Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery

Abstract

G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of GPCR ligands and schematic representation of GPCR signalling pathways.
Fig. 2: Detailed comparison of the microswitch residues involved in allosteric communication between the orthosteric binding site and the effector binding site among four class A GPCRs.
Fig. 3: Mechanisms of allosteric modulation of GPCRs.
Fig. 4: Mechanism of action of biased, bivalent and bitopic ligands.
Fig. 5: GPCR drug discovery guided by studies on receptor functional dynamics.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Sriram, K. & Insel, P. A. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol. 93, 251–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, G. GPCR-targeting drugs: a renewed focus on a ubiquitous group of proteins. BioPharma Dive (7 March 2023).

  6. Schmidt, C. Septerna: making another run on GPCRs. Nat. Biotechnol. https://doi.org/10.1038/d41587-023-00010-y (2023).

  7. Summary of NDA approvals & receipts, 1938 to the present. US Food and Drug Administration (FDA) https://fda.gov/about-fda/histories-fda-regulated-products/summary-nda-approvals-receipts-1938-present (2023).

  8. Kenakin, T. G-protein coupled receptors as allosteric machines. Recept. Channels 10, 51–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR dynamics: structures in motion. Chem. Rev. 117, 139–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein–coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hilger, D., Masureel, M. & Kobilka, B. K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25, 4–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gurevich, V. V. & Gurevich, E. V. Biased GPCR signaling: possible mechanisms and inherent limitations. Pharmacol. Ther. 211, 107540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sutkeviciute, I. & Vilardaga, J.-P. Structural insights into emergent signaling modes of G protein-coupled receptors. J. Biol. Chem. 295, 11626–11642 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. García-Nafría, J. & Tate, C. G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol. 488, 1–13 (2019).

    Article  PubMed  Google Scholar 

  15. Christopoulos, A. et al. International union of basic and clinical pharmacology. XC. Multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol. Rev. 66, 918–947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chatzigoulas, A. & Cournia, Z. Rational design of allosteric modulators: challenges and successes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1529 (2021).

    Article  CAS  Google Scholar 

  17. Ye, L., Van Eps, N., Zimmer, M., Ernst, O. P. & Prosser, R. S. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533, 265–268 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Ye, L. et al. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Commun. 9, 1372 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sušac, L., Eddy, M. T., Didenko, T., Stevens, R. C. & Wüthrich, K. A2A adenosine receptor functional states characterized by 19F-NMR. Proc. Natl Acad. Sci. USA 115, 12733–12738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eddy, M. T. et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172, 68–80.e12 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, S. K. & Prosser, R. S. Dynamics and mechanistic underpinnings to pharmacology of class A GPCRs: an NMR perspective. Am. J. Physiol. Cell Physiol. 322, C739–C753 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Wei, S. et al. Single-molecule visualization of human A2A adenosine receptor activation by a G protein and constitutively activating mutations. Commun. Biol. 6, 1218 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, X., Neale, C., Kim, S.-K., Goddard, W. A. & Ye, L. Intermediate-state-trapped mutants pinpoint G protein-coupled receptor conformational allostery. Nat. Commun. 14, 1325 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T. & Wüthrich, K. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 18, 59–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Huang, S. K. et al. Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nat. Struct. Mol. Biol. 30, 502–511 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, S. K. et al. Delineating the conformational landscape of the adenosine A2A receptor during G protein coupling. Cell 184, 1884–1894.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jones, A. J. Y. et al. Binding kinetics drive G protein subtype selectivity at the β1-adrenergic receptor. Nat. Commun. 15, 1334 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Solt, A. S. et al. Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor. Nat. Commun. 8, 1795 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Isogai, S. et al. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature 530, 237–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Papasergi-Scott, M. M. et al. Time-resolved cryo-EM of G-protein activation by a GPCR. Nature 629, 1182–1191 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manglik, A. et al. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161, 1101–1111 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Calderón, J. C., Ibrahim, P., Gobbo, D., Gervasio, F. L. & Clark, T. General metadynamics protocol to simulate activation/deactivation of class a GPCRs: proof of principle for the serotonin receptor. J. Chem. Inf. Model. 63, 3105–3117 (2023).

    Article  PubMed  Google Scholar 

  33. Di Marino, D., Conflitti, P., Motta, S. & Limongelli, V. Structural basis of dimerization of chemokine receptors CCR5 and CXCR4. Nat. Commun. 14, 6439 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. D’Amore, V. M., Conflitti, P., Marinelli, L. & Limongelli, V. Minute-timescale free-energy calculations reveal a pseudo-active state in the adenosine A2A receptor activation mechanism. Chem https://doi.org/10.1016/j.chempr.2024.08.004 (2024).

  35. Raniolo, S. & Limongelli, V. Ligand binding free-energy calculations with funnel metadynamics. Nat. Protoc. 15, 2837–2866 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Souza, P. C. T. et al. Protein–ligand binding with the coarse-grained Martini model. Nat. Commun. 11, 3714 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conflitti, P., Raniolo, S. & Limongelli, V. Perspectives on ligand/protein binding kinetics simulations: force fields, machine learning, sampling, and user-friendliness. J. Chem. Theory Comput. 19, 6047–6061 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Limongelli, V. Ligand binding free energy and kinetics calculation in 2020. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10, e1455 (2020).

    Article  CAS  Google Scholar 

  39. Jespers, W. et al. Deciphering conformational selectivity in the A2A adenosine G protein-coupled receptor by free energy simulations. PLoS Comput. Biol. 17, e1009152 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panel, N. et al. Design of drug efficacy guided by free energy simulations of the β2-adrenoceptor. Angew. Chem. Int. Ed. 62, e202218959 (2023).

    Article  CAS  Google Scholar 

  41. Vögele, M., Zhang, B. W., Kaindl, J. & Wang, L. Is the functional response of a receptor determined by the thermodynamics of ligand binding? J. Chem. Theory Comput. 19, 8414–8422 (2023).

    Article  PubMed  Google Scholar 

  42. Wang, X. et al. Characterization of cancer-related somatic mutations in the adenosine A2B receptor. Eur. J. Pharmacol. 880, 173126 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Bongers, B. J. et al. Pan-cancer functional analysis of somatic mutations in G protein-coupled receptors. Sci. Rep. 12, 21534 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan, X., Raniolo, S., Limongelli, V. & Xu, Y. The molecular mechanism underlying ligand binding to the membrane-embedded site of a G-protein-coupled receptor. J. Chem. Theory Comput. 14, 2761–2770 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Hollingsworth, S. A. et al. Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nat. Commun. 10, 3289 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meller, A., Kelly, D., Smith, L. G. & Bowman, G. R. Toward physics-based precision medicine: exploiting protein dynamics to design new therapeutics and interpret variants. Protein Sci. 33, e4902 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fredriksson, R., Lagerström, M. C., Lundin, L.-G. & Schiöth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Isberg, V. et al. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. 44, D356–D364 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, P. et al. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592, 469–473 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, X. et al. Structural basis of ligand recognition and self-activation of orphan GPR52. Nature 579, 152–157 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H.-W. & Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    Article  CAS  PubMed  Google Scholar 

  54. Pándy-Szekeres, G. et al. GproteinDb in 2024: new G protein-GPCR couplings, AlphaFold2-multimer models and interface interactions. Nucleic Acids Res. 52, D466–D475 (2024).

    Article  PubMed  Google Scholar 

  55. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gurevich, V. V. & Gurevich, E. V. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell. Mol. Life Sci. 76, 4413–4421 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Laporte, S. A. & Scott, M. G. H. in Beta-Arrestins. Methods in Molecular Biology, Vol. 1957 (eds Scott, M. G. H. & Laporte, S. A.) 9–55 (Humana Press, 2019).

  58. Xiao, K. et al. Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc. Natl Acad. Sci. USA 104, 12011–12016 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hauser, A. S. et al. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28, 879–888 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nygaard, R. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gregorio, G. G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature 547, 68–73 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rose, A. S. et al. Position of transmembrane helix 6 determines receptor G protein coupling specificity. J. Am. Chem. Soc. 136, 11244–11247 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Batebi, H. et al. Mechanistic insights into G-protein coupling with an agonist-bound G-protein-coupled receptor. Nat. Struct. Mol. Biol. 31, 1692–1701 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Hilger, D. et al. Structural insights into differences in G protein activation by family A and family B GPCRs. Science 369, eaba3373 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kato, H. E. et al. Conformational transitions of a neurotensin receptor 1–Gi1 complex. Nature 572, 80–85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sounier, R. et al. Propagation of conformational changes during μ-opioid receptor activation. Nature 524, 375–378 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Onaran, H. O. & Costa, T. Allosteric coupling and conformational fluctuations in proteins. Curr. Protein Pept. Sci. 10, 110–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Grahl, A., Abiko, L. A., Isogai, S., Sharpe, T. & Grzesiek, S. A high-resolution description of β1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nat. Commun. 11, 2216 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mafi, A., Kim, S.-K. & Goddard, W. A. The mechanism for ligand activation of the GPCR–G protein complex. Proc. Natl Acad. Sci. USA 119, e2110085119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mafi, A., Kim, S.-K. & Goddard, W. A. The dynamics of agonist-β2-adrenergic receptor activation induced by binding of GDP-bound Gs protein. Nat. Chem. 15, 1127–1137 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Devree, B. T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Warne, T., Edwards, P. C., Doré, A. S., Leslie, A. G. W. & Tate, C. G. Molecular basis for high-affinity agonist binding in GPCRs. Science 364, 775–778 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nygaard, R., Frimurer, T. M., Holst, B., Rosenkilde, M. M. & Schwartz, T. W. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol. Sci. 30, 249–259 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Zhou, Q. et al. Common activation mechanism of class A GPCRs. eLife 8, e50279 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang, J., Hua, T. & Liu, Z.-J. Structural features of activated GPCR signaling complexes. Curr. Opin. Struct. Biol. 63, 82–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Isberg, V. et al. Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22–31 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences, Vol. 25 (ed. Sealfon, S. C.) 366–428 (Academic Press, 1995).

  78. Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl Acad. Sci. USA 110, 5211–5216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pin, J.-P., Galvez, T. & Prézeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 98, 325–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, C. et al. Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 5, 4355 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Gutiérrez-de-Terán, H. et al. The role of a sodium ion binding site in the allosteric modulation of the A2A adenosine G protein-coupled receptor. Structure 21, 2175–2185 (2013).

    Article  PubMed  Google Scholar 

  82. Bjornsson, T. D. et al. The conduct of in vitro and in vivo drug-drug interaction studies: a pharmaceutical research and manufacturers of America (PhRMA) perspective. Drug Metab. Dispos. 31, 815–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Wienkers, L. C. & Heath, T. G. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 4, 825–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Noetzel, M. J. et al. Functional impact of allosteric agonist activity of selective positive allosteric modulators of metabotropic glutamate receptor subtype 5 in regulating central nervous system function. Mol. Pharmacol. 81, 120–133 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kobayashi, K. et al. Class B1 GPCR activation by an intracellular agonist. Nature 615, 1085–1093 (2023).

    Article  Google Scholar 

  86. Zhao, L.-H. et al. Conserved class B GPCR activation by a biased intracellular agonist. Nature 621, 635–641 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dror, R. O. et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503, 295–299 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thal, D. M. et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, Y, Tong, J, Ding, K, Zhou, Q & Zhao, S. in Protein Allostery in Drug Discovery. Advances in Experimental Medicine and Biology, Vol. 1163 (eds Zhang, J. & Nussinov, R.) 225–251 (Springer, 2019).

  92. Zhu, C., Lan, X., Wei, Z., Yu, J. & Zhang, J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm. Sin. B 14, 67–86 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. He, J. et al. ASD2023: towards the integrating landscapes of allosteric knowledgebase. Nucleic Acids Res. 52, D376–D383 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Teng, X. et al. Ligand recognition and biased agonism of the D1 dopamine receptor. Nat. Commun. 13, 3186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Krumm, B. E. et al. Neurotensin receptor allosterism revealed in complex with a biased allosteric modulator. Biochemistry 62, 1233–1248 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Saleh, N. et al. Multiple binding sites contribute to the mechanism of mixed agonistic and positive allosteric modulators of the cannabinoid CB1 receptor. Angew. Chem. Int. Ed. 57, 2580–2585 (2018).

    Article  CAS  Google Scholar 

  97. Hurst, D. P. et al. Identification of CB1 receptor allosteric sites using force-biased MMC simulated annealing and validation by structure–activity relationship studies. ACS Med. Chem. Lett. 10, 1216–1221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hao, J. et al. Synthesis and pharmacological characterization of 2-(2,6-dichlorophenyl)-1-((1S,3R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one (LY3154207), a potent, subtype selective, and orally available positive allosteric modulator of the human dopamine D1 receptor. J. Med. Chem. 62, 8711–8732 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Xiao, P. et al. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 184, 943–956.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, X. et al. An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat. Chem. Biol. 16, 749–755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Song, G. et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546, 312–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Wu, H. et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344, 58–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Du, J. et al. Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature 594, 589–593 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Nasrallah, C. et al. Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Rep. 36, 109648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao, Y. et al. Asymmetric activation of the calcium-sensing receptor homodimer. Nature 595, 455–459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Park, J. et al. Symmetric activation and modulation of the human calcium-sensing receptor. Proc. Natl Acad. Sci. USA 118, e2115849118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Oswald, C. et al. Intracellular allosteric antagonism of the CCR9 receptor. Nature 540, 462–465 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Zheng, Y. et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540, 458–461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Abiko, L. A. et al. Filling of a water-free void explains the allosteric regulation of the β1-adrenergic receptor by cholesterol. Nat. Chem. 14, 1133–1141 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Slosky, L. M., Caron, M. G. & Barak, L. S. Biased allosteric modulators: new frontiers in GPCR drug discovery. Trends Pharmacol. Sci. 42, 283–299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cheng, R. K. Y. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Maeda, S., Qu, Q., Robertson, M. J., Skiniotis, G. & Kobilka, B. K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 364, 552–557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu, X. et al. Mechanism of β2AR regulation by an intracellular positive allosteric modulator. Science 364, 1283–1287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Staus, D. P. et al. Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature 579, 297–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Duan, J. et al. Structures of full-length glycoprotein hormone receptor signalling complexes. Nature 598, 688–692 (2021).

    Article  PubMed  Google Scholar 

  117. Wang, J. et al. The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands. Nat. Commun. 13, 2855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Duan, J. et al. Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature 609, 854–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Vuckovic, Z. et al. Pharmacological hallmarks of allostery at the M4 muscarinic receptor elucidated through structure and dynamics. eLife 12, e83477 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, J. et al. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor. Nat. Commun. 14, 376 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, Y. et al. Ligand recognition and allosteric modulation of the human MRGPRX1 receptor. Nat. Chem. Biol. 19, 416–422 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Duan, J. et al. GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature 620, 676–681 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Duan, J. et al. Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor. Nat. Commun. 14, 519 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. Yang, F. et al. Structural basis of GPBAR activation and bile acid recognition. Nature 587, 499–504 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 593–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, X. et al. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature 548, 480–484 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jaeger, K. et al. Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7. Cell 178, 1222–1230.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu, K. et al. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 585, 135–140 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Jazayeri, A. et al. Extra-helical binding site of a glucagon receptor antagonist. Nature 533, 274–277 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Zhang, H. et al. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546, 259–264 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu, F. et al. Full-length human GLP-1 receptor structure without orthosteric ligands. Nat. Commun. 11, 1272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cong, Z. et al. Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor. Nat. Commun. 12, 3763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hollenstein, K. et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499, 438–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Kim, H. et al. Structure-based drug discovery of a corticotropin-releasing hormone receptor 1 antagonist using an X-ray free-electron laser. Exp. Mol. Med. 55, 2039–2050 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ling, S. Structural insights into asymmetric activation of the calcium-sensing receptor–Gq complex. Cell Res. 34, 169–172 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Krishna, K. K. et al. Stepwise activation of a metabotropic glutamate receptor. Nature 629, 951–956 (2024).

    Article  Google Scholar 

  138. Christopher, J. A. et al. Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J. Med. Chem. 58, 6553–6664 (2015).

    Article  Google Scholar 

  139. Christopher, J. A. et al. Structure-based optimization strategies for G protein-coupled receptor (GPCR) allosteric modulators: a case study from analyses of new metabotropic glutamate receptor 5 (mGlu5) X-ray structures. J. Med. Chem. 62, 207–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Lin, S. et al. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature 594, 583–588 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Seven, A. B. et al. G-protein activation by a metabotropic glutamate receptor. Nature 595, 450–454 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wen, T. et al. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. Sci. Adv. 7, eabg1483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, X. et al. Structural insights into dimerization and activation of the mGlu2–mGlu3 and mGlu2–mGlu4 heterodimers. Cell Res. 33, 762–774 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Doré, A. S. et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511, 557–562 (2014).

    Article  PubMed  Google Scholar 

  145. Svensson, K. A. et al. An allosteric potentiator of the dopamine D1 receptor increases locomotor activity in human D1 knock-in mice without causing stereotypy or tachyphylaxis. J. Pharmacol. Exp. Ther. 360, 117–128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bruns, R. F. et al. Preclinical profile of a dopamine D1 potentiator suggests therapeutic utility in neurological and psychiatric disorders. Neuropharmacology 128, 351–365 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Wilbraham, D., Biglan, K. M., Svensson, K. A., Tsai, M. & Kielbasa, W. Safety, tolerability, and pharmacokinetics of mevidalen (LY3154207), a centrally acting dopamine D1 receptor-positive allosteric modulator (D1PAM), in healthy subjects. Clin. Pharmacol. Drug Dev. 10, 393–403 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03305809 (2021).

  149. Biglan, K. et al. Safety and efficacy of mevidalen in Lewy body dementia: a phase 2, randomized, placebo-controlled trial. Mov. Disord. 37, 513–524 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Teng, X. et al. Structural insights into G protein activation by D1 dopamine receptor. Sci. Adv. 8, eabo4158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Laprairie, R. B. et al. Enantiospecific allosteric modulation of cannabinoid 1 receptor. ACS Chem. Neurosci. 8, 1188–1203 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Mackie, K. Cannabinoid receptors as therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 46, 101–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Mackie, K. Cannabinoid receptors: where they are and what they do. J. Neuroendocrinol. 20, 10–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Shahbazi, F., Grandi, V., Banerjee, A. & Trant, J. F. Cannabinoids and cannabinoid receptors: the story so far. iScience 23, 101301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Price, M. R. et al. Allosteric modulation of the cannabinoid CB1 receptor. Mol. Pharmacol. 68, 1484–1495 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Horswill, J. G. et al. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats. Br. J. Pharmacol. 152, 805–814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Laprairie, R. B. et al. Positive allosteric modulation of the type 1 cannabinoid receptor reduces the signs and symptoms of Huntington’s disease in the R6/2 mouse model. Neuropharmacology 151, 1–12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Slivicki, R. A. et al. Positive allosteric modulation of CB1 cannabinoid receptor signaling enhances morphine antinociception and attenuates morphine tolerance without enhancing morphine- induced dependence or reward. Front. Mol. Neurosci. 13, 54 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Garai, S. et al. Application of fluorine- and nitrogen-walk approaches: defining the structural and functional diversity of 2-phenylindole class of cannabinoid 1 receptor positive allosteric modulators. J. Med. Chem. 63, 542–568 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Garai, S. et al. Discovery of a biased allosteric modulator for cannabinoid 1 receptor: preclinical anti-glaucoma efficacy. J. Med. Chem. 64, 8104–8126 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Dowie, M. J. et al. Altered CB1 receptor and endocannabinoid levels precede motor symptom onset in a transgenic mouse model of Huntington’s disease. Neuroscience 163, 456–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Hua, T. et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547, 468–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Drug Approval Package: Sensipar https://accessdata.fda.gov/drugsatfda_docs/nda/2004/21-688_Sensipar.cfm (2004).

  164. Block, G. A. et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N. Engl. J. Med. 350, 1516–1525 (2004).

    Article  CAS  PubMed  Google Scholar 

  165. Nemeth, E. F. et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J. Pharmacol. Exp. Ther. 308, 627–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Peacock, M. et al. Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 90, 135–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Nemeth, E. F., Van Wagenen, B. C. & Balandrin, M. F. in Progress in Medicinal Chemistry, Vol. 57 (eds Witty, D. R. & Cox, B.) 1–86 (Elsevier, 2018).

  168. Nemeth, E. F. et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc. Natl Acad. Sci. USA 95, 4040–4045 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. McConnachie, L. et al. Human liver cytochrome P450 2D6 genotype, full-length messenger ribonucleic acid, and activity assessed with a novel cytochrome P450 2D6 substrate. Clin. Pharmacol. Ther. 75, 282–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Fukagawa, M., Shimazaki, R. & Akizawa, T. Head-to-head comparison of the new calcimimetic agent evocalcet with cinacalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 94, 818–825 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03280264 (2021).

  172. Takeuchi, Y., Nishida, Y., Kondo, Y., Imanishi, Y. & Fukumoto, S. Evocalcet in patients with primary hyperparathyroidism: an open-label, single-arm, multicenter, 52-week, dose-titration phase III study. J. Bone Miner. Metab. 38, 687–694 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Wess, J., Eglen, R. M. & Gautam, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat. Rev. Drug Discov. 6, 721–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Kruse, A. C. et al. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat. Rev. Drug Discov. 13, 549–560 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Foster, D. J., Jones, C. K. & Conn, P. J. Emerging approaches for treatment of schizophrenia: modulation of cholinergic signaling. Discov. Med. 14, 413–420 (2012).

    PubMed  PubMed Central  Google Scholar 

  176. Burger, W. A. C. et al. Xanomeline displays concomitant orthosteric and allosteric binding modes at the M4 mAChR. Nat. Commun. 14, 5440 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. FDA approves drug with new mechanism of action for treatment of schizophrenia. US Food and Drug Administration (FDA) https://fda.gov/news-events/press-announcements/fda-approves-drug-new-mechanism-action-treatment-schizophrenia (2024).

  178. Madsbad, S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes. Metab. 18, 317–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Andersen, A., Lund, A., Knop, F. K. & Vilsbøll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 14, 390–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Knudsen, L. B. & Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 10, 155 (2019).

    Article  Google Scholar 

  183. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Weghuber, D. et al. Once-weekly semaglutide in adolescents with obesity. N. Engl. J. Med. 387, 2245–2257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Lindsley, C. W. & Niswender, K. Positive allosteric modulators of the glp-1 receptor. Patent WO2017117556A1 (2017).

  188. Tamiya, J. et al. Novel glp-1 receptor modulators. Patent WO2018200833A1 (2018).

  189. Koole, C. et al. Differential impact of amino acid substitutions on critical residues of the human glucagon-like peptide-1 receptor involved in peptide activity and small-molecule allostery. J. Pharmacol. Exp. Ther. 353, 52–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Boehm, M. F. et al. Glp-1 receptor modulators. Patent WO2016094729A1 (2016).

  191. Bueno, A. B. et al. Positive allosteric modulation of the glucagon-like peptide-1 receptor by diverse electrophiles. J. Biol. Chem. 291, 10700–10715 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Méndez, M. et al. Design, synthesis, and pharmacological evaluation of potent positive allosteric modulators of the glucagon-like peptide-1 receptor (GLP-1R). J. Med. Chem. 63, 2292–2307 (2020).

    Article  PubMed  Google Scholar 

  193. Bueno, A. B. et al. Structural insights into probe-dependent positive allosterism of the GLP-1 receptor. Nat. Chem. Biol. 16, 1105–1110 (2020).

    Article  CAS  PubMed  Google Scholar 

  194. Willard, F. S. et al. Discovery of an orally efficacious positive allosteric modulator of the glucagon-like peptide-1 receptor. J. Med. Chem. 64, 3439–3448 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Xin, Y. et al. Affinity selection of double-click triazole libraries for rapid discovery of allosteric modulators for GLP-1 receptor. Proc. Natl Acad. Sci. USA 120, e2220767120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Pinkerton, A. B. et al. Discovery of β-arrestin biased, orally bioavailable, and CNS penetrant neurotensin receptor 1 (NTR1) allosteric modulators. J. Med. Chem. 62, 8357–8363 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Slosky, L. M. et al. β-Arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell 181, 1364–1379.e14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Peddibhotla, S. et al. Discovery of ML314, a brain penetrant nonpeptidic β-arrestin biased agonist of the neurotensin NTR1 receptor. ACS Med. Chem. Lett. 4, 846–851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Porter-Stransky, K. A. & Weinshenker, D. Arresting the development of addiction: the role of β-arrestin 2 in drug abuse. J. Pharmacol. Exp. Ther. 361, 341–348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Barak, L. S. et al. ML314: a biased neurotensin receptor ligand for methamphetamine abuse. ACS Chem. Biol. 11, 1880–1890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ferraro, L. et al. Neurotensin: a role in substance use disorder? J. Psychopharmacol. 30, 112–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Iyer, M. R. & Kunos, G. Therapeutic approaches targeting the neurotensin receptors. Expert Opin. Ther. Pat. 31, 361–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  203. Huang, W. et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 579, 303–308 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. FDA approves add-on drug for adults with rare form of blood vessel inflammation. US Food and Drug Administration (FDA) https://fda.gov/drugs/news-events-human-drugs/fda-approves-add-drug-adults-rare-form-blood-vessel-inflammation (2021).

  205. Lee, A. Avacopan: first approval. Drugs 82, 79–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Jayne, D. R. W., Merkel, P. A., Schall, T. J. & Bekker, P. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Monk, P. N., Scola, A.-M., Madala, P. & Fairlie, D. P. Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol. 152, 429–448 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bekker, P. et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized phase 1 clinical study. PLoS ONE 11, e0164646 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Liu, H. et al. Orthosteric and allosteric action of the C5a receptor antagonists. Nat. Struct. Mol. Biol. 25, 472–481 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Dasse, O. A. et al. Novel, acidic CCR2 receptor antagonists: lead optimization. Lett. Drug Des. Discov. 4, 263–271 (2007).

    Article  CAS  Google Scholar 

  211. Walters, M. J. et al. Characterization of CCX282-B, an orally bioavailable antagonist of the ccr9 chemokine receptor, for treatment of inflammatory bowel disease. J. Pharmacol. Exp. Ther. 335, 61–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Feagan, B. G. et al. Randomised clinical trial: vercirnon, an oral CCR9 antagonist, vs. placebo as induction therapy in active Crohn’s disease. Aliment. Pharmacol. Ther. 42, 1170–1181 (2015).

    Article  CAS  PubMed  Google Scholar 

  213. Ortiz Zacarías, N. V. et al. Synthesis and pharmacological evaluation of triazolopyrimidinone derivatives as noncompetitive, intracellular antagonists for CC chemokine receptors 2 and 5. J. Med. Chem. 62, 11035–11053 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Ortiz Zacarías, N. V. et al. Design and characterization of an intracellular covalent ligand for CC chemokine receptor 2. J. Med. Chem. 64, 2608–2621 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Toy, L., Huber, M. E., Schmidt, M. F., Weikert, D. & Schiedel, M. Fluorescent ligands targeting the intracellular allosteric binding site of the chemokine receptor CCR2. ACS Chem. Biol. 17, 2142–2152 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Huber, M. E., Toy, L., Schmidt, M. F., Weikert, D. & Schiedel, M. Small molecule tools to study cellular target engagement for the intracellular allosteric binding site of GPCRs. Chem. Eur. J. 29, e202202565 (2023).

    Article  CAS  PubMed  Google Scholar 

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03473925 (2022).

  218. Armstrong, A. J. et al. CXCR2 antagonist navarixin in combination with pembrolizumab in select advanced solid tumors: a phase 2 randomized trial. Invest. New Drugs 42, 145–159 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Huber, M. E. et al. A chemical biology toolbox targeting the intracellular binding site of ccr9: fluorescent ligands, new drug leads and PROTACs. Angew. Chem. Int. Ed. 61, e202116782 (2022).

    Article  CAS  Google Scholar 

  220. Caroli, J. et al. A community Biased Signaling Atlas. Nat. Chem. Biol. 19, 531–535 (2023).

    Article  CAS  PubMed  Google Scholar 

  221. Kolb, P. et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 179, 3651–3674 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Wang, X., McFarland, A., Madsen, J. J., Aalo, E. & Ye, L. The potential of 19F NMR application in GPCR biased drug discovery. Trends Pharmacol. Sci. 42, 19–30 (2021).

    Article  CAS  PubMed  Google Scholar 

  223. Kelly, E., Conibear, A. E. & Henderson, G. Biased agonism: lessons from studies of opioid receptor agonists. Annu. Rev. Pharmacol. Toxicol. 63, 491–515 (2022).

    Article  PubMed  Google Scholar 

  224. Nagi, K. & Pineyro, G. Practical guide for calculating and representing biased signaling by GPCR ligands: a stepwise approach. Methods 92, 78–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Onaran, H. O. et al. Systematic errors in detecting biased agonism: analysis of current methods and development of a new model-free approach. Sci. Rep. 7, 44247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M. & Sexton, P. M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018).

    Article  CAS  PubMed  Google Scholar 

  227. Cecon, E., Oishi, A. & Jockers, R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 175, 3263–3280 (2018).

    Article  CAS  PubMed  Google Scholar 

  228. Herenbrink, C. K. et al. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7, 10842 (2016).

    Article  Google Scholar 

  229. Ursu, O. et al. DrugCentral: online drug compendium. Nucleic Acids Res. 45, D932–D939 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Alexander, S. P. H. et al. The concise guide to pharmacology 2021/22: G protein-coupled receptors. Br. J. Pharmacol. 178, S27–S156 (2021).

    CAS  PubMed  Google Scholar 

  231. FDA approves new opioid for intravenous use in hospitals, other controlled clinical settings. US Food and Drug Administration (FDA) https://fda.gov/news-events/press-announcements/fda-approves-new-opioid-intravenous-use-hospitals-other-controlled-clinical-settings (2020).

  232. Markham, A. Oliceridine: first approval. Drugs 80, 1739–1744 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Lambert, D. & Calo, G. Approval of oliceridine (TRV130) for intravenous use in moderate to severe pain in adults. Br. J. Anaesth. 125, e473–e474 (2020).

    Article  CAS  PubMed  Google Scholar 

  234. DeWire, S. M. et al. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708–717 (2013).

    Article  CAS  PubMed  Google Scholar 

  235. Azzam, A. A. H., McDonald, J. & Lambert, D. G. Hot topics in opioid pharmacology: mixed and biased opioids. Br. J. Anaesth. 122, e136–e145 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Singla, N. K. et al. APOLLO-2: a randomized, placebo and active-controlled phase III study investigating oliceridine (TRV130), a G protein–biased ligand at the μ-opioid receptor, for management of moderate to severe acute pain following abdominoplasty. Pain Pract. 19, 715–731 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Schneider, S., Provasi, D. & Filizola, M. How oliceridine (TRV-130) binds and stabilizes a μ-opioid receptor conformational state that selectively triggers G protein signaling pathways. Biochemistry 55, 6456–6466 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Zhuang, Y. et al. Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell 185, 4361–4375.e19 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Lee, Y. et al. Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Nature 583, 862–866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Cao, C. et al. Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron 110, 3154–3167.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bous, J. et al. Structure of the vasopressin hormone–V2 receptor–β-arrestin1 ternary complex. Sci. Adv. 8, eabo7761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wall, M. J. et al. Selective activation of Gαob by an adenosine A1 receptor agonist elicits analgesia without cardiorespiratory depression. Nat. Commun. 13, 4150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Chen, J.-F., Eltzschig, H. K. & Fredholm, B. B. Adenosine receptors as drug targets — what are the challenges? Nat. Rev. Drug Discov. 12, 265–286 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Jacobson, K. A. & Müller, C. E. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 104, 31–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  245. Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F. & Varani, K. Pharmacology of adenosine receptors: the state of the art. Physiol. Rev. 98, 1591–1625 (2018).

    Article  CAS  PubMed  Google Scholar 

  246. Gomes, I. et al. Biased signaling by endogenous opioid peptides. Proc. Natl Acad. Sci. USA 117, 11820–11828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Kawai, Y. & Arinze, I. J. Differential localization and development-dependent expression of G-protein subunits, Goα and Gβ, in rabbit heart. J. Mol. Cell. Cardiol. 28, 1555–1564 (1996).

    Article  CAS  PubMed  Google Scholar 

  249. McGrath, M. F. & de Bold, A. J. Transcriptional analysis of the mammalian heart with special reference to its endocrine function. BMC Genom. 10, 254 (2009).

    Article  Google Scholar 

  250. Kawahara, K., Hohjoh, H., Inazumi, T., Tsuchiya, S. & Sugimoto, Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851, 414–421 (2015).

    Article  CAS  Google Scholar 

  251. Tsuge, K., Inazumi, T., Shimamoto, A. & Sugimoto, Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int. Immunol. 31, 597–606 (2019).

    Article  CAS  PubMed  Google Scholar 

  252. Yokoyama, U., Iwatsubo, K., Umemura, M., Fujita, T. & Ishikawa, Y. The prostanoid EP4 receptor and its signaling pathway. Pharmacol. Rev. 65, 1010–1052 (2013).

    Article  PubMed  Google Scholar 

  253. Li, J. H. et al. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J. Clin. Invest. 119, 3115–3126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Xu, H. et al. Endothelial cell prostaglandin E2 receptor EP4 is essential for blood pressure homeostasis. JCI Insight 5, e138505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Xu, H. et al. VSMC-specific EP4 deletion exacerbates angiotensin II-induced aortic dissection by increasing vascular inflammation and blood pressure. Proc. Natl Acad. Sci. USA 116, 8457–8462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Luschnig-Schratl, P. et al. EP4 receptor stimulation down-regulates human eosinophil function. Cell. Mol. Life Sci. 68, 3573–3587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Huang, S.-M. et al. Single hormone or synthetic agonist induces Gs/Gi coupling selectivity of EP receptors via distinct binding modes and propagating paths. Proc. Natl Acad. Sci. USA 120, e2216329120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Nakase, H. et al. Effect of EP4 agonist (ONO-4819CD) for patients with mild to moderate ulcerative colitis refractory to 5-aminosalicylates: a randomized phase II, placebo-controlled trial. Inflamm. Bowel Dis. 16, 731–733 (2010).

    Article  PubMed  Google Scholar 

  259. Foudi, N. et al. Vasorelaxation induced by prostaglandin E2 in human pulmonary vein: role of the EP4 receptor subtype. Br. J. Pharmacol. 154, 1631–1639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Qiao, A. et al. Structural basis of Gs and Gi recognition by the human glucagon receptor. Science 367, 1346–1352 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Gusach, A., García-Nafría, J. & Tate, C. New insights into GPCR coupling and dimerisation from cryo-EM structures. Curr. Opin. Struct. Biol. 80, 102574 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Cheloha, R. W., Gellman, S. H., Vilardaga, J.-P. & Gardella, T. J. PTH receptor-1 signalling — mechanistic insights and therapeutic prospects. Nat. Rev. Endocrinol. 11, 712–724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Vilardaga, J.-P., Romero, G., Friedman, P. A. & Gardella, T. J. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell. Mol. Life Sci. 68, 1–13 (2011).

    Article  CAS  PubMed  Google Scholar 

  264. Blaine, J., Chonchol, M. & Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 10, 1257–1272 (2015).

    Article  CAS  PubMed  Google Scholar 

  265. Pettway, G. J. et al. Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone 42, 806–818 (2008).

    Article  CAS  PubMed  Google Scholar 

  266. Fan, Y. et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 25, 661–672 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Balani, D. H., Ono, N. & Kronenberg, H. M. Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J. Clin. Invest. 127, 3327–3338 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Okazaki, M. et al. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc. Natl Acad. Sci. USA 105, 16525–16530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Maeda, A. et al. Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH. Proc. Natl Acad. Sci. USA 110, 5864–5869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Gesty-Palmer, D. et al. A β-arrestin–biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci. Transl. Med. 1, 1ra1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Tamura, T. et al. Identification of an orally active small-molecule PTHR1 agonist for the treatment of hypoparathyroidism. Nat. Commun. 7, 13384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Nishimura, Y. et al. Lead optimization and avoidance of reactive metabolite leading to PCO371, a potent, selective, and orally available human parathyroid hormone receptor 1 (hPTHR1) agonist. J. Med. Chem. 63, 5089–5099 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04649216 (2021).

  274. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04209179 (2021).

  275. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02475616 (2015).

  276. Erez, M., Takemori, A. E. & Portoghese, P. S. Narcotic antagonistic potency of bivalent ligands which contain .beta.-naltrexamine. Evidence for simultaneous occupation of proximal recognition sites. J. Med. Chem. 25, 847–849 (1982).

    Article  CAS  PubMed  Google Scholar 

  277. Gomes, I. et al. G protein–coupled receptor heteromers. Annu. Rev. Pharmacol. Toxicol. 56, 403–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  278. Farran, B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol. Res. 117, 303–327 (2017).

    Article  CAS  PubMed  Google Scholar 

  279. Işbilir, A. et al. Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proc. Natl Acad. Sci. USA 117, 29144–29154 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Dale, N. C., Johnstone, E. K. M. & Pfleger, K. D. G. GPCR heteromers: an overview of their classification, function and physiological relevance. Front. Endocrinol. 13, 931573 (2022).

    Article  Google Scholar 

  281. Newman, A. H., Battiti, F. O. & Bonifazi, A. 2016 Philip S. Portoghese medicinal chemistry lectureship: designing bivalent or bitopic molecules for G-protein coupled receptors. The whole is greater than the sum of its parts. J. Med. Chem. 63, 1779–1797 (2020).

    Article  CAS  PubMed  Google Scholar 

  282. González-Maeso, J. et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Fribourg, M. et al. Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147, 1011–1023 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. de Bartolomeis, A., Buonaguro, E. F. & Iasevoli, F. Serotonin–glutamate and serotonin–dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology 225, 1–19 (2013).

    Article  PubMed  Google Scholar 

  285. Ferré, S. et al. Allosteric mechanisms within the adenosine A2A–dopamine D2 receptor heterotetramer. Neuropharmacology 104, 154–160 (2016).

    Article  PubMed  Google Scholar 

  286. Navarro, G. et al. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nat. Commun. 9, 1242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Pulido, D. et al. Heterobivalent ligand for the adenosine A2A–dopamine D2 receptor heteromer. J. Med. Chem. 65, 616–632 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Chun, L., Zhang, W. & Liu, J. Structure and ligand recognition of class C GPCRs. Acta Pharmacol. Sin. 33, 312–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Im, D. et al. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone. Nat. Commun. 11, 6442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Orru, M. et al. Striatal pre- and postsynaptic profile of adenosine A2A receptor antagonists. PLoS ONE 6, e16088 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Sabbadin, D., Ciancetta, A., Deganutti, G., Cuzzolin, A. & Moro, S. Exploring the recognition pathway at the human A2A adenosine receptor of the endogenous agonist adenosine using supervised molecular dynamics simulations. MedChemComm 6, 1081–1085 (2015).

    Article  CAS  Google Scholar 

  292. Fronik, P., Gaiser, B. I. & Sejer Pedersen, D. Bitopic ligands and metastable binding sites: opportunities for G protein-coupled receptor (GPCR) medicinal chemistry. J. Med. Chem. 60, 4126–4134 (2017).

    Article  CAS  PubMed  Google Scholar 

  293. Lane, J. R., Sexton, P. M. & Christopoulos, A. Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends Pharmacol. Sci. 34, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  294. Valant, C., Lane, J. R., Sexton, P. & Christopoulos, A. The best of both worlds? Bitopic orthosteric/allosteric ligands of g protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 52, 153–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  295. Drug Approval Package: Serevent https://accessdata.fda.gov/drugsatfda_docs/nda/98/20692S1,2_Serevent.cfm (1998).

  296. Soulele, K., Macheras, P. & Karalis, V. Pharmacokinetic analysis of inhaled salmeterol in asthma patients: evidence from two dry powder inhalers. Biopharm. Drug Dispos. 38, 407–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  297. Cazzola, M., Testi, R. & Matera, M. G. Clinical pharmacokinetics of salmeterol. Clin. Pharmacokinet. 41, 19–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  298. Masureel, M. et al. Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat. Chem. Biol. 14, 1059–1066 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Carter, A. A. & Hill, S. J. Characterization of isoprenaline- and salmeterol-stimulated interactions between β2-adrenoceptors and β-arrestin 2 using β-galactosidase complementation in C2C12 cells. J. Pharmacol. Exp. Ther. 315, 839–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  300. Drake, M. T. et al. β-Arrestin-biased agonism at the β2-adrenergic receptor. J. Biol. Chem. 283, 5669–5676 (2008).

    Article  CAS  PubMed  Google Scholar 

  301. Liapakis, G., Chan, W. C., Papadokostaki, M. & Javitch, J. A. Synergistic contributions of the functional groups of epinephrine to its affinity and efficacy at the β2 adrenergic receptor. Mol. Pharmacol. 65, 1181–1190 (2004).

    Article  CAS  PubMed  Google Scholar 

  302. Faouzi, A. et al. Structure-based design of bitopic ligands for the µ-opioid receptor. Nature 613, 767–774 (2023).

    Article  CAS  PubMed  Google Scholar 

  303. Gado, F. Design, synthesis, and biological activity of new CB2 receptor ligands: from orthosteric and allosteric modulators to dualsteric/bitopic ligands. J. Med. Chem. 65, 9918–9938 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Gaiser, B. I. et al. Probing the existence of a metastable binding site at the β2-adrenergic receptor with homobivalent bitopic ligands. J. Med. Chem. 62, 7806–7839 (2019).

    Article  CAS  PubMed  Google Scholar 

  305. Valant, C. et al. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc. Natl Acad. Sci. USA 111, 4614–4619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Tan, L. et al. Design and synthesis of bitopic 2-phenylcyclopropylmethylamine (PCPMA) derivatives as selective dopamine D3 receptor ligands. J. Med. Chem. 63, 4579–4602 (2020).

    Article  CAS  PubMed  Google Scholar 

  307. Shaik, A. B. et al. Structure activity relationships for a series of eticlopride-based dopamine D2/D3 receptor bitopic ligands. J. Med. Chem. 64, 15313–15333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Agasid, M. T., Sørensen, L., Urner, L. H., Yan, J. & Robinson, C. V. The effects of sodium ions on ligand binding and conformational states of G protein-coupled receptors — insights from mass spectrometry. J. Am. Chem. Soc. 143, 4085–4089 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Katritch, V. et al. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 39, 233–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Fenalti, G. et al. Molecular control of δ-opioid receptor signalling. Nature 506, 191–196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Huang, W. et al. Structural insights into µ-opioid receptor activation. Nature 524, 315–321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Schmid, C. L. et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171, 1165–1175.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Ramos-Gonzalez, N. et al. Carfentanil is a β-arrestin-biased agonist at the μ opioid receptor. Br. J. Pharmacol. 180, 2341–2360 (2023).

    Article  CAS  PubMed  Google Scholar 

  314. Lückmann, M. et al. Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. Proc. Natl Acad. Sci. USA 116, 7123–7128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Yadav, P., Mollaei, P., Cao, Z., Wang, Y. & Barati Farimani, A. Prediction of GPCR activity using machine learning. Comput. Struct. Biotechnol. J. 20, 2564–2573 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Pándy-Szekeres, G. et al. GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 51, D395–D402 (2023).

    Article  PubMed  Google Scholar 

  317. Lyu, J. et al. AlphaFold2 structures guide prospective ligand discovery. Science 384, eadn6354 (2024).

    Article  CAS  PubMed  Google Scholar 

  318. Calderón, J. C., Ibrahim, P., Gobbo, D., Gervasio, F. L. & Clark, T. Determinants of neutral antagonism and inverse agonism in the β2-adrenergic receptor. J. Chem. Inf. Model. 64, 2045–2057 (2024).

    Article  PubMed  Google Scholar 

  319. Hori, T. et al. Na+-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nat. Chem. Biol. 14, 262–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  320. Chen, K.-Y. M., Keri, D. & Barth, P. Computational design of G protein-coupled receptor allosteric signal transductions. Nat. Chem. Biol. 16, 77–86 (2020).

    Article  CAS  PubMed  Google Scholar 

  321. Abiko, L. A. et al. Biased agonism of carvedilol in the β1-adrenergic receptor is governed by conformational exclusion. Preprint at bioRxiv https://doi.org/10.1101/2024.07.19.604263 (2024).

  322. Kooistra, A. J., Munk, C., Hauser, A. S. & Gloriam, D. E. An online GPCR structure analysis platform. Nat. Struct. Mol. Biol. 28, 875–878 (2021).

    Article  CAS  PubMed  Google Scholar 

  323. Rodríguez-Espigares, I. et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat. Methods 17, 777–787 (2020).

    Article  PubMed  Google Scholar 

  324. Taracena Herrera, L. P. et al. GPCRdb in 2025: adding odorant receptors, data mapper, structure similarity search and models of physiological ligand complexes. Nucl. Acids Res. https://doi.org/10.1093/nar/gkae1065 (2024).

  325. Yin, J. et al. Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature 584, 125–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. de Felice, A., Aureli, S. & Limongelli, V. Drug repurposing on G protein-coupled receptors using a computational profiling approach. Front. Mol. Biosci. 8, 673053 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Kim, K. et al. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Martínez-Muñoz, L. et al. CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface. Proc. Natl Acad. Sci. USA 111, E1960–E1969 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Martínez-Muñoz, L. et al. Separating actin-dependent chemokine receptor nanoclustering from dimerization indicates a role for clustering in CXCR4 signaling and function. Mol. Cell 70, 106–119.e10 (2018).

    Article  PubMed  Google Scholar 

  330. Jin, J. et al. CCR5 adopts three homodimeric conformations that control cell surface delivery. Sci. Signal. 11, eaal2869 (2018).

    Article  PubMed  Google Scholar 

  331. Zhang, L., Zhang, J.-T., Hang, L. & Liu, T. Mu opioid receptor heterodimers emerge as novel therapeutic targets: recent progress and future perspective. Front. Pharmacol. 11, 1078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Parmar, V. K., Grinde, E., Mazurkiewicz, J. E. & Herrick-Davis, K. Beta2-adrenergic receptor homodimers: role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. Biochim. Biophys. Acta Biomembr. 1859, 1445–1455 (2017).

    Article  CAS  PubMed  Google Scholar 

  333. Martínez-Muñoz, L., Villares, R., Rodríguez-Fernández, J. L., Rodríguez-Frade, J. M. & Mellado, M. Remodeling our concept of chemokine receptor function: from monomers to oligomers. J. Leukoc. Biol. 104, 323–331 (2018).

    Article  PubMed  Google Scholar 

  334. Salanga, C. L., O’Hayre, M. & Handel, T. Modulation of chemokine receptor activity through dimerization and crosstalk. Cell. Mol. Life Sci. 66, 1370–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  335. Paradis, J. S. et al. Computationally designed GPCR quaternary structures bias signaling pathway activation. Nat. Commun. 13, 6826 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Borroni, E. M., Mantovani, A., Locati, M. & Bonecchi, R. Chemokine receptors intracellular trafficking. Pharmacol. Ther. 127, 1–8 (2010).

    Article  CAS  PubMed  Google Scholar 

  337. Ward, R. J. et al. Chemokine receptor CXCR4 oligomerization is disrupted selectively by the antagonist ligand IT1t. J. Biol. Chem. 296, 100139 (2021).

    Article  CAS  PubMed  Google Scholar 

  338. Brelot, A. & Chakrabarti, L. A. CCR5 revisited: how mechanisms of HIV entry govern AIDS pathogenesis. J. Mol. Biol. 430, 2557–2589 (2018).

    Article  CAS  PubMed  Google Scholar 

  339. Haqqani, A. A. & Tilton, J. C. Entry inhibitors and their use in the treatment of HIV-1 infection. Antivir. Res. 98, 158–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  340. Van Der Ryst, E. Maraviroc – a CCR5 antagonist for the treatment of HIV-1 infection. Front. Immunol. 6, 277 (2015).

    PubMed  Google Scholar 

  341. Tan, Q. et al. Structure of the CCR5 chemokine receptor–HIV entry inhibitor maraviroc complex. Science 341, 1387–1390 (2013).

    Article  CAS  PubMed  Google Scholar 

  342. Rouault, A. A. J. et al. The GPCR accessory protein MRAP2 regulates both biased signaling and constitutive activity of the ghrelin receptor GHSR1a. Sci. Signal. 13, eaax4569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Rouault, A. A. J., Srinivasan, D. K., Yin, T. C., Lee, A. A. & Sebag, J. A. Melanocortin receptor accessory proteins (MRAPs): functions in the melanocortin system and beyond. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2462–2467 (2017).

    Article  CAS  PubMed  Google Scholar 

  344. Fan, S., Liu, H. & Li, L. The REEP family of proteins: molecular targets and role in pathophysiology. Pharmacol. Res. 185, 106477 (2022).

    Article  CAS  PubMed  Google Scholar 

  345. Hay, D. L. & Pioszak, A. A. Receptor activity-modifying proteins (RAMPs): new insights and roles. Annu. Rev. Pharmacol. Toxicol. 56, 469–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  346. Gingell, J. J. et al. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discov. 2, 16012 (2016).

    Article  CAS  Google Scholar 

  347. Hay, D. L. et al. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins. Biochem. Soc. Trans. 44, 568–573 (2016).

    Article  CAS  PubMed  Google Scholar 

  348. Kotliar, I. B., Lorenzen, E., Schwenk, J. M., Hay, D. L. & Sakmar, T. P. Elucidating the interactome of G protein-coupled receptors and receptor activity-modifying proteins. Pharmacol. Rev. 75, 1–34 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Pert, C. B., Pasternak, G. & Snyder, S. H. Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182, 1359–1361 (1973).

    Article  CAS  PubMed  Google Scholar 

  350. Snyder, S. H. & Pasternak, G. W. Historical review: opioid receptors. Trends Pharmacol. Sci. 24, 198–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  351. Miller-Gallacher, J. L. et al. The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS ONE 9, e92727 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Zhang, C. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387–392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. White, K. L. et al. Structural connection between activation microswitch and allosteric sodium site in GPCR signaling. Structure 26, 259–269.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Chan, H. C. S. et al. Enhancing the signaling of GPCRs via orthosteric ions. ACS Cent. Sci. 6, 274–282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Rodriguez, F. D., Bardaji, E. & Traynor, J. R. Differential effects of Mg2+ and other divalent cations on the binding of tritiated opioid ligands. J. Neurochem. 59, 467–472 (1992).

    Article  CAS  PubMed  Google Scholar 

  356. Zou, R. et al. The role of metal ions in G protein-coupled receptor signalling and drug discovery. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1565 (2022).

    Article  CAS  Google Scholar 

  357. Hu, X., Provasi, D., Ramsey, S. & Filizola, M. Mechanism of μ-opioid receptor-magnesium interaction and positive allosteric modulation. Biophys. J. 118, 909–921 (2020).

    Article  CAS  PubMed  Google Scholar 

  358. Holst, B., Elling, C. E. & Schwartz, T. W. Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J. Biol. Chem. 277, 47662–47670 (2002).

    Article  CAS  PubMed  Google Scholar 

  359. Link, R. et al. The constitutive activity of melanocortin-4 receptors in cAMP pathway is allosterically modulated by zinc and copper ions. J. Neurochem. 153, 346–361 (2020).

    Article  CAS  PubMed  Google Scholar 

  360. Yu, J. et al. Determination of the melanocortin-4 receptor structure identifies Ca2+ as a cofactor for ligand binding. Science 368, 428–433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Israeli, H. et al. Structure reveals the activation mechanism of the MC4 receptor to initiate satiation signaling. Science 372, 808–814 (2021).

    Article  CAS  PubMed  Google Scholar 

  362. Huang, X.-P., Kenakin, T. P., Gu, S., Shoichet, B. K. & Roth, B. L. Differential roles of extracellular histidine residues of GPR68 for proton-sensing and allosteric modulation by divalent metal ions. Biochemistry 59, 3594–3614 (2020).

    Article  CAS  PubMed  Google Scholar 

  363. Corradi, V. et al. Emerging diversity in lipid–protein interactions. Chem. Rev. 119, 5775–5848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Thakur, N. et al. Anionic phospholipids control mechanisms of GPCR-G protein recognition. Nat. Commun. 14, 794 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Faust, B. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 609, 846–853 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  366. Corey, R. A., Stansfeld, P. J. & Sansom, M. S. P. The energetics of protein–lipid interactions as viewed by molecular simulations. Biochem. Soc. Trans. 48, 25–37 (2020).

    Article  CAS  PubMed  Google Scholar 

  367. Song, W. et al. PyLipID: a python package for analysis of protein–lipid interactions from molecular dynamics simulations. J. Chem. Theory Comput. 18, 1188–1201 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Sejdiu, B. I. & Tieleman, D. P. ProLint: a web-based framework for the automated data analysis and visualization of lipid–protein interactions. Nucleic Acids Res. 49, W544–W550 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Smith, P. & Lorenz, C. D. LiPyphilic: a python toolkit for the analysis of lipid membrane simulations. J. Chem. Theory Comput. 17, 5907–5919 (2021).

    Article  CAS  PubMed  Google Scholar 

  370. Cao, R. et al. Role of extracellular loops and membrane lipids for ligand recognition in the neuronal adenosine receptor type 2A: an enhanced sampling simulation study. Molecules 23, 2616 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  371. Ansell, T. B. et al. LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins. Nat. Commun. 14, 7774 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).

    Article  CAS  PubMed  Google Scholar 

  373. Song, W., Yen, H.-Y., Robinson, C. V. & Sansom, M. S. P. State-dependent lipid interactions with the A2a receptor revealed by MD simulations using in vivo-mimetic membranes. Structure 27, 392–403.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Ansell, T. B., Song, W. & Sansom, M. S. P. The glycosphingolipid GM3 modulates conformational dynamics of the glucagon receptor. Biophys. J. 119, 300–313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Yuan, S. et al. The molecular mechanism of P2Y1 receptor activation. Angew. Chem. Int. Ed. 128, 10487–10491 (2016).

    Article  Google Scholar 

  376. Cao, R., Rossetti, G., Bauer, A. & CarIoni, P. Binding of the antagonist caffeine to the human adenosine receptor hA2AR in nearly physiological conditions. PLoS ONE 10, e0126833 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  377. Damian, M. et al. Allosteric modulation of ghrelin receptor signaling by lipids. Nat. Commun. 12, 3938 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Yen, H.-Y. et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559, 423–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Thakur, N. Membrane mimetic-dependence of GPCR energy landscapes. Structure 32, 523–535.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  380. McGraw, C., Koretz, K. S., Oseid, D., Lyman, E. & Robinson, A. S. Cholesterol dependent activity of the adenosine A2A receptor is modulated via the cholesterol consensus motif. Molecules 27, 3529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Lyman, E. et al. A role for a specific cholesterol interaction in stabilizing the apo configuration of the human A2A adenosine receptor. Structure 17, 1660–1668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Ray, A. P., Thakur, N., Pour, N. G. & Eddy, M. T. Dual mechanisms of cholesterol-GPCR interactions that depend on membrane phospholipid composition. Structure 31, 836–847.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Huang, S. K. et al. Allosteric modulation of the adenosine A2A receptor by cholesterol. eLife 11, e73901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Kinnebrew, M. et al. Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine-rich domain. Sci. Adv. 8, eabm5563 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (“CoMMBi” ERC grant agreement No.101001784), and it was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID u8. P.W.H. acknowledges funding by the German Research Foundation (DFG) through CRC1423, project number 421152132, subproject C01 and Z04. M.T.E. acknowledges funding by National Institutes of Health (grant no. R35GM138291). C.G.T. acknowledges core funding from the Medical Research Council [MRC U105197215]. All the authors express their gratitude to the Centre Européen de Calcul Atomique et Moléculaire, the Swiss National Science Foundation (grant No. IZSEZ0_213357), CSCS, Sintetica SA and Novartis Pharma Schweiz AG for their generous support in organizing the 2022 workshop titled Understanding the Function of G Protein-Coupled Receptors through Atomistic and Multiscale Simulations (https://www.cecam.org/workshop-details/understanding-function-of-g-protein-coupled-receptors-by-atomistic-and-multiscale-simulations-39), which inspired the writing of this article. For the purpose of open access, the MRC Laboratory of Molecular Biology has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising.

Author information

Authors and Affiliations

Authors

Contributions

V.L. conceptualized the article. P. C. and V. L. researched data for the article and wrote the original draft. All authors reviewed and edited the article.

Corresponding author

Correspondence to Vittorio Limongelli.

Ethics declarations

Competing interests

S.Y. is cofounder of AlphaMol Science Ltd. C.G.T. is a shareholder, consultant and member of the Scientific Advisory Board of Sosei Heptares. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Ryan Strachan and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conflitti, P., Lyman, E., Sansom, M.S.P. et al. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 24, 251–275 (2025). https://doi.org/10.1038/s41573-024-01083-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-024-01083-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing