFN-gamma is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol. 163, 5278–5286 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ferber, I. A. et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Karpus, W. J. & Swanborg, R. H. CD4+ suppressor cells differentially affect the production of IFN-gamma by effector cells of experimental autoimmune encephalomyelitis. J. Immunol. 143, 3492–3497 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Billiau, A. et al. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immunol. 140, 1506–1510 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Haimon, Z. et al. Cognate microglia–T cell interactions shape the functional regulatory T cell pool in experimental autoimmune encephalomyelitis pathology. Nat. Immunol. 23, 1749–1762 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Panitch, H. S., Hirsch, R. L., Haley, A. S. & Johnson, K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1, 893–895 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Panitch, H. S., Hirsch, R. L., Schindler, J. & Johnson, K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Browne, S. K. et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 367, 725–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu, Y. et al. Pathogen spectrum and immunotherapy in patients with anti-IFN-gamma autoantibodies: a multicenter retrospective study and systematic review. Front. Immunol. 13, 1051673 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rosain, J. et al. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 186, 621–645.e633 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Piehler, J., Thomas, C., Garcia, K. C. & Schreiber, G. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250, 317–334 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nguyen, K. B. et al. Interferon α/β-mediated inhibition and promotion of interferon γ: STAT1 resolves a paradox. Nat. Immunol. 1, 70–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Miyagi, T. et al. High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J. Exp. Med. 204, 2383–2396 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trojano, M. et al. Changes of serum sICAM-1 and MMP-9 induced by rIFNβ-1b treatment in relapsing-remitting MS. Neurology 53, 1402–1408 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Calabresi, P. A., Pelfrey, C. M., Tranquill, L. R., Maloni, H. & McFarland, H. F. VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of multiple sclerosis with interferon beta. Neurology 49, 1111–1116 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Calabresi, P. A. et al. Increases in soluble VCAM-1 correlate with a decrease in MRI lesions in multiple sclerosis treated with interferon beta-1b. Ann. Neurol. 41, 669–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Stuve, O., Chabot, S., Jung, S. S., Williams, G. & Yong, V. W. Chemokine-enhanced migration of human peripheral blood mononuclear cells is antagonized by interferon beta-1b through an effect on matrix metalloproteinase-9. J. Neuroimmunol. 80, 38–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Rempe, R. G., Hartz, A. M. S. & Bauer, B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J. Cereb. Blood Flow. Metab. 36, 1481–1507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Waubant, E. et al. IFNbeta lowers MMP-9/TIMP-1 ratio, which predicts new enhancing lesions in patients with SPMS. Neurology 60, 52–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Rep, M. H., Hintzen, R. Q., Polman, C. H. & van Lier, R. A. Recombinant interferon-beta blocks proliferation but enhances interleukin-10 secretion by activated human T-cells. J. Neuroimmunol. 67, 111–118 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Rep, M. H. G. et al. Interferon (IFN)-β treatment enhances CD95 and interleukin 10 expression but reduces interferon-γ producing T cells in MS patients. J. Neuroimmunol. 96, 92–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Abreu, S. L. Suppression of experimental allergic encephalomyelitis by interferon. Immunol. Commun. 11, 1–7 (1982).

    Article  CAS  PubMed  Google Scholar 

  57. Jacobs, L. et al. Intrathecally administered natural human fibroblast interferon reduces exacerbations of multiple sclerosis. Results of a multicenter, double-blind study. Arch. Neurol. 44, 589–595 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43, 655-661 (1993).

    Article  Google Scholar 

  59. Paty, D. W. & Li, D. K. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI study group and the IFNB multiple sclerosis study group. Neurology 43, 662–667 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Sorensen, P. S. Antidrug antibodies against biological treatments for multiple sclerosis. CNS Drugs 36, 569–589 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Atretkhany, K.-S. N., Gogoleva, V. S., Drutskaya, M. S. & Nedospasov, S. A. Distinct modes of TNF signaling through its two receptors in health and disease. J. Leukoc. Biol. 107, 893–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Qu, Y., Zhao, G. & Li, H. Forward and reverse signaling mediated by transmembrane tumor necrosis factor-alpha and TNF receptor 2: potential roles in an immunosuppressive tumor microenvironment. Front. Immunol. 8, 1675 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee, W. H., Seo, D., Lim, S. G. & Suk, K. Reverse signaling of tumor necrosis factor superfamily proteins in macrophages and microglia: superfamily portrait in the neuroimmune interface. Front. Immunol. 10, 262 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Feldmann, M. & Maini, R. N. Anti-TNF therapy, from rationale to standard of care: what lessons has it taught us? J. Immunol. 185, 791–794 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Cannella, B. & Raine, C. S. The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37, 424–435 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Körner, H., Lemckert, F. A., Chaudhri, G., Etteldorf, S. & Sedgwick, J. D. Tumor necrosis factor blockade in actively induced experimental autoimmune encephalomyelitis prevents clinical disease despite activated T cell infiltration to the central nervous system. Eur. J. Immunol. 27, 1973–1981 (1997).

    Article  PubMed  Google Scholar 

  67. The Lenercept Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).

    Article  Google Scholar 

  68. van Oosten, B. W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    Article  PubMed  Google Scholar 

  69. Akassoglou, K. et al. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am. J. Pathol. 153, 801–813 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Madsen, P. M. et al. Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J. Neurosci. 36, 5128–5143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ronin, E. et al. Tissue-restricted control of established central nervous system autoimmunity by TNF receptor 2-expressing Treg cells. Proc. Natl Acad. Sci. USA 118, e2014043118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gregory, A. P. et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 488, 508–511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brambilla, R. et al. Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain 134, 2736–2754 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Williams, S. K. et al. Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis. Sci. Rep. 8, 13628 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORγt. Nat. Immunol. 9, 641–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Brembilla, N. C. & Boehncke, W. H. Revisiting the interleukin 17 family of cytokines in psoriasis: pathogenesis and potential targets for innovative therapies. Front. Immunol. 14, 1186455 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Langley, R. G. et al. Secukinumab in plaque psoriasis–results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  PubMed  Google Scholar 

  84. Becher, B., Durell, B. G. & Noelle, R. J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 110, 493–497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Andreadou, M. et al. IL-12 sensing in neurons induces neuroprotective CNS tissue adaptation and attenuates neuroinflammation in mice. Nat. Neurosci. 26, 1701–1712 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 119, 61–69 (2009).

    CAS  PubMed  Google Scholar 

  87. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Spath, S. et al. Dysregulation of the cytokine GM-CSF induces spontaneous phagocyte invasion and immunopathology in the central nervous system. Immunity 46, 245–260 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Graber, J. J. et al. Interleukin-17 in transverse myelitis and multiple sclerosis. J. Neuroimmunol. 196, 124–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Li, Y., Wang, H., Long, Y., Lu, Z. & Hu, X. Increased memory Th17 cells in patients with neuromyelitis optica and multiple sclerosis. J. Neuroimmunol. 234, 155–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Brucklacher-Waldert, V., Stuerner, K., Kolster, M., Wolthausen, J. & Tolosa, E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain 132, 3329–3341 (2009).

    Article  PubMed  Google Scholar 

  94. Kalra, S. et al. Th17 cells increase in RRMS as well as in SPMS, whereas various other phenotypes of Th17 increase in RRMS only. Mult. Scler. J. Exp. Transl. Clin. 6, 2055217319899695 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tzartos, J. S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Montes, M. et al. Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells. Clin. Immunol. 130, 133–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Kebir, H. et al. Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Kebir, H. et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Esendagli, G. et al. Evaluation of Th17-related cytokines and receptors in multiple sclerosis patients under interferon beta-1 therapy. J. Neuroimmunol. 255, 81–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Krakauer, M., Sorensen, P., Khademi, M., Olsson, T. & Sellebjerg, F. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression. Mult. Scler. 14, 622–630 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Durelli, L. et al. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann. Neurol. 65, 499–509 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Ramgolam, V. S., Sha, Y., Jin, J., Zhang, X. & Markovic-Plese, S. IFN-β inhibits human Th17 cell differentiation. J. Immunol. 183, 5418–5427 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, Q. et al. Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J. Immunol. 198, 3069–3080 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Mansilla, M. J. et al. Optimal response to dimethyl fumarate is mediated by a reduction of Th1-like Th17 cells after 3 months of treatment. CNS Neurosci. Ther. 25, 995–1005 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gandoglia, I. et al. Teriflunomide treatment reduces B cells in patients with MS. Neurol. Neuroimmunol. Neuroinflamm. 4, e403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. van Langelaar, J. et al. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention. Brain 141, 1334–1349 (2018).

    Article  PubMed  Google Scholar 

  107. Mehling, M. et al. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 75, 403–410 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Schuh, E. et al. Features of human CD3+CD20+ T cells. J. Immunol. 197, 1111–1117 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Havrdova, E. et al. Activity of secukinumab, an anti-IL-17A antibody, on brain lesions in RRMS: results from a randomized, proof-of-concept study. J. Neurol. 263, 1287–1295 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Diebold, M., Müller, S., Derfuss, T. & Décard, B. F. A case of concomitant psoriasis and multiple sclerosis: secukinumab and rituximab exert dichotomous effects in two autoimmune conditions. Mult. Scler. Relat. Disord. 31, 38–40 (2019).

    Article  PubMed  Google Scholar 

  111. Segal, B. M. & Shevach, E. M. IL-12 unmasks latent autoimmune disease in resistant mice. J. Exp. Med. 184, 771–775 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Brok, H. P. et al. Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. J. Immunol. 169, 6554–6563 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. t Hart, B. A. et al. Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human IL-12p40 antibody. J. Immunol. 175, 4761–4768 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Kasper, L. H. et al. A phase I trial of an interleukin-12/23 monoclonal antibody in relapsing multiple sclerosis. Curr. Med. Res. Opin. 22, 1671–1678 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Vollmer, T. L., Wynn, D. R., Alam, M. S. & Valdes, J. A phase 2, 24-week, randomized, placebo-controlled, double-blind study examining the efficacy and safety of an anti-interleukin-12 and -23 monoclonal antibody in patients with relapsing-remitting or secondary progressive multiple sclerosis. Mult. Scler. 17, 181–191 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Hartmann, F. J. et al. Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells. Nat. Commun. 5, 5056 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Behrens, F. et al. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann. Rheum. Dis. 74, 1058–1064 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Taylor, P. C. et al. Efficacy and safety of namilumab, a human monoclonal antibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) ligand in patients with rheumatoid arthritis (RA) with either an inadequate response to background methotrexate therapy or an i. Arthritis Res. Ther. 21, 101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Constantinescu, C. S. et al. Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2, e117 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Liang, M. et al. Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1. J. Biol. Chem. 275, 19000–19008 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Zipp, F. et al. Blockade of chemokine signaling in patients with multiple sclerosis. Neurology 67, 1880–1883 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Martin-Blondel, G., Brassat, D., Bauer, J., Lassmann, H. & Liblau, R. S. CCR5 blockade for neuroinflammatory diseases–beyond control of HIV. Nat. Rev. Neurol. 12, 95–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Joy, M. T. et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176, 1143–1157.e1113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bernard-Valnet, R. et al. CCR5 blockade in inflammatory PML and PML-IRIS associated with chronic inflammatory diseases’ treatments. Neurol. Neuroimmunol. Neuroinflamm. 9, e1097 (2022).

    Article  PubMed  Google Scholar 

  125. Kiss, M. G. et al. Interleukin-3 coordinates glial-peripheral immune crosstalk to incite multiple sclerosis. Immunity 56, 1502–1514.e1508 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lennon, V. A., Kryzer, T. J., Pittock, S. J., Verkman, A. S. & Hinson, S. R. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202, 473–477 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Probstel, A. K. et al. Anti-MOG antibodies are present in a subgroup of patients with a neuromyelitis optica phenotype. J. Neuroinflamm. 12, 46 (2015).

    Article  Google Scholar 

  128. Soltys, J. et al. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J. Clin. Invest. 129, 2000–2013 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Takai, Y. et al. Staging of astrocytopathy and complement activation in neuromyelitis optica spectrum disorders. Brain 144, 2401–2415 (2021).

    Article  PubMed  Google Scholar 

  130. Winkler, A. et al. Blood-brain barrier resealing in neuromyelitis optica occurs independently of astrocyte regeneration. J. Clin. Invest. 131, e141694 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Uzawa, A. et al. Cerebrospinal fluid interleukin-6 and glial fibrillary acidic protein levels are increased during initial neuromyelitis optica attacks. Clin. Chim. Acta 421, 181–183 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Fujihara, K. et al. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. Neurol. Neuroimmunol. Neuroinflamm. 7, e841 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Chihara, N. et al. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. Proc. Natl Acad. Sci. USA 108, 3701–3706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Heink, S. et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 18, 74–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Varrin-Doyer, M. et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann. Neurol. 72, 53–64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Takeshita, Y. et al. Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. Neurol. Neuroimmunol. Neuroinflamm. 4, e311 (2017).

    Article  PubMed  Google Scholar 

  137. Recasens, M. et al. Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. J. Neuroinflammation 18, 31 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lauenstein, A.-S., Stettner, M., Kieseier, B. C. & Lensch, E. Treating neuromyelitis optica with the interleukin-6 receptor antagonist tocilizumab. BMJ Case Rep. 2014, bcr2013202939 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Araki, M. et al. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology 82, 1302–1306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yamamura, T. et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381, 2114–2124 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Traboulsee, A. et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 19, 402–412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yamamura, T. et al. Long-term safety of satralizumab in neuromyelitis optica spectrum disorder (NMOSD) from SAkuraSky and SAkuraStar. Mult. Scler. Relat. Disord. 66, 104025 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Zhang, C. et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 19, 391–401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Calender, A., Weichhart, T., Valeyre, D. & Pacheco, Y. Current insights in genetics of sarcoidosis: functional and clinical impacts. J. Clin. Med. 9, 2633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kaiser, Y., Eklund, A. & Grunewald, J. Moving target: shifting the focus to pulmonary sarcoidosis as an autoimmune spectrum disorder. Eur. Respir. J. 54, 1802153 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Muller-Quernheim, J., Pfeifer, S., Mannel, D., Strausz, J. & Ferlinz, R. Lung-restricted activation of the alveolar macrophage/monocyte system in pulmonary sarcoidosis. Am. Rev. Respir. Dis. 145, 187–192 (1992).

    Article  CAS  PubMed  Google Scholar 

  147. Prasse, A. et al. Th1 cytokine pattern in sarcoidosis is expressed by bronchoalveolar CD4+ and CD8+ T cells. Clin. Exp. Immunol. 122, 241–248 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Facco, M. et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 66, 144–150 (2011).

    Article  PubMed  Google Scholar 

  149. Huang, H. et al. Imbalance between Th17 and regulatory T-cells in sarcoidosis. Int. J. Mol. Sci. 14, 21463–21473 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ten Berge, B. et al. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology 51, 37–46 (2012).

    Article  PubMed  Google Scholar 

  151. Ostadkarampour, M. et al. Higher levels of interleukin IL-17 and antigen-specific IL-17 responses in pulmonary sarcoidosis patients with Lofgren’s syndrome. Clin. Exp. Immunol. 178, 342–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chazal, T. et al. The cerebrospinal fluid CD4/CD8 ratio and interleukin-6 and -10 levels in neurosarcoidosis: a multicenter, pragmatic, comparative study. Eur. J. Neurol. 26, 1274–1280 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Taha, R. A. et al. Increased expression of IL-12 receptor mRNA in active pulmonary tuberculosis and sarcoidosis. Am. J. Respir. Crit. Care Med. 160, 1119–1123 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Shigehara, K. et al. Enhanced mRNA expression of Th1 cytokines and IL-12 in active pulmonary sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 17, 151–157 (2000).

    CAS  Google Scholar 

  155. Shigehara, K. et al. IL-12 and IL-18 are increased and stimulate IFN-gamma production in sarcoid lungs. J. Immunol. 166, 642–649 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Shigehara, K. et al. Increased circulating interleukin-12 (IL-12) p40 in pulmonary sarcoidosis. Clin. Exp. Immunol. 132, 152–157 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Judson, M. A. et al. Molecular profiling and gene expression analysis in cutaneous sarcoidosis: the role of interleukin-12, interleukin-23, and the T-helper 17 pathway. J. Am. Acad. Dermatol. 66, 901–910 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Baughman, R. P. et al. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am. J. Respir. Crit. Care Med. 174, 795–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Rossman, M. D. et al. A double-blinded, randomized, placebo-controlled trial of infliximab in subjects with active pulmonary sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 23, 201–208 (2006).

    Google Scholar 

  160. Judson, M. A. et al. Efficacy of infliximab in extrapulmonary sarcoidosis: results from a randomised trial. Eur. Respir. J. 31, 1189–1196 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Jamilloux, Y. et al. Efficacy and safety of tumor necrosis factor antagonists in refractory sarcoidosis: a multicenter study of 132 patients. Semin. Arthritis Rheum. 47, 288–294 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Vorselaars, A. D. et al. Prediction of relapse after discontinuation of infliximab therapy in severe sarcoidosis. Eur. Respir. J. 43, 602–609 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Gelfand, J. M. et al. Infliximab for the treatment of CNS sarcoidosis: a multi-institutional series. Neurology 89, 2092–2100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hutto, S. K., Kyle, K., Cavanagh, J. J., Reda, H. & Venna, N. Adalimumab for CNS sarcoidosis: single-center experience and literature review. J. Neurol. 269, 2064–2072 (2022).

    Article  PubMed  Google Scholar 

  165. Sharp, M., Donnelly, S. C. & Moller, D. R. Tocilizumab in sarcoidosis patients failing steroid sparing therapies and anti-TNF agents. Respir. Med. X 1, 100004 (2019).

    PubMed  PubMed Central  Google Scholar 

  166. Baker, M. C. et al. A double-blind, placebo-controlled, randomized withdrawal trial of sarilumab for the treatment of glucocorticoid-dependent sarcoidosis. Rheumatology 63, 1297–1304 (2024).

    Article  PubMed  Google Scholar 

  167. Linke, M. et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat. Immunol. 18, 293–302 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Redl, A. et al. Efficacy and safety of mTOR inhibition in cutaneous sarcoidosis: a single-centre trial. Lancet Rheumatol. 6, e81–e91 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Okuda, Y. AA amyloidosis - benefits and prospects of IL-6 inhibitors. Mod. Rheumatol. 29, 268–274 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Chen, F. et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J. Immunol. Methods 434, 1–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rolfe, M. W. et al. Interleukin-1 receptor antagonist expression in sarcoidosis. Am. Rev. Respir. Dis. 148, 1378–1384 (1993).

    Article  CAS  PubMed  Google Scholar 

  172. Kron, J. et al. Interleukin-1 blockade in cardiac sarcoidosis: study design of the multimodality assessment of granulomas in cardiac sarcoidosis: anakinra randomized trial (MAGiC-ART). J. Transl. Med. 19, 460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Toussirot, E., Bernard, C. & Bossert, M. Safety of the use of anti-IL17A treatment in a patient with certolizumab-induced sarcoidosis. Clin. Exp. Rheumatol. 37, 344–345 (2019).

    PubMed  Google Scholar 

  174. Eichhoff, G. Management with secukinumab of tumour necrosis factor inhibitor-induced pulmonary sarcoidosis-like reaction in a patient with psoriasis. Clin. Exp. Dermatol. 45, 455–456 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Judson, M. A. et al. Safety and efficacy of ustekinumab or golimumab in patients with chronic sarcoidosis. Eur. Respir. J. 44, 1296–1307 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Taraseviciute, A. et al. Chimeric antigen receptor T cell–mediated neurotoxicity in nonhuman primates. Cancer Discov. 8, 750–763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Garcia Borrega, J. et al. In the eye of the storm: immune-mediated toxicities associated with CAR-T cell therapy. Hemasphere 3, e191 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade letter. Nat. Med. 24, 731–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Neepalu, S. S. et al. Chimeric antigen receptor T-cell therapy — asssessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  Google Scholar 

  180. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  181. Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Gust, J. et al. Glial injury in neurotoxicity after pediatric CD19‐directed chimeric antigen receptor T cell therapy. Ann. Neurol. 86, 42–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Berger, S. C. et al. Molecular monitoring of T-cell kinetics and migration in severe neurotoxicity after real-world CD19-specific chimeric antigen receptor T cell therapy. Haematologica 108, 444–456 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Van Oekelen, O. et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nat. Med. 27, 2099–2103 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Locke, F. L. et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 4, 4898–4911 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Pennisi, M. et al. Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells. Blood Adv. 5, 3397–3406 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hunter, B. D. & Jacobson, C. A. CAR T-cell associated neurotoxicity: mechanisms, clinicopathologic correlates, and future directions. J. Natl Cancer Inst. 111, 646–654 (2019).

    Article  PubMed  Google Scholar 

  193. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  194. Nishimoto, N. et al. Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964 (2008).

    Article  CAS  PubMed  Google Scholar 

  195. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Gutierrez, E. G., Banks, W. A. & Kastin, A. J. Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. J. Neuroimmunol. 55, 153–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  197. Galea, J. et al. Intravenous anakinra can achieve experimentally effective concentrations in the central nervous system within a therapeutic time window: results of a dose-ranging study. J. Cereb. Blood Flow. Metab. 31, 439–447 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Jatiani, S. S. et al. Myeloma CAR-T CRS management with IL-1R antagonist anakinra. Clin. Lymphoma Myeloma Leuk. 20, 632–636.e631 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wehrli, M. et al. Single-center experience using anakinra for steroid-refractory immune effector cell-Associated neurotoxicity syndrome (ICANS). J. Immunother. Cancer 10, 3847 (2022).

    Article  Google Scholar 

  200. Gazeau, N. et al. Anakinra for refractory cytokine release syndrome or immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T cell therapy. Transpl. Cell Ther. 29, 430–437 (2023).

    Article  CAS  Google Scholar 

  201. Strati, P. et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 4, 3123–3127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Shah, N. N. et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J. Clin. Oncol. 38, 1938–1950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Gueorguieva, I. et al. Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br. J. Clin. Pharmacol. 65, 317–325 (2008).

    Article  CAS  PubMed  Google Scholar 

  204. Park, J. H. et al. CD19 CAR T-cell therapy and prophylactic anakinra in relapsed or refractory lymphoma: phase 2 trial interim results. Nat. Med. 29, 1710–1717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sterner, R. M. et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133, 697–709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sachdeva, M., Duchateau, P., Depil, S., Poirot, L. & Valton, J. Granulocyte macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators. J. Biol. Chem. 294, 5430–5437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Cox, M. J. et al. GM-CSF disruption in CART cells modulates T cell activation and enhances CART cell anti-tumor activity. Leukemia 36, 1635–1645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Maggi, P. et al. B cell depletion therapy does not resolve chronic active multiple sclerosis lesions. EBioMedicine 94, 104701 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Frieser, D. et al. Tissue-resident CD8+ T cells drive compartmentalized and chronic autoimmune damage against CNS neurons. Sci. Transl. Med. 14, eabl6157 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Merkler, D., Vincenti, I., Masson, F. & Liblau, R. S. Tissue-resident CD8 T cells in central nervous system inflammatory diseases: present at the crime scene and …guilty. Curr. Opin. Immunol. 77, 102211 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Gate, D. et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science 374, 868–874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gadina, M., Gazaniga, N., Vian, L. & Furumoto, Y. Small molecules to the rescue: inhibition of cytokine signaling in immune-mediated diseases. J. Autoimmun. 85, 20–31 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. You, Z., Timilshina, M., Jeong, B. S. & Chang, J. H. BJ-2266 ameliorates experimental autoimmune encephalomyelitis through down-regulation of the JAK/STAT signaling pathway. Eur. J. Immunol. 47, 1488–1500 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Dang, C., Lu, Y., Chen, X. & Li, Q. Baricitinib ameliorates experimental autoimmune encephalomyelitis by modulating the Janus kinase/signal transducer and activator of transcription signaling pathway. Front. Immunol. 12, 650708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Benveniste, E. N., Liu, Y., McFarland, B. C. & Qin, H. Involvement of the janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J. Interferon Cytokine Res. 34, 577–588 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Fissolo, N. et al. Dual inhibition of proteasomal and lysosomal proteolysis ameliorates autoimmune central nervous system inflammation. Eur. J. Immunol. 38, 2401–2411 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Yu, M. et al. Discovery of novel azaindoles as potent and selective pi3kdelta inhibitors for treatment of multiple sclerosis. J. Med. Chem. 67, 9628–9644 (2024).

    Article  CAS  PubMed  Google Scholar 

  219. Alomar, H. A. et al. Mitogen-activated protein kinase inhibitor PD98059 improves neuroimmune dysfunction in experimental autoimmune encephalomyelitis in SJL/J mice through the inhibition of nuclear factor-kappa B signaling in B cells. Brain Res. Bull. 194, 45–53 (2023).

    Article  CAS  PubMed  Google Scholar 

  220. Zheng, J. et al. Small molecule approaches to treat autoimmune and inflammatory diseases (Part III): targeting cytokines and cytokine receptor complexes. Bioorg. Med. Chem. Lett. 48, 128229 (2021).

    Article  CAS  PubMed  Google Scholar 

  221. Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  222. Chew, K. S. et al. CD98hc is a target for brain delivery of biotherapeutics. Nat. Commun. 14, 5053 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Patel, P. et al. Adeno-associated virus-mediated delivery of a recombinant single-chain antibody against misfolded superoxide dismutase for treatment of amyotrophic lateral sclerosis. Mol. Ther. 22, 498–510 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Petrosyan, H. A. et al. AAV vector mediated delivery of ng2 function neutralizing antibody and neurotrophin NT-3 improves synaptic transmission, locomotion, and urinary tract function after spinal cord contusion injury in adult rats. J. Neurosci. 43, 1492–1508 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Yshii, L. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat. Immunol. 23, 878–891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Yi, Y. et al. CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discov. 7, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mazewski, C., Perez, R. E., Fish, E. N. & Platanias, L. C. Type I interferon (IFN)-regulated activation of canonical and non-canonical signaling pathways. Front. Immunol. 11, 606456 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. van Loo, G. & Bertrand, M. J. M. Death by TNF: a road to inflammation. Nat. Rev. Immunol. 23, 289–303 (2023).

    Article  PubMed  Google Scholar 

  230. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Huangfu, L., Li, R., Huang, Y. & Wang, S. The IL-17 family in diseases: from bench to bedside. Signal Transduct. Target. Ther. 8, 402 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ullrich, K. A. et al. Immunology of IL-12: an update on functional activities and implications for disease. EXCLI J. 19, 1563–1589 (2020).

    PubMed  PubMed Central  Google Scholar 

  234. Hamilton, J. A. GM-CSF-dependent inflammatory pathways. Front. Immunol. 10, 2055 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Gilliland, C. T., Salanga, C. L., Kawamura, T., Trejo, J. & Handel, T. M. The chemokine receptor CCR1 is constitutively active, which leads to G protein-independent, beta-arrestin-mediated internalization. J. Biol. Chem. 288, 32194–32210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Fei, L., Ren, X., Yu, H. & Zhan, Y. Targeting the CCL2/CCR2 axis in cancer immunotherapy: one stone, three birds? Front. Immunol. 12, 771210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Amorim, A. et al. IFNgamma and GM-CSF control complementary differentiation programs in the monocyte-to-phagocyte transition during neuroinflammation. Nat. Immunol. 23, 217–228 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Wilson, R. et al. Condition-dependent generation of aquaporin-4 antibodies from circulating B cells in neuromyelitis optica. Brain 141, 1063–1074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has received funding from the Swiss National Science Foundation (733 310030_170320, 310030_188450 and CRSII5_183478 to B.B. and 310030_189043 to T.D.), European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 882424 to B.B.), the Agence Nationale pour la Recherche CE17-0014 and ANR-23-CE15-0008 (to R.L.), Fondation pour la Recherche Médicale, ARSEP — French MS society, BETPSY RHU 18- RHUS-0012 (to R.L.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Burkhard Becher, Tobias Derfuss or Roland Liblau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Adrian Liston, Sebastian Kobold, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becher, B., Derfuss, T. & Liblau, R. Targeting cytokine networks in neuroinflammatory diseases. Nat Rev Drug Discov 23, 862–879 (2024). https://doi.org/10.1038/s41573-024-01026-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-024-01026-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing