Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH)

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Responses for major clinical trials in MASH.
Fig. 2: Major systemic effects of FGF-21R and GLP-1R agonists.
Fig. 3: THRβ, PPARα and glucagon agonists act on hepatocytes.
Fig. 4: The central fatty acid synthesis pathway.
Fig. 5: Desirable functional changes in MASH.

Similar content being viewed by others

References

  1. Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023). This is a meta-analysis of studies conducted from 1990 to 2019 revealing the highest nonalcoholic fatty liver disease prevalence was in Latin America, 44.37%; then Middle East and North Africa, South Asia, 33.83%; South-East Asia, 33.07%; North America, 31.20%; East Asia, 29.71%; Asia Pacific, 28.02%; and Western Europe, 25.10%.

    PubMed  Google Scholar 

  2. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease—meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).

    PubMed  Google Scholar 

  3. Estes, C., Razavi, H., Loomba, R., Younossi, Z. & Sanyal, A. J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67, 123–133 (2018).

    CAS  PubMed  Google Scholar 

  4. Allen, A. M. et al. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: a 20 year-community study. Hepatology 67, 1726–1736 (2018).

    CAS  PubMed  Google Scholar 

  5. Younossi, Z. M. et al. Patients with nonalcoholic steatohepatitis experience severe impairment of health-related quality of life. Am. J. Gastroenterol. 114, 1636–1641 (2019).

    PubMed  Google Scholar 

  6. Wong, R. J. et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148, 547–555 (2015).

    PubMed  Google Scholar 

  7. Younossi, Z. M. et al. Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology 62, 1723–1730 (2015).

    CAS  PubMed  Google Scholar 

  8. Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of Obesity and Severe Obesity among Adults: United States, 2017–2018. NCHS data brief; no. 360 (Centers for Disease Control and Prevention, 2020).

  9. Parcha, V. et al. Insulin resistance and cardiometabolic risk profile among nondiabetic American young adults: insights from NHANES. J. Clin. Endocrinol. Metab. 107, e25–e37 (2022).

    PubMed  Google Scholar 

  10. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023). This summarizes the process and the final consensus leading to the new nomenclature for steatotic liver disease.

    PubMed  Google Scholar 

  11. Harrison, S. A. NASH, from diagnosis to treatment: where do we stand? Hepatology 62, 1652–1655 (2015).

    PubMed  Google Scholar 

  12. Rinella, M. E., Tacke, F., Sanyal, A. J., Anstee, Q. M. & participants of the AASLD/EASL Workshop, Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. J. Hepatol. 71, 823–833 (2019). This reviews the rationale and summarizes the main trial end points in clinical trials of MASH.

    PubMed  Google Scholar 

  13. Anstee, Q. M., Reeves, H. L., Kotsiliti, E., Govaere, O. & Heikenwalder, M. From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 (2019).

    PubMed  Google Scholar 

  14. Allen, A. M. et al. Clinical course of non-alcoholic fatty liver disease and the implications for clinical trial design. J. Hepatol. 77, 1237–1245 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brennan, P. N. et al. Antifibrotic therapy in nonalcoholic steatohepatitis: time for a human-centric approach. Nat. Rev. Gastroenterol. Hepatol. 20, 679–688 (2023). The authors discuss why antifibrotic effects observed in nonalcoholic steatohepatitis pharmacotherapy trials have been underwhelming and outline potential approaches to improve the likelihood of future clinical success, with a focus on combination therapies.

    PubMed  Google Scholar 

  16. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021). This phase II trial shows that semaglutide results in greater nonalcoholic steatohepatitis resolution than placebo, but it does not show a significant improvement in fibrosis stage.

    CAS  PubMed  Google Scholar 

  17. Newsome, P. N. & Ambery, P. Incretins (GLP-1 receptor agonists and dual/triple agonists) and the liver. J. Hepatol. 79, 1557–1565 (2023). This review explores in detail the direct and indirect effect of a range of incretin molecules on the liver within the context of MASH biology.

    CAS  PubMed  Google Scholar 

  18. Li, L., Song, Y., Shi, Y. & Sun, L. Thyroid hormone receptor-β agonists in NAFLD therapy: possibilities and challenges. J. Clin. Endocrinol. Metab. 108, 1602–1613 (2023).

    PubMed  Google Scholar 

  19. Harrison, S. et al. Primary results from MAESTRO-NASH a pivotal phase 3 52-week serial liver biopsy study in 966 patients with NASH and fibrosis. J. Hepatol. 78, s1 (2023).

    Google Scholar 

  20. Puengel, T. & Tacke, F. Efruxifermin, an investigational treatment for fibrotic or cirrhotic nonalcoholic steatohepatitis (NASH). Expert Opin. Investig. Drugs 32, 451–461 (2023). This review examines the biology of efruxifermin and other FGF-21 agonists as therapeutic agents in MASH.

    CAS  PubMed  Google Scholar 

  21. Staels, B., Butruille, L. & Francque, S. Treating NASH by targeting peroxisome proliferator-activated receptors. J. Hepatol. 79, 1302–1316 (2023).

    CAS  PubMed  Google Scholar 

  22. Linden, D. & Romeo, S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J. Hepatol. 79, 1056–1064 (2023).

    CAS  PubMed  Google Scholar 

  23. Ratziu, V. & Charlton, M. Rational combination therapy for NASH: insights from clinical trials and error. J. Hepatol. 78, 1073–1079 (2023).

    CAS  PubMed  Google Scholar 

  24. Vilar-Gomez, E. et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149, 367–378.e5 (2015).

    PubMed  Google Scholar 

  25. Musso, G., Gambino, R. & Cassader, M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog. Lipid Res. 52, 175–191 (2013).

    CAS  PubMed  Google Scholar 

  26. Yamaguchi, K. et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366–1374 (2007).

    CAS  PubMed  Google Scholar 

  27. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e10 (2015). A retrospective study of data from the USA, Europe and Thailand, which demonstrates that liver fibrosis but no other feature is associated with overall mortality, liver transplantation and liver-related events.

    PubMed  Google Scholar 

  28. Puri, P. et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 46, 1081–1090 (2007).

    CAS  PubMed  Google Scholar 

  29. Martinez-Arranz, I. et al. Metabolic subtypes of patients with NAFLD exhibit distinctive cardiovascular risk profiles. Hepatology 76, 1121–1134 (2022).

    CAS  PubMed  Google Scholar 

  30. Smith, G. I. et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J. Clin. Investig. 130, 1453–1460 (2020). A detailed isotope-based examination of DNL in participants with MASH that demonstrates that hepatic DNL is an important regulator of liver triglyceride content and that increases in circulating glucose and insulin stimulate hepatic DNL.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lomonaco, R. et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 55, 1389–1397 (2012).

    CAS  PubMed  Google Scholar 

  32. Chitturi, S. et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 35, 373–379 (2002).

    CAS  PubMed  Google Scholar 

  33. Magkos, F. et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016). A randomized controlled trial that demonstrates that moderate (5%) weight loss improves metabolic function in multiple organs simultaneously, and progressive weight loss causes positive dose-dependent alterations in key metabolic pathways.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Semple, R. K. et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J. Clin. Investig. 119, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pagano, G. et al. Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 35, 367–372 (2002).

    CAS  PubMed  Google Scholar 

  36. Lambert, J. E., Ramos–Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726–735 (2014).

    CAS  PubMed  Google Scholar 

  37. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 115, 1343–1351 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Softic, S., Cohen, D. E. & Kahn, C. R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 61, 1282–1293 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mager, D. R., Iñiguez, I. R., Gilmour, S. & Yap, J. The effect of a low fructose and low glycemic index/load (FRAGILE) dietary intervention on indices of liver function, cardiometabolic risk factors, and body composition in children and adolescents with nonalcoholic fatty liver disease (NAFLD). J. Parenter. Enter. Nutr. 39, 73–84 (2015).

    Google Scholar 

  40. Lustig, R. H. et al. Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity 24, 453–460 (2016).

    CAS  PubMed  Google Scholar 

  41. Diehl, A. M. & Day, C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med. 377, 2063–2072 (2017).

    CAS  PubMed  Google Scholar 

  42. Abdelmalek, M. F. et al. Higher dietary fructose is associated with impaired hepatic adenosine triphosphate homeostasis in obese individuals with type 2 diabetes. Hepatology 56, 952–960 (2012).

    CAS  PubMed  Google Scholar 

  43. Abdelmalek, M. F. et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51, 1961–1971 (2010).

    CAS  PubMed  Google Scholar 

  44. Younossi, Z. M. et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 53, 1874–1882 (2011).

    PubMed  Google Scholar 

  45. McPherson, S. et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J. Hepatol. 62, 1148–1155 (2015).

    PubMed  Google Scholar 

  46. Wong, V. W.-S. et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 59, 969–974 (2010).

    PubMed  Google Scholar 

  47. Zhang, X. J., Cai, J. & Li, H. Targeting ACC for NASH resolution. Trends Mol. Med. 28, 5–7 (2022).

    PubMed  Google Scholar 

  48. Batchuluun, B., Pinkosky, S. L. & Steinberg, G. R. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 21, 283–305 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Brunt, E. M. et al. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810–820 (2011).

    CAS  PubMed  Google Scholar 

  50. Hardy, T., Oakley, F., Anstee, Q. M. & Day, C. P. Nonalcoholic fatty liver disease: pathogenesis and disease spectrum. Annu. Rev. Pathol. 11, 451–496 (2016).

    CAS  PubMed  Google Scholar 

  51. Dulai, P. S. et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta‐analysis. Hepatology 65, 1557–1565 (2017).

    CAS  PubMed  Google Scholar 

  52. Schuppan, D., Surabattula, R. & Wang, X. Y. Determinants of fibrosis progression and regression in NASH. J. Hepatol. 68, 238–250 (2018).

    CAS  PubMed  Google Scholar 

  53. Noncirrhotic nonalcoholic steatohepatitis with liver fibrosis: developing drugs for treatment guidance for industry. US Food and Drug Administration (FDA) fda.gov/media/119044/download (2018).

  54. Nonalcoholic steatohepatitis with compensated cirrhosis: developing drugs for treatment guidance for industry. US Food and Drug Administration (FDA) fda.gov/media/127738/download (2019).

  55. Farrell, G. C., van Rooyen, D., Gan, L. & Chitturi, S. NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 6, 149–171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sutti, S. et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 59, 886–897 (2014).

    CAS  PubMed  Google Scholar 

  57. Tomita, K. et al. Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 55, 415–424 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Arrese, M., Cabrera, D., Kalergis, A. M. & Feldstein, A. E. Innate immunity and inflammation in NAFLD/NASH. Dig. Dis. Sci. 61, 1294–1303 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Galic, S., Oakhill, J. S. & Steinberg, G. R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316, 129–139 (2010).

    CAS  PubMed  Google Scholar 

  60. Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E. & Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 1010–1013 (2007).

    CAS  PubMed  Google Scholar 

  61. Catalan, V. et al. Increased interleukin-32 levels in obesity promote adipose tissue inflammation and extracellular matrix remodeling: effect of weight loss. Diabetes 65, 3636–3648 (2016).

    CAS  PubMed  Google Scholar 

  62. Fadaei, R. et al. Serum levels of IL-32 in patients with type 2 diabetes mellitus and its relationship with TNF-α and IL-6. Cytokine 125, 154832 (2020).

    CAS  PubMed  Google Scholar 

  63. Moschen, A. R. et al. Interleukin-32: a new proinflammatory cytokine involved in hepatitis C virus-related liver inflammation and fibrosis. Hepatology 53, 1819–1829 (2011).

    CAS  PubMed  Google Scholar 

  64. Kim, D. H. et al. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat. Commun. 9, 3284 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Baselli, G. A. et al. Liver transcriptomics highlights interleukin-32 as novel NAFLD-related cytokine and candidate biomarker. Gut 69, 1855–1866 (2020).

    CAS  PubMed  Google Scholar 

  66. Shoda, H. et al. Interactions between IL-32 and tumor necrosis factor alpha contribute to the exacerbation of immune-inflammatory diseases. Arthritis Res. Ther. 8, R166 (2006).

    PubMed  PubMed Central  Google Scholar 

  67. Garcia-Martinez, I. et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J. Clin. Investig. 126, 859–864 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology 139, 323–334.e7 (2010).

    CAS  PubMed  Google Scholar 

  69. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021). A prospective study of 1773 patients with MASLD over a median of 4 years demonstrating that having fibrosis stages F3 and F4 is associated with increased risks of liver-related complications and death.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Anania, F. A., Dimick-Santos, L., Mehta, R., Toerner, J. & Beitz, J. Nonalcoholic steatohepatitis: current thinking from the division of hepatology and nutrition at the Food and Drug Administration. Hepatology 73, 2023–2027 (2020).

    Google Scholar 

  71. Singh, S. et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643–654.e9 (2015).

    PubMed  Google Scholar 

  72. Kisseleva, T. & Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 18, 151–166 (2021).

    PubMed  Google Scholar 

  73. Iwakiri, Y. & Trebicka, J. Portal hypertension in cirrhosis: pathophysiological mechanisms and therapy. JHEP Rep. 3, 100316 (2021).

    PubMed  PubMed Central  Google Scholar 

  74. Fickert, P. Is this the last requiem for simtuzumab? Hepatology 69, 476–479 (2019).

    PubMed  Google Scholar 

  75. Schumacher, J. D. & Guo, G. L. Regulation of hepatic stellate cells and fibrogenesis by fibroblast growth factors. BioMed. Res. Int. 2016, 8323747 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Jung, M. Y. et al. Fatty acid synthase is required for profibrotic TGF-β signaling. FASEB J. 32, 3803–3815 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alonso-Merino, E. et al. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses. Proc. Natl Acad. Sci. USA 113, E3451–E3460 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Harrison, S. A. et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized phase III STELLAR trials. J. Hepatol. 73, 26–39 (2020).

    CAS  PubMed  Google Scholar 

  79. Chen, W. et al. Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis. Hepatology 72, 729–741 (2020).

    CAS  PubMed  Google Scholar 

  80. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheung, A. et al. Defining improvement in nonalcoholic steatohepatitis for treatment trial endpoints: recommendations from the liver forum. Hepatology 70, 1841–1855 (2019).

    PubMed  Google Scholar 

  82. Table of surrogate endpoints that were the basis of drug approval or licensure. US Food and Drug Administration (FDA) fda.gov/drugs/development-resources/table-surrogate-endpoints-were-basis-drug-approval-or-licensure (2019).

  83. Anania, F. A., Dimick-Santos, L., Mehta, R., Toerner, J. & Beitz, J. Nonalcoholic steatohepatitis: current thinking from the division of hepatology and nutrition at the food and drug administration. Hepatology 73, 2023–2027 (2021).

    PubMed  Google Scholar 

  84. Sanyal, A. J. et al. Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis. Hepatology 75, 1235–1246 (2022).

    CAS  PubMed  Google Scholar 

  85. Bedossa, P. & Poynard, T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24, 289–293 (1996).

    CAS  PubMed  Google Scholar 

  86. Thanapirom, K. et al. Impact of compensated cirrhosis on survival in patients with acute-on-chronic liver failure. Hepatol. Int. 16, 171–182 (2022).

    PubMed  Google Scholar 

  87. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed  Google Scholar 

  88. Loomba, R., Ratziu, V., Harrison, S. A. & NASH Clinical Trial Design International Working Group, Expert panel review to compare FDA and EMA guidance on drug development and endpoints in nonalcoholic steatohepatitis. Gastroenterology 162, 680–688 (2022).

    CAS  PubMed  Google Scholar 

  89. Davison, B. A. et al. Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials. J. Hepatol. 73, 1322–1332 (2020).

    CAS  PubMed  Google Scholar 

  90. Han, M. A. T. et al. Rates of and factors associated with placebo response in trials of pharmacotherapies for nonalcoholic steatohepatitis: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 17, 616–629.e26 (2019).

    PubMed  Google Scholar 

  91. Polyzos, S. A., Kountouras, J. & Mantzoros, C. S. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metab. Clin. Exp. 92, 82–97 (2019).

    CAS  PubMed  Google Scholar 

  92. Belew, G. D. & Jones, J. G. De novo lipogenesis in non-alcoholic fatty liver disease: quantification with stable isotope tracers. Eur. J. Clin. Invest. 52, e13733 (2022).

    CAS  PubMed  Google Scholar 

  93. Hydes, T. J., Ravi, S., Loomba, R. & Gray, M. E. Evidence-based clinical advice for nutrition and dietary weight loss strategies for the management of NAFLD and NASH. Clin. Mol. Hepatol. 26, 383–400 (2020).

    PubMed  PubMed Central  Google Scholar 

  94. Holst, J. J. The incretin system in healthy humans: the role of GIP and GLP-1. Metab. Clin. Exp. 96, 46–55 (2019).

    CAS  PubMed  Google Scholar 

  95. McLean, B. A. et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation. Endocr. Rev. 42, 101–132 (2021).

    PubMed  Google Scholar 

  96. McLean, B. A., Wong, C. K., Kaur, K. D., Seeley, R. J. & Drucker, D. J. Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight 6, e153732 (2021).

    PubMed  PubMed Central  Google Scholar 

  97. Hsieh, J. et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia 53, 552–561 (2010).

    CAS  PubMed  Google Scholar 

  98. Yabut, J. M. & Drucker, D. J. Glucagon-like peptide-1 receptor-based therapeutics for metabolic liver disease. Endocr. Rev. 44, 14–32 (2023). A review of the biology of GLP-1R agonists with a focus on how this relates to therapy for MASH.

    PubMed  Google Scholar 

  99. Baggio, L. L. et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol. Metab. 6, 1339–1349 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Seghieri, M. et al. Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia 56, 156–161 (2013).

    CAS  PubMed  Google Scholar 

  101. Bernsmeier, C. et al. Glucose-induced glucagon-like peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease. PLoS ONE 9, e87488 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Bozzetto, L. et al. Insulin resistance, postprandial GLP-1 and adaptive immunity are the main predictors of NAFLD in a homogeneous population at high cardiovascular risk. Nutr. Metab. Cardiovasc. Dis. 26, 623–629 (2016).

    CAS  PubMed  Google Scholar 

  103. Nevola, R. et al. GLP-1 receptor agonists in non-alcoholic fatty liver disease: current evidence and future perspectives. Int. J. Mol. Sci. 24, 1703 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Panjwani, N. et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE−/− mice. Endocrinology 154, 127–139 (2013).

    CAS  PubMed  Google Scholar 

  105. Perakakis, N., Stefanakis, K., Feigh, M., Veidal, S. S. & Mantzoros, C. S. Elafibranor and liraglutide improve differentially liver health and metabolism in a mouse model of non-alcoholic steatohepatitis. Liver Int. 41, 1853–1866 (2021).

    CAS  PubMed  Google Scholar 

  106. Trevaskis, J. L. et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G762–G772 (2012).

    CAS  PubMed  Google Scholar 

  107. Armstrong, M. J. et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J. Hepatol. 64, 399–408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang, Y. et al. Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration. Br. J. Pharmacol. 171, 723–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rodbard, H. W. et al. Oral semaglutide versus empagliflozin in patients with type 2 diabetes uncontrolled on metformin: the PIONEER 2 trial. Diabetes Care 42, 2272–2281 (2019).

    CAS  PubMed  Google Scholar 

  110. Loomba, R. et al. Semaglutide 2.4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 511–522 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gasbjerg, L. S. et al. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 125, 170183 (2020).

    CAS  PubMed  Google Scholar 

  112. El, K. & Campbell, J. E. The role of GIP in α-cells and glucagon secretion. Peptides 125, 170213 (2020).

    CAS  PubMed  Google Scholar 

  113. Sun, B. et al. Structural determinants of dual incretin receptor agonism by tirzepatide. Proc. Natl Acad. Sci. USA 119, e2116506119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Willard, F. S. et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight 5, e140532 (2020).

    PubMed  PubMed Central  Google Scholar 

  115. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022). A phase III double-blind, randomized trial of weekly tirzepatide in individuals with a BMI greater than 30 demonstrating substantial and sustained reductions in body weight.

    CAS  PubMed  Google Scholar 

  116. Gastaldelli, A. et al. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 10, 393–406 (2022).

    CAS  PubMed  Google Scholar 

  117. Loomba, R. et al. Tirzepatide for metabolic dysfunction-associated steatohepatitis with liver fibrosis. N. Engl. J. Med. 391, 299–310 (2024).

    CAS  PubMed  Google Scholar 

  118. Doggrell, S. A. Is retatrutide (LY3437943), a GLP-1, GIP, and glucagon receptor agonist a step forward in the treatment of diabetes and obesity? Expert Opin. Investig. Drugs 32, 355–359 (2023).

    CAS  PubMed  Google Scholar 

  119. Rosenstock, J. et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 402, 529–544 (2023).

    CAS  PubMed  Google Scholar 

  120. Jastreboff, A. M. et al. Triple–hormone-receptor agonist retatrutide for obesity — a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023). A phase II double-blind, randomized trial of weekly retatrutide in individuals with a BMI greater than 30 demonstrating substantial and sustained reductions in body weight.

    CAS  PubMed  Google Scholar 

  121. Hædersdal, S., Andersen, A., Knop, F. K. & Vilsbøll, T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat. Rev. Endocrinol. 19, 321–335 (2023).

    PubMed  Google Scholar 

  122. Winther-Sørensen, M. et al. Glucagon acutely regulates hepatic amino acid catabolism and the effect may be disturbed by steatosis. Mol. Metab. 42, 101080 (2020).

    PubMed  PubMed Central  Google Scholar 

  123. Kleinert, M., Sachs, S., Habegger, K. M., Hofmann, S. M. & Muller, T. D. Glucagon regulation of energy expenditure. Int. J. Mol. Sci. 20, 5407 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Habegger, K. M. et al. The metabolic actions of glucagon revisited. Nat. Rev. Endocrinol. 6, 689–697 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Parker, V. E. R. et al. Cotadutide promotes glycogenolysis in people with overweight or obesity diagnosed with type 2 diabetes. Nat. Metab. 5, 2086–2093 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sanyal, A. J. et al. A phase 2 randomized trial of survodutide in MASH and fibrosis. N. Engl. J. Med. 391, 311–319 (2024).

    CAS  PubMed  Google Scholar 

  127. Jastreboff, A. M., Kaplan, L. M. & Hartman, M. L. Triple-hormone-receptor agonist retatrutide for obesity. Reply. N. Engl. J. Med. 389, 1629–1630 (2023).

    PubMed  Google Scholar 

  128. Tillman, E. J. & Rolph, T. FGF21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. Front. Endocrinol. 11, 601290 (2020).

    Google Scholar 

  129. Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol. 16, 654–667 (2020).

    CAS  PubMed  Google Scholar 

  130. Xu, P. et al. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways. Toxicol. Appl. Pharmacol. 290, 43–53 (2016).

    CAS  PubMed  Google Scholar 

  131. Adachi, M. & Brenner, D. A. High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology 47, 677–685 (2008).

    CAS  PubMed  Google Scholar 

  132. Harrison, S. A. et al. Efruxifermin in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat. Med. 27, 1262–1271 (2021).

    CAS  PubMed  Google Scholar 

  133. Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA 109, 3143–3148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Talukdar, S. & Kharitonenkov, A. FGF19 and FGF21: in NASH we trust. Mol. Metab. 46, 101152 (2021). An analysis of the mechanism of action and efficacy data on several FGF-1 and FGF-21 assets in the development for MASH therapy.

    CAS  PubMed  Google Scholar 

  135. Harrison, S. A. et al. Aldafermin in patients with non-alcoholic steatohepatitis (ALPINE 2/3): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol. Hepatol. 7, 603–616 (2022).

    CAS  PubMed  Google Scholar 

  136. Rinella, M. E. et al. A randomized, double-blind, placebo-controlled trial of aldafermin in patients with NASH and compensated cirrhosis. Hepatology 79, 674–689 (2024).

    PubMed  Google Scholar 

  137. Iglesias, P. et al. Hyperthyroidism and cardiovascular disease: an association study using big data analytics. Endocrine 83, 405–413 (2024).

    CAS  PubMed  Google Scholar 

  138. Yorke, E. Hyperthyroidism and liver dysfunction: a review of a common comorbidity. Clin. Med. Insights Endocrinol. Diabetes 15, 11795514221074672 (2022).

    PubMed  PubMed Central  Google Scholar 

  139. Bano, A. et al. Thyroid function and the risk of nonalcoholic fatty liver disease: the Rotterdam Study. J. Clin. Endocrinol. Metab. 101, 3204–3211 (2016).

    CAS  PubMed  Google Scholar 

  140. Bohinc, B. N. et al. Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism. Endocrinology 155, 4591–4601 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Sinha, R. A., Singh, B. K. & Yen, P. M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14, 259–269 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Harrison, S. A. et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024). A prospective, randomized, double-blind phase III study on the efficacy of the thyroid receptor b agonist resmetirom in patients with MASH and F2–F3 fibrosis.

    PubMed  Google Scholar 

  143. Viking Therapeutics announces positive 52-week histologic data from phase 2b VOYAGE study of VK2809 in patients with biopsy-confirmed non-alcoholic steatohepatitis (NASH). Viking Therapeutics https://ir.vikingtherapeutics.com/2024-06-04-Viking-Therapeutics-Announces-Positive-52-Week-Histologic-Data-from-Phase-2b-VOYAGE-Study-of-VK2809-in-Patients-with-Biopsy-Confirmed-Non-Alcoholic-Steatohepatitis-NASH (2024).

  144. Sun, L., Cai, J. & Gonzalez, F. J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 335–347 (2021).

    CAS  PubMed  Google Scholar 

  145. Neuschwander-Tetri, B. A. et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385, 956–965 (2015).

    CAS  PubMed  Google Scholar 

  146. Younossi, Z. M. et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394, 2184–2196 (2019).

    CAS  PubMed  Google Scholar 

  147. Younossi, Z. M. et al. Obeticholic acid impact on quality of life in patients with nonalcoholic steatohepatitis: REGENERATE 18-month interim analysis. Clin. Gastroenterol. Hepatol. 20, 2050–2058.e12 (2022).

    CAS  PubMed  Google Scholar 

  148. Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C. & Sharma, S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2, 236–240 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Fougerat, A., Montagner, A., Loiseau, N., Guillou, H. & Wahli, W. Peroxisome proliferator-activated receptors and their novel ligands as candidates for the treatment of non-alcoholic fatty liver disease. Cells 9, 1638 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Berthier, A., Johanns, M., Zummo, F. P., Lefebvre, P. & Staels, B. PPARs in liver physiology. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166097 (2021).

    CAS  PubMed  Google Scholar 

  151. Dufour, J. F., Caussy, C. & Loomba, R. Combination therapy for non-alcoholic steatohepatitis: rationale, opportunities and challenges. Gut 69, 1877–1884 (2020).

    CAS  PubMed  Google Scholar 

  152. Francque, S. M. et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH. N. Engl. J. Med. 385, 1547–1558 (2021).

    CAS  PubMed  Google Scholar 

  153. Lawitz, E. J. et al. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 16, 1983–1991.e3 (2018).

    CAS  PubMed  Google Scholar 

  154. Higuchi, N. et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol. Res. 38, 1122–1129 (2008).

    CAS  PubMed  Google Scholar 

  155. Alexander, M. C., Kowaloff, E. M., Witters, L. A., Dennihy, D. T. & Avruch, J. Purification of a hepatic 123,000-dalton hormone-stimulated 32P-peptide and its identification as ATP-citrate lyase. J. Biol. Chem. 254, 8052–8056 (1979).

    CAS  PubMed  Google Scholar 

  156. Pierce, M. W., Palmer, J. L., Keutmann, H. T. & Avruch, J. ATP-citrate lyase. Structure of a tryptic peptide containing the phosphorylation site directed by glucagon and the cAMP-dependent protein kinase. J. Biol. Chem. 256, 8867–8870 (1981).

    CAS  PubMed  Google Scholar 

  157. Govindaraju, A. & Sabarathinam, S. Bempedoic acid: a nonstatin drug for the management of hypercholesterolemia. Health Sci. Rep. 4, e431 (2021).

    PubMed  PubMed Central  Google Scholar 

  158. Morrow, M. R. et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab. 34, 919–936.e8 (2022).

    CAS  PubMed  Google Scholar 

  159. Dolle, R. E. et al. Synthesis of novel thiol-containing citric acid analogues. Kinetic evaluation of these and other potential active-site-directed and mechanism-based inhibitors of ATP citrate lyase. J. Med. Chem. 38, 537–543 (1995).

    CAS  PubMed  Google Scholar 

  160. Bar-Tana, J., Rose-Kahn, G. & Srebnik, M. Inhibition of lipid synthesis by beta beta’-tetramethyl-substituted, C14-C22, alpha, omega-dicarboxylic acids in the rat in vivo. J. Biol. Chem. 260, 8404–8410 (1985).

    CAS  PubMed  Google Scholar 

  161. Mayorek, N., Kalderon, B., Itach, E. & Bar-Tana, J. Sensitization to insulin induced by β,β′-methyl-substituted hexadecanedioic acid (MEDICA 16) in obese Zucker rats in vivo. Diabetes 46, 1958–1964 (1997).

    CAS  PubMed  Google Scholar 

  162. Lally, J. S. V. et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 29, 174–182.e5 (2019).

    CAS  PubMed  Google Scholar 

  163. Kim, C. W. et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 394–406.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Calle, R. A. et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat. Med. 27, 1836–1848 (2021).

    CAS  PubMed  Google Scholar 

  165. Huard, K. et al. Optimizing the benefit/risk of acetyl-CoA carboxylase inhibitors through liver targeting. J. Med. Chem. 63, 10879–10896 (2020).

    CAS  PubMed  Google Scholar 

  166. Loomba, R. et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 155, 1463–1473.e6 (2018).

    CAS  PubMed  Google Scholar 

  167. Loomba, R. et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 73, 625–643 (2021).

    CAS  PubMed  Google Scholar 

  168. Alkhouri, N. et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: a randomised, open-label phase II trial. J. Hepatol. 77, 607–618 (2022).

    CAS  PubMed  Google Scholar 

  169. Mizojiri, R. et al. Design and synthesis of a monocyclic derivative as a selective ACC1 inhibitor by chemical modification of biphenyl ACC1/2 dual inhibitors. Bioorg. Med. Chem. 35, 116056 (2021).

    CAS  PubMed  Google Scholar 

  170. Gu, Y. G. et al. Synthesis and structure−activity relationships of N-{3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1-methylprop-2-ynyl}carboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. J. Med. Chem. 49, 3770–3773 (2006).

    CAS  PubMed  Google Scholar 

  171. Smith, S. J. et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25, 87–90 (2000).

    CAS  PubMed  Google Scholar 

  172. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  173. Amin, N. B., Saxena, A. R., Somayaji, V. & Dullea, R. Inhibition of diacylglycerol acyltransferase 2 versus diacylglycerol acyltransferase 1: potential therapeutic implications of pharmacology. Clin. Ther. 45, 55–70 (2023).

    CAS  PubMed  Google Scholar 

  174. White, S. W., Zheng, J., Zhang, Y. M. & Rock, C. O. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831 (2005).

    CAS  PubMed  Google Scholar 

  175. Syed-Abdul, M. M. et al. Fatty acid synthase inhibitor TVB-2640 reduces hepatic de novo lipogenesis in males with metabolic abnormalities. Hepatology 72, 103–118 (2020). A study of the efficacy of the fatty acid synthase inhibitor TVB-2640 in 12 participants with obesity demonstrating a 90% reduction in DNL.

    CAS  PubMed  Google Scholar 

  176. Beysen, C. et al. Inhibition of fatty acid synthase with FT-4101 safely reduces hepatic de novo lipogenesis and steatosis in obese subjects with non-alcoholic fatty liver disease: results from two early-phase randomized trials. Diabetes Obes. Metab. 23, 700–710 (2021). A study demonstrating that single and repeat dosing of FT-4101 is safe and well-tolerated, and it significantly reduces DNL.

    CAS  PubMed  Google Scholar 

  177. Kelly, K. L. et al. De novo lipogenesis is essential for platelet production in humans. Nat. Metab. 2, 1163–1178 (2020).

    CAS  PubMed  Google Scholar 

  178. Das, S. et al. ATP citrate lyase improves mitochondrial function in skeletal muscle. Cell Metab. 21, 868–876 (2015).

    CAS  PubMed  Google Scholar 

  179. Huang, Z. et al. ACSS2 promotes systemic fat storage and utilization through selective regulation of genes involved in lipid metabolism. Proc. Natl Acad. Sci. USA 115, E9499–E9506 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Liu, X. et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502–513.e13 (2018). This study demonstrates that, in mammals, pyruvate, the end-product of glycolysis, quantitatively generates acetate, which can then be used for DNL.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Anstee, Q. M. et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J. Hepatol. 73, 505–515 (2020).

    CAS  PubMed  Google Scholar 

  182. Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Emdin, C. A. et al. A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genet. 16, e1008629 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Schneider, C. V. et al. A genome-first approach to mortality and metabolic phenotypes in MTARC1 p.Ala165Thr (rs2642438) heterozygotes and homozygotes. Med 2, 851–863.e3 (2021).

    CAS  PubMed  Google Scholar 

  185. Pedrosa, M. et al. A randomized, double-blind, multicenter, phase 2b study to evaluate the safety and efficacy of a combination of tropifexor and cenicriviroc in patients with nonalcoholic steatohepatitis and liver fibrosis: study design of the TANDEM trial. Contemp. Clin. Trials 88, 105889 (2020).

    PubMed  Google Scholar 

  186. Cho, Y. et al. Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease: an open-label randomized controlled trial (ESSENTIAL study). BMC Med. 20, 93 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Amin, N. B. et al. Efficacy and safety of an orally administered DGAT2 inhibitor alone or coadministered with a liver-targeted ACC inhibitor in adults with non-alcoholic steatohepatitis (NASH): rationale and design of the phase II, dose-ranging, dose-finding, randomised, placebo-controlled MIRNA (Metabolic Interventions to Resolve NASH with fibrosis) study. BMJ Open 12, e056159 (2022).

    PubMed  PubMed Central  Google Scholar 

  188. Newsome, P. et al. Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment. Pharmacol. Ther. 50, 193–203 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016).

    CAS  PubMed  Google Scholar 

  190. Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023). A multicentre, double-blind, randomized, placebo-controlled, event-driven superiority trial of over 17,000 participants demonstrating that semaglutide reduces the incidence of death from cardiovascular causes.

    CAS  PubMed  Google Scholar 

  191. Furlan, A. et al. Comparison of 2D shear wave elastography, transient elastography, and MR elastography for the diagnosis of fibrosis in patients with nonalcoholic fatty liver disease. Am. J. Roentgenol. 214, W20–W26 (2020).

    Google Scholar 

  192. Younes, R. & Bugianesi, E. NASH in lean individuals. Semin. Liver Dis. 39, 86–95 (2019).

    CAS  PubMed  Google Scholar 

  193. Nabi, O. et al. Lean individuals with NAFLD have more severe liver disease and poorer clinical outcomes (NASH-CO Study). Hepatology 78, 272–283 (2023).

    PubMed  Google Scholar 

  194. Zhu, X. et al. Presence of sarcopenia identifies a special group of lean NAFLD in middle-aged and older people. Hepatol. Int. 17, 313–325 (2023).

    PubMed  Google Scholar 

  195. Lin, H. et al. Association of genetic variations with NAFLD in lean individuals. Liver Int. 42, 149–160 (2022).

    CAS  PubMed  Google Scholar 

  196. Sargeant, J. A. et al. A review of the effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors on lean body mass in humans. Endocrinol. Metab. 34, 247–262 (2019).

    CAS  Google Scholar 

  197. Tufvesson-Alm, M., Shevchouk, O. T. & Jerlhag, E. Insight into the role of the gut-brain axis in alcohol-related responses: emphasis on GLP-1, amylin, and ghrelin. Front. Psychiatry 13, 1092828 (2023).

    PubMed  PubMed Central  Google Scholar 

  198. Klausen, M. K., Thomsen, M., Wortwein, G. & Fink-Jensen, A. The role of glucagon-like peptide 1 (GLP-1) in addictive disorders. Br. J. Pharmacol. 179, 625–641 (2022).

    PubMed  Google Scholar 

  199. Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 69, 896–904 (2018).

    PubMed  Google Scholar 

  200. Ussher, J. R., Greenwell, A. A., Nguyen, M. A. & Mulvihill, E. E. Cardiovascular effects of incretin-based therapies: integrating mechanisms with cardiovascular outcome trials. Diabetes 71, 173–183 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Gutierrez-Cuevas, J., Santos, A. & Armendariz-Borunda, J. Pathophysiological molecular mechanisms of obesity: a link between MAFLD and NASH with cardiovascular diseases. Int. J. Mol. Sci. 22, 11629 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Chia, C. W. & Egan, J. M. Incretins in obesity and diabetes. Ann. NY Acad. Sci. 1461, 104–126 (2020).

    CAS  PubMed  Google Scholar 

  203. Seetharaman, R. & Pandit, S. Can small molecule GLP-1 agonists be the next first-line drugs in type-2 diabetes mellitus? J. Basic. Clin. Physiol. Pharmacol. 35, 1–4 (2024).

    CAS  PubMed  Google Scholar 

  204. Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Banini, V. Gupta and J. Dranoff for their helpful comments during manuscript preparation. W.Z.M. is supported by a VA Merit Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors (A.D., F.Z. and W.Z.M.) contributed to research, writing and editing of this manuscript.

Corresponding author

Correspondence to Wajahat Z. Mehal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Brian Finck, Michael Trauner and John Ussher for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, A., Zahrawi, F. & Mehal, W.Z. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 24, 171–189 (2025). https://doi.org/10.1038/s41573-024-01084-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-024-01084-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research