Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical engineering of CRISPR–Cas systems for therapeutic application

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) technology has transformed molecular biology and the future of gene-targeted therapeutics. CRISPR systems comprise a CRISPR-associated (Cas) endonuclease and a guide RNA (gRNA) that can be programmed to guide sequence-specific binding, cleavage, or modification of complementary DNA or RNA. However, the application of CRISPR-based therapeutics is challenged by factors such as molecular size, prokaryotic or phage origins, and an essential gRNA cofactor requirement, which impact efficacy, delivery and safety. This Review focuses on chemical modification and engineering approaches for gRNAs to enhance or enable CRISPR-based therapeutics, emphasizing Cas9 and Cas12a as therapeutic paradigms. Issues that chemically modified gRNAs seek to address, including drug delivery, physiological stability, editing efficiency and off-target effects, as well as challenges that remain, are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural organization of the natural CRISPR–Cas9 and CRISPR–Cas12a complexes.
Fig. 2: Representative 2′-OH contacts between guide RNA and Cas proteins.
Fig. 3: General mechanism of double-stranded DNA cleavage and repair by natural CRISPR–Cas9 and CRISPR–Cas12a systems.
Fig. 4: Chemical modifications that link the crRNA and tracrRNA together to form a sgRNA in the CRISPR–Cas9 system.
Fig. 5: Chemical modifications used in CRISPR–Cas systems.
Fig. 6: Delivery methods for CRISPR–Cas systems.
Fig. 7: Engineered CRISPR–Cas-based editing without double-strand breaks.

Similar content being viewed by others

References

  1. Porteus, M. H. A new class of medicines through DNA editing. N. Engl. J. Med. 380, 947–959 (2019).

    CAS  PubMed  Google Scholar 

  2. Taylor, D. W. The final cut: Cas9 editing. Nat. Struct. Mol. Biol. 26, 669–670 (2019).

    CAS  PubMed  Google Scholar 

  3. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernández, A., Josa, S. & Montoliu, L. A history of genome editing in mammals. Mamm. Genome 28, 237–246 (2017).

    PubMed  Google Scholar 

  5. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

    CAS  PubMed  Google Scholar 

  6. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). A groundbreaking study demonstrating the effectiveness of CRISPR–Cas9 as a programmable genome-editing tool, leading to its recognition in the 2020 Nobel Prize in Chemistry.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  8. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    CAS  PubMed  Google Scholar 

  10. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    CAS  PubMed  Google Scholar 

  11. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2020). The first example of CRISPR technology to enter clinical trials for ex vivo gene editing, leading to the clinical approval of the first CRISPR-based therapeutic, exa-cel.

    PubMed  Google Scholar 

  13. Jiang, F. & Doudna, J. A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    CAS  PubMed  Google Scholar 

  14. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA 91, 6064–6068 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 4, 27 (2018).

    PubMed  Google Scholar 

  17. Jensen, N. M. et al. An update on targeted gene repair in mammalian cells: methods and mechanisms. J. Biomed. Sci. 18, 10 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shim, G. et al. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol. Sin. 38, 738–753 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nidhi, S. et al. Novel CRISPR–Cas systems: an updated review of the current achievements, applications, and future research perspectives. Int. J. Mol. Sci. 22, 3327 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y., Glass, Z., Huang, M., Chen, Z.-Y. & Xu, Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 234, 119711 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Carroll, D. Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. 15, 1463–1468 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Allen, D., Rosenberg, M. & Hendel, A. Using synthetically engineered guide RNAs to enhance CRISPR genome editing systems in mammalian cells. Front. Genome Ed. 2, 617910 (2021).

    PubMed  PubMed Central  Google Scholar 

  23. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015). The first study identifying Cas12a as an alternative effector enzyme to Cas9, expanding the range of available CRISPR–Cas systems capable of gene editing activity in mammalian cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Koonin, E. V., Gootenberg, J. S. & Abudayyeh, O. O. Discovery of diverse CRISPR-Cas systems and expansion of the genome engineering toolbox. Biochemistry 62, 3465–3487 (2023).

    CAS  PubMed  Google Scholar 

  26. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Al Shaer, D., Al Musaimi, O., Albericio, F. & de la Torre, B. G. 2023 FDA TIDES (peptides and oligonucleotides) harvest. Pharmaceuticals 17, 243 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Vertex and CRISPR Therapeutics announce authorization of the first CRISPR/Cas9 gene-edited therapy, CASGEVY™ (exagamglogene autotemcel), by the United Kingdom MHRA for the treatment of sickle cell disease and transfusion-dependent beta thalassemia. Vertex Pharmaceuticals https://investors.vrtx.com/news-releases/news-release-details/vertex-and-crispr-therapeutics-announce-authorization-first (2023).

  29. McKenzie, L. K., El-Khoury, R., Thorpe, J. D., Damha, M. J. & Hollenstein, M. Recent progress in non-native nucleic acid modifications. Chem. Soc. Rev. 50, 5126–5164 (2021).

    CAS  PubMed  Google Scholar 

  30. Wan, W. B. & Seth, P. P. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 59, 9645–9667 (2016).

    CAS  PubMed  Google Scholar 

  31. Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Deleavey, G. F. & Damha, M. J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    CAS  PubMed  Google Scholar 

  33. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016). This study presents the crystal structure of the Cas12a ribonucleoprotein complex, emphasizing key interactions and providing guidance for the development of modified CRISPR–Cas12a systems in subsequent investigations.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014). Like Yamano et al. (2016), this research unveils the crystal structure of the Cas9 ribonucleoprotein complex, providing crucial insights for future studies.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    CAS  PubMed  Google Scholar 

  36. Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    CAS  PubMed  Google Scholar 

  37. McMahon, M. A., Prakash, T. P., Cleveland, D. W., Bennett, C. F. & Rahdar, M. Chemically modified Cpf1-CRISPR RNAs mediate efficient genome editing in mammalian cells. Mol. Ther. 26, 1228–1240 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Reilly, D. et al. Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. Nucleic Acids Res. 47, 546–558 (2018). This study utilizes various chemical modifications to investigate structure–activity relationships within the CRISPR–Cas9 system and highlights the disparity between in vitro and cell-based assays in the examination of gene editing.

    PubMed Central  Google Scholar 

  39. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  40. Swarts, D. C. & Jinek, M. Cas9 versus Cas12a/Cpf1: structure–function comparisons and implications for genome editing. Wiley Interdiscip. Rev. RNA 9, e1481 (2018).

    PubMed  Google Scholar 

  41. Cui, Y., Xu, J., Cheng, M., Liao, X. & Peng, S. Review of CRISPR/Cas9 sgRNA design tools. Interdiscip. Sci. 10, 455–465 (2018).

    CAS  PubMed  Google Scholar 

  42. Zetsche, B., Abudayyeh, O. O., Gootenberg, J. S., Scott, D. A. & Zhang, F. A survey of genome editing activity for 16 Cas12a orthologs. Keio J. Med. 69, 59–65 (2020).

    CAS  PubMed  Google Scholar 

  43. Swarts, D. C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016).

    CAS  PubMed  Google Scholar 

  45. Hirano, H. et al. Structure and engineering of Francisella novicida Cas9. Cell 164, 950–961 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    CAS  PubMed  Google Scholar 

  47. Park, H. M. et al. Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nat. Commun. 9, 3313 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Ageely, E. A. et al. Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles. Nat. Commun. 12, 6591 (2021). This research implements a structure-guided strategy to make extensive modifications to the Cas12a gRNA, with the primary goal of overcoming the 2′-OH barrier.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sudhakar, S. et al. Binding to the conserved and stably folded guide RNA pseudoknot induces Cas12a conformational changes during ribonucleoprotein assembly. J. Biol. Chem. 299, 104700 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sternberg, S. H., LaFrance, B., Kaplan, M. & Doudna, J. A. Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527, 110–113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pacesa, M. et al. Structural basis for Cas9 off-target activity. Cell 185, 4067–4081 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Szczelkun, M. D. et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc. Natl Acad. Sci. USA 111, 9798–9803 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dagdas, Y. S., Chen, J. S., Sternberg, S. H., Doudna, J. A. & Yildiz, A. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci. Adv. 3, eaao0027 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Singh, A., Chakraborty, D. & Maiti, S. CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chem. Soc. Rev. 45, 6666–6684 (2016).

    CAS  PubMed  Google Scholar 

  55. Wu, X., Kriz, A. J. & Sharp, P. A. Target specificity of the CRISPR-Cas9 system. Quant. Biol. 2, 59–70 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J. & Russell, R. Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol. Cell 71, 816–824 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    CAS  PubMed  Google Scholar 

  58. Agard, N. J. & Bertozzi, C. R. Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res. 42, 788–797 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aston, N. S., Watt, N., Morton, I. E., Tanner, M. S. & Evans, G. S. Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 line). Hum. Exp. Toxicol. 19, 367–376 (2000).

    CAS  PubMed  Google Scholar 

  60. Taemaitree, L., Shivalingam, A., El-Sagheer, A. H. & Brown, T. An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Nat. Commun. 10, 1610 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. He, K., Chou, E. T., Begay, S., Anderson, E. M. & van Brabant Smith, A. Conjugation and evaluation of triazole-linked single guide RNA for CRISPR-Cas9 gene editing. ChemBioChem 17, 1809–1812 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, Z. et al. Tetrazine-ligated CRISPR sgRNAs for efficient genome editing. ACS Chem. Biol. 17, 1045–1050 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoy, A., Zheng, Y. Y., Sheng, J. & Royzen, M. Bio-orthogonal chemistry conjugation strategy facilitates investigation of N-methyladenosine and thiouridine guide RNA modifications on CRISPR activity. CRISPR J. 5, 787–798 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015). The first study to investigate the impact of chemical modifications on the gene-editing activity of Cas9 gRNA for its eventual use in therapeutic applications.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, B. et al. Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat. Biomed. Eng. 1, 0066 (2017). One of the first studies to incorporate chemical modifications into the Cas12a gRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Basila, M., Kelley, M. L. & van Brabant Smith, A. Minimal 2′-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity. PLoS ONE 12, e0188593 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. Rozners, E. Chemical modifications of CRISPR RNAs to improve gene-editing activity and specificity. J. Am. Chem. Soc. 144, 12584–12594 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kotikam, V., Gajula, P. K., Coyle, L. & Rozners, E. Amide internucleoside linkages are well tolerated in protospacer adjacent motif-distal region of CRISPR RNAs. ACS Chem. Biol. 17, 509–512 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gu, C. et al. Chemical synthesis of stimuli-responsive guide RNA for conditional control of CRISPR-Cas9 gene editing. Chem. Sci. 12, 9934–9945 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Y., Liu, Y., Xie, F., Lin, J. & Xu, L. Photocontrol of CRISPR/Cas9 function by site-specific chemical modification of guide RNA. Chem. Sci. 11, 11478–11484 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Arzumanian, V. A., Dolgalev, G. V., Kurbatov, I. Y., Kiseleva, O. I. & Poverennaya, E. V. Epitranscriptome: review of top 25 most-studied RNA modifications. Int. J. Mol. Sci. 23, 13851 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Moosavi, A. & Motevalizadeh Ardekani, A. Role of epigenetics in biology and human diseases. Iran. Biomed. J. 20, 246–258 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Lorenz, C., Lünse, C. E. & Mörl, M. tRNA modifications: impact on structure and thermal adaptation. Biomolecules 7, 35 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 46, 1584–1600 (2018).

    CAS  PubMed  Google Scholar 

  75. Zhang, G., Tang, T., Chen, Y., Huang, X. & Liang, T. mRNA vaccines in disease prevention and treatment. Signal Transduct. Target. Ther. 8, 365 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nance, K. D. & Meier, J. L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci. 7, 748–756 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Prokhorova, D. V. et al. Natural nucleoside modifications in guide RNAs can modulate the activity of the CRISPR-Cas9 system in vitro. CRISPR J. 5, 799–812 (2022).

    CAS  PubMed  Google Scholar 

  78. Prokhorova, D., Matveeva, A., Zakabunin, A., Ryabchenko, A. & Stepanov, G. Influence of N1-methylpseudouridine in guide RNAs on CRISPR/Cas9 activity. Int. J. Mol. Sci. 24, 17116 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vaidyanathan, S. et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol. Ther. Nucleic Acids 12, 530–542 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hu, Z. et al. Regulation of the CRISPR-Cas12a system by methylation and demethylation of guide RNA. Chem. Sci. 14, 5945–5955 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, K. Q. et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 40, 111300 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Roehr, B. Fomivirsen approved for CMV retinitis. J. Int. Assoc. Physicians AIDS Care 4, 14–16 (1998).

    CAS  PubMed  Google Scholar 

  83. Grillone, L. R. & Lanz, R. Fomivirsen. Drugs Today 37, 245–255 (2001).

    CAS  Google Scholar 

  84. Scott, L. J. Givosiran: first approval. Drugs 80, 335–339 (2020).

    PubMed  Google Scholar 

  85. Liebow, A. et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J. Am. Soc. Nephrol. 28, 494–503 (2017).

    CAS  PubMed  Google Scholar 

  86. Gales, L. Tegsedi (inotersen): an antisense oligonucleotide approved for the treatment of adult patients with hereditary transthyretin amyloidosis. Pharmaceuticals 12, 78 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Merki, E. et al. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation 118, 743–753 (2008).

    CAS  PubMed  Google Scholar 

  88. Paik, J. & Duggan, S. Volanesorsen: first global approval. Drugs 79, 1349–1354 (2019).

    CAS  PubMed  Google Scholar 

  89. Lim, K. R., Maruyama, R. & Yokota, T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Dev. Ther. 11, 533–545 (2017).

    CAS  Google Scholar 

  90. Summerton, J. E. in Morpholino Oligomers: Methods and Protocols, Vol. 1565 (eds Moulton, H. M. & Moulton, J. D.) 1–15 (Humana, 2017).

  91. Heo, Y. A. Golodirsen: first approval. Drugs 80, 329–333 (2020).

    PubMed  Google Scholar 

  92. Kartje, Z. J., Barkau, C. L., Rohilla, K. J., Ageely, E. A. & Gagnon, K. T. Chimeric guides probe and enhance Cas9 biochemical activity. Biochemistry 57, 3027–3031 (2018).

    CAS  PubMed  Google Scholar 

  93. Yin, H. et al. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat. Chem. Biol. 14, 311–316 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, H. et al. Enhancement of target specificity of CRISPR–Cas12a by using a chimeric DNA–RNA guide. Nucleic Acids Res. 48, 8601–8616 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rueda, F. O. et al. Mapping the sugar dependency for rational generation of a DNA-RNA hybrid-guided Cas9 endonuclease. Nat. Commun. 8, 1610 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Bishani, A. & Chernolovskaya, E. L. Activation of innate immunity by therapeutic nucleic acids. Int. J. Mol. Sci. 22, 13360 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sakovina, L., Vokhtantsev, I., Vorobyeva, M., Vorobyev, P. & Novopashina, D. Improving stability and specificity of CRISPR/Cas9 system by selective modification of guide RNAs with 2′-fluoro and locked nucleic acid nucleotides. Int. J. Mol. Sci. 23, 13460 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mir, A. et al. Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nat. Commun. 9, 2641 (2018). This study suggests the potential to develop a completely chemically modified Cas9 gRNA, similar to the approach used for other oligonucleotide therapeutics.

    PubMed  PubMed Central  Google Scholar 

  99. Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017). One of the first studies to incorporate chemical modifications throughout the Cas9 gRNA and combine them with LNP formulations for in vivo gene-editing applications.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rahdar, M. et al. Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proc. Natl Acad. Sci. USA 112, E7110–E7117 (2015). Like Yin et al. (2017), this research is one of the first to explore the use of chemical modifications throughout the Cas9 gRNA with the aim of creating therapeutically viable CRISPR-based systems.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cromwell, C. R. et al. Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nat. Commun. 9, 1448 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Mangos, M. M. et al. Efficient RNase H-directed cleavage of RNA promoted by antisense DNA or 2′F-ANA constructs containing acyclic nucleotide inserts. J. Am. Chem. Soc. 125, 654–661 (2003).

    CAS  PubMed  Google Scholar 

  103. Laursen, M. B. et al. Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol. Biosyst. 6, 862–870 (2010).

    CAS  PubMed  Google Scholar 

  104. Noronha, A. M. et al. Synthesis and biophysical properties of arabinonucleic acids (ANA): circular dichroic spectra, melting temperatures, and ribonuclease H susceptibility of ANA•RNA hybrid duplexes. Biochemistry 39, 7050–7062 (2000).

    CAS  PubMed  Google Scholar 

  105. El-Khoury, R. & Damha, M. J. 2′-Fluoro-arabinonucleic acid (FANA): a versatile tool for probing biomolecular interactions. Acc. Chem. Res. 54, 2287–2297 (2021).

    CAS  PubMed  Google Scholar 

  106. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5, e12677 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Watts, J. K. et al. Differential stability of 2′F-ANA•RNA and ANA•RNA hybrid duplexes: roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility. Nucleic Acids Res. 38, 2498–2511 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Egli, M. The steric hypothesis for DNA replication and fluorine hydrogen bonding revisited in light of structural data. Acc. Chem. Res. 45, 1237–1246 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ryan, D. E. et al. Phosphonoacetate modifications enhance the stability and editing yields of guide RNAs for Cas9 editors. Biochemistry 62, 3512–3520 (2022).

    PubMed  Google Scholar 

  110. Ryan, D. E. et al. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 46, 792–803 (2018).

    CAS  PubMed  Google Scholar 

  111. Sheng, J. et al. Structural insights into the effects of 2′-5′ linkages on the RNA duplex. Proc. Natl Acad. Sci. USA 111, 3050–3055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kandimalla, E. R. et al. Mixed backbone antisense oligonucleotides: design, biochemical and biological properties of oligonucleotides containing 2′-5′-ribo- and 3′-5′-deoxyribonucleotide segments. Nucleic Acids Res. 25, 370–378 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Prokhorova, D. V. et al. Effect of the phosphoryl guanidine modification in chimeric DNA–RNA crRNAs on the activity of the CRISPR-Cas9 system in vitro. ACS Chem. Biol. 19, 1311–1319 (2024).

    CAS  PubMed  Google Scholar 

  114. Saito-Tarashima, N., Ueno, M., Murai, A., Matsuo, A. & Minakawa, N. Cas9-mediated DNA cleavage guided by enzymatically prepared 4′-thio-modified RNA. Org. Biomol. Chem. 20, 5245–5248 (2022).

    CAS  PubMed  Google Scholar 

  115. Zhang, H. et al. Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Nucleic Acids Res. 52, 977–997 (2024).

    CAS  PubMed  Google Scholar 

  116. Chen, K. et al. Engineering self-deliverable ribonucleoproteins for genome editing in the brain. Nat. Commun. 15, 1727 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ramakrishna, S. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Durrant, M. G. et al. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 630, 984–993 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wei, T. et al. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 14, 9243–9262 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Madigan, V., Zhang, F. & Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 22, 875–894 (2023).

    CAS  PubMed  Google Scholar 

  121. Nelson, C. E. et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25, 427–432 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang, H. et al. Engineering of a compact, high-fidelity EbCas12a variant that can be packaged with its crRNA into an all-in-one AAV vector delivery system. PLoS Biol. 22, e3002619 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kabadi, A. M., Ousterout, D. G., Hilton, I. B. & Gersbach, C. A. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42, e147 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. Ortinski, P. I., O’Donovan, B., Dong, X. & Kantor, B. Integrase-deficient lentiviral vector as an all-in-one platform for highly efficient CRISPR/Cas9-mediated gene editing. Mol. Ther. Methods Clin. Dev. 5, 153–164 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, C. et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96, 2381–2393 (2015).

    CAS  PubMed  Google Scholar 

  127. Jin, Y.-H. et al. Streamlined procedure for gene knockouts using all-in-one adenoviral CRISPR-Cas9. Sci. Rep. 9, 277 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Ghosh, S., Brown, A. M., Jenkins, C. & Campbell, K. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl. Biosaf. 25, 7–18 (2020).

    PubMed  PubMed Central  Google Scholar 

  129. Schmelas, C. & Grimm, D. Split Cas9, not hairs — advancing the therapeutic index of CRISPR technology. Biotechnol. J. 13, e1700432 (2018).

    PubMed  Google Scholar 

  130. Villiger, L. et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    CAS  PubMed  Google Scholar 

  131. Nooraei, S. et al. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnol. 19, 59 (2021).

    CAS  Google Scholar 

  132. Liu, B.-Y. et al. Peptide and aptamer decorated delivery system for targeting delivery of Cas9/sgRNA plasmid to mediate antitumor genome editing. ACS Appl. Mater. Interfaces 11, 23870–23879 (2019).

    CAS  PubMed  Google Scholar 

  133. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    CAS  PubMed  Google Scholar 

  134. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS  PubMed  Google Scholar 

  135. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2020).

    PubMed  Google Scholar 

  136. Kenjo, E. et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat. Commun. 12, 7101 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Intellia and Regeneron present updated interim data from phase 1 study of CRISPR-based NTLA-2001 for the treatment of transthyretin (ATTR) amyloidosis demonstrating that deep serum TTR reductions remained durable after a single dose. Intellia Therapeutics https://ir.intelliatx.com/news-releases/news-release-details/intellia-and-regeneron-present-updated-interim-data-phase-1 (2022).

  138. Kasiewicz, L. N. et al. GalNAc-lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 14, 2776 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Viney, N. J. et al. Ligand conjugated antisense oligonucleotide for the treatment of transthyretin amyloidosis: preclinical and phase 1 data. ESC Heart Fail. 8, 652–661 (2021).

    PubMed  Google Scholar 

  141. Brown, C. R. et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 48, 11827–11844 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chen, S., Lee, B., Lee, A. Y.-F., Modzelewski, A. J. & He, L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291, 14457–14467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ferguson, C. M. et al. Comparative route of administration studies using therapeutic siRNAs show widespread gene modulation in Dorset sheep. JCI Insight 6, e152203 (2021).

    PubMed  PubMed Central  Google Scholar 

  144. Luo, N. et al. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery. Drug Deliv. 28, 10–18 (2021).

    CAS  PubMed  Google Scholar 

  145. Ye, Y. et al. An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein complex and genome editing in recipient cells. Biomater. Sci. 8, 2966–2976 (2020).

    CAS  PubMed  Google Scholar 

  146. Koonin, E. V. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biol. Direct 12, 5 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cullot, G. et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Heidersbach, A. J., Dorighi, K. M., Gomez, J. A., Jacobi, A. M. & Haley, B. A versatile, high-efficiency platform for CRISPR-based gene activation. Nat. Commun. 14, 902 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Casas-Mollano, J. A., Zinselmeier, M. H., Erickson, S. E. & Smanski, M. J. CRISPR-Cas activators for engineering gene expression in higher eukaryotes. CRISPR J. 3, 350–364 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Carroll, M. S. & Giacca, M. CRISPR activation and interference as investigative tools in the cardiovascular system. Int. J. Biochem. Cell Biol. 155, 106348 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Villiger, L. et al. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 25, 464–487 (2024).

    CAS  PubMed  Google Scholar 

  158. Méndez-Mancilla, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells. Cell Chem. Biol. 29, 321–327 (2022).

    PubMed  Google Scholar 

  159. Palaz, F. et al. CRISPR-Cas13 system as a promising and versatile tool for cancer diagnosis, therapy, and research. ACS Synth. Biol. 10, 1245–1267 (2021).

    CAS  PubMed  Google Scholar 

  160. Marina, R. J., Brannan, K. W., Dong, K. D., Yee, B. A. & Yeo, G. W. Evaluation of engineered CRISPR-Cas-mediated systems for site-specific RNA editing. Cell Rep. 33, 108350 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Fiflis, D. N. et al. Repurposing CRISPR-Cas13 systems for robust mRNA trans-splicing. Nat. Commun. 15, 2325 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Jiang, T. et al. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat. Commun. 11, 1979 (2020). This study aims to enhance the efficacy of Cas9 base editors through chemical modifications of both mRNA and gRNA for correcting single-nucleotide mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Matsoukas, I. G. Prime editing: genome editing for rare genetic diseases without double-strand breaks or donor DNA. Front. Genet. 11, 528 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022). This research involves engineering of pegRNAs to protect them from degradation and improve prime editing efficiency.

    CAS  PubMed  Google Scholar 

  166. Zhang, W. et al. Enhancing CRISPR prime editing by reducing misfolded pegRNA interactions. eLife 12, RP90948 (2024).

    PubMed  PubMed Central  Google Scholar 

  167. Li, X. et al. Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. J. Mol. Cell Biol. 14, mjac002 (2022).

    Google Scholar 

  168. Zhang, G. et al. Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat. Commun. 13, 1856 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Chen, Z. et al. In vivo prime editing by lipid nanoparticle co-delivery of chemically modified pegRNA and prime editor mRNA. GEN Biotechnol. 2, 490–502 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, B. et al. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat. Biotechnol. 42, 1039–1045 (2024).

    CAS  PubMed  Google Scholar 

  171. Maeder, M. L. et al. CRISPR RNA–guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10, 973–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Groner, A. C. et al. KRAB–zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 6, e1000869 (2010).

    PubMed  PubMed Central  Google Scholar 

  177. Yeo, N. C. et al. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15, 611–616 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mills, C. et al. A novel CRISPR interference effector enabling functional gene characterization with synthetic guide RNAs. CRISPR J. 5, 769–786 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chavez, M., Chen, X., Finn, P. B. & Qi, L. S. Advances in CRISPR therapeutics. Nat. Rev. Nephrol. 19, 9–22 (2023).

    CAS  PubMed  Google Scholar 

  180. Ai, Y., Liang, D. & Wilusz, J. E. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Res. 50, e65 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Cheng, X. et al. Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches. Nat. Commun. 14, 752 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Borrajo, J. et al. Programmable multi-kilobase RNA editing using CRISPR-mediated trans-splicing. Preprint at bioRxiv https://doi.org/10.1101/2023.08.18.553620 (2023).

  183. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Nagar, R., Sinha, S. & Raman, R. Genotype–phenotype correlation and report of novel mutations in β-globin gene in thalassemia patients. Blood Cells Mol. Dis. 55, 10–14 (2015).

    CAS  PubMed  Google Scholar 

  185. Makis, A., Voskaridou, E., Papassotiriou, I. & Hatzimichael, E. Novel therapeutic advances in β-thalassemia. Biology 10, 546 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Piel, F. B., Steinberg, M. H. & Rees, D. C. Sickle cell disease. N. Engl. J. Med. 376, 1561–1573 (2017).

    CAS  PubMed  Google Scholar 

  187. Positive results from pivotal trials of exa-cel for transfusion-dependent beta thalassemia and severe sickle cell disease presented at the 2023 Annual European Hematology Association (EHA) Congress. Vertex Pharmaceuticals https://investors.vrtx.com/news-releases/news-release-details/positive-results-pivotal-trials-exa-cel-transfusion-dependent (2023).

  188. Vertex and CRISPR Therapeutics present new data on more patients with longer follow-up treated with exagamglogene autotemcel (exa-cel) at the 2022 European Hematology Association (EHA) Congress. Vertex Pharmaceuticals https://news.vrtx.com/news-releases/news-release-details/vertex-and-crispr-therapeutics-present-new-data-more-patients (2022).

  189. De Dreuzy, E. et al. EDIT-301: an experimental autologous cell therapy comprising Cas12a-RNP modified mPB-CD34+ cells for the potential treatment of SCD. Blood 134, 4636 (2019).

    Google Scholar 

  190. Liu, N. et al. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat. Genet. 53, 511–520 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Canver, M. C. & Orkin, S. H. Customizing the genome as therapy for the β-hemoglobinopathies. Blood 127, 2536–2545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, L. et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat. Commun. 12, 3908 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. De Dreuzy, E. et al. Robust pre-clinical results and large-scale manufacturing process for Edit-301: an autologous cell therapy for the potential treatment of SCD. Blood 136, 45–46 (2020).

    Google Scholar 

  194. Hanna, R. et al. S264: EDIT-301 shows promising preliminary safety and efficacy results in the phase I/II clinical trial (RUBY) of patients with severe sickle cell disease using highly specific and efficient AsCas12a enzyme. HemaSphere 7, e05170e0 (2023).

    PubMed Central  Google Scholar 

  195. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021). The first example of a systemically administered CRISPR–Cas9 system to enter clinical trials for in vivo gene editing, representing an important milestone in the advancement of gene therapy.

    CAS  PubMed  Google Scholar 

  196. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    CAS  PubMed  Google Scholar 

  197. Intellia Therapeutics announces second quarter 2024 financial results and highlights recent company progress. Intellia Therapeutics https://ir.intelliatx.com/news-releases/news-release-details/intellia-therapeutics-announces-second-quarter-2024-financial (2024).

  198. Zuraw, B. L. Hereditary angiodema: a current state-of-the-art review, IV: short- and long-term treatment of hereditary angioedema: out with the old and in with the new? Ann. Allergy Asthma Immunol. 100, S13–S18 (2008).

    CAS  PubMed  Google Scholar 

  199. Riano, I. & Prasongdee, K. A rare cause of isolated prolonged activated partial thromboplastin time: an overview of prekallikrein deficiency and the contact system. J Investig. Med. High Impact Case Rep. 9, 23247096211012187 (2021).

    Google Scholar 

  200. Longhurst, H. J. et al. CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 390, 432–441 (2024).

    CAS  PubMed  Google Scholar 

  201. Banerji, A. et al. Effect of lanadelumab compared with placebo on prevention of hereditary angioedema attacks: a randomized clinical trial. JAMA 320, 2108–2121 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Fijen, L. M. et al. Inhibition of prekallikrein for hereditary angioedema. N. Engl. J. Med. 386, 1026–1033 (2022).

    CAS  PubMed  Google Scholar 

  203. Nordestgaard, B. G. et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur. Heart J. 34, 3478–3490a (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    CAS  PubMed  Google Scholar 

  205. Goldstein, J. L. & Brown, M. S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29, 431–438 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Tybjærg-Hansen, A., Steffensen, R., Meinertz, H., Schnohr, P. & Nordestgaard, B. G. Association of mutations in the apolipoprotein B gene with hypercholesterolemia and the risk of ischemic heart disease. N. Engl. J. Med. 338, 1577–1584 (1998).

    PubMed  Google Scholar 

  207. Defesche, J. C. et al. Familial hypercholesterolaemia. Nat. Rev. Dis. Primers 3, 17093 (2017).

    PubMed  Google Scholar 

  208. Berberich, A. J. & Hegele, R. A. The complex molecular genetics of familial hypercholesterolaemia. Nat. Rev. Cardiol. 16, 9–20 (2019).

    CAS  PubMed  Google Scholar 

  209. Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Lee, R. G. et al. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models. Circulation 147, 242–253 (2023).

    CAS  PubMed  Google Scholar 

  211. Hooper, A. J., Tang, X. L. & Burnett, J. R. VERVE-101, a CRISPR base-editing therapy designed to permanently inactivate hepatic PCSK9 and reduce LDL-cholesterol. Expert Opin. Investig. Drugs 33, 753–756 (2024).

    CAS  PubMed  Google Scholar 

  212. Horie, T. & Ono, K. VERVE-101: a promising CRISPR-based gene editing therapy that reduces LDL-C and PCSK9 levels in HeFH patients. Eur. Heart J. Cardiovasc. Pharmacother. 10, 89–90 (2023).

    Google Scholar 

  213. Manalac, T. Verve halts trial for lead gene editing program due to safety concerns. BioSpace https://www.biospace.com/verve-halts-trial-for-lead-gene-editing-program-due-to-safety-concerns (2024).

  214. Roberts, R. & Crothers, D. Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463–1466 (1992).

    CAS  PubMed  Google Scholar 

  215. Salazar, M., Fedoroff, O. Y., Miller, J. M., Ribeiro, N. S. & Reid, B. R. The DNA strand in DNA.RNA hybrid duplexes is neither B-form nor A-form in solution. Biochemistry 32, 4207–4215 (1993).

    CAS  PubMed  Google Scholar 

  216. Yang, Z., Wang, J., Huang, L., Lilley, D. M. J. & Ye, K. Functional organization of box C/D RNA-guided RNA methyltransferase. Nucleic Acids Res. 48, 5094–5105 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat. Rev. Neurol. 14, 570 (2018).

    PubMed  Google Scholar 

  218. Patra, A. et al. 2′-Fluoro RNA shows increased Watson–Crick H-bonding strength and stacking relative to RNA: evidence from NMR and thermodynamic data. Angew. Chem. Int. Ed. 51, 11863–11866 (2012).

    CAS  Google Scholar 

  219. Pallan, P. S. et al. Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Res. 39, 3482–3495 (2011).

    CAS  PubMed  Google Scholar 

  220. Gaus, H. J. et al. Characterization of the interactions of chemically-modified therapeutic nucleic acids with plasma proteins using a fluorescence polarization assay. Nucleic Acids Res. 47, 1110–1122 (2019).

    CAS  PubMed  Google Scholar 

  221. Brown, D. A. et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J. Biol. Chem. 269, 26801–26805 (1994).

    CAS  PubMed  Google Scholar 

  222. Eckstein, F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid. Drug. Dev. 10, 117–121 (2000).

    CAS  PubMed  Google Scholar 

  223. Oka, N. & Wada, T. Stereocontrolled synthesis of oligonucleotide analogs containing chiral internucleotidic phosphorus atoms. Chem. Soc. Rev. 40, 5829–5843 (2011).

    CAS  PubMed  Google Scholar 

  224. Oka, N., Kondo, T., Fujiwara, S., Maizuru, Y. & Wada, T. Stereocontrolled synthesis of oligoribonucleoside phosphorothioates by an oxazaphospholidine approach. Org. Lett. 11, 967–970 (2009).

    CAS  PubMed  Google Scholar 

  225. Malek-Adamian, E. et al. Adjusting the structure of 2′-modified nucleosides and oligonucleotides via C4′-α-F or C4′-α-OMe substitution: synthesis and conformational analysis. J. Org. Chem. 83, 9839–9849 (2018).

    CAS  PubMed  Google Scholar 

  226. Malek-Adamian, E. et al. 4′-C-Methoxy-2′-deoxy-2′-fluoro modified ribonucleotides improve metabolic stability and elicit efficient RNAi-mediated gene silencing. J. Am. Chem. Soc. 139, 14542–14555 (2017).

    CAS  PubMed  Google Scholar 

  227. Campbell, M. A. & Wengel, J. Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem. Soc. Rev. 40, 5680–5689 (2011).

    CAS  PubMed  Google Scholar 

  228. Langkjær, N., Pasternak, A. & Wengel, J. UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg. Med. Chem. 17, 5420–5425 (2009).

    PubMed  Google Scholar 

  229. Fluiter, K. et al. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4′-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer. Mol. Biosyst. 5, 838–843 (2009).

    CAS  PubMed  Google Scholar 

  230. Trempe, J.-F. et al. NMR solution structure of an oligonucleotide hairpin with a 2′F-ANA/RNA stem: implications for RNase H specificity toward DNA/RNA hybrid duplexes. J. Am. Chem. Soc. 123, 4896–4903 (2001).

    CAS  PubMed  Google Scholar 

  231. Berger, I., Tereshko, V., Ikeda, H., Marquez, V. E. & Egli, M. Crystal structures of B-DNA with incorporated 2′-deoxy-2′-fluoro-arabino-furanosyl thymines: implications of conformational preorganization for duplex stability. Nucleic Acids Res. 26, 2473–2480 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Anzahaee, M. Y., Watts, J. K., Alla, N. R., Nicholson, A. W. & Damha, M. J. Energetically important C–H···F–C pseudohydrogen bonding in water: evidence and application to rational design of oligonucleotides with high binding affinity. J. Am. Chem. Soc. 133, 728–731 (2011).

    CAS  PubMed  Google Scholar 

  233. O’Reilly, D. et al. Exploring atypical fluorine–hydrogen bonds and their effects on nucleoside conformations. Chem. Eur. J. 24, 16432–16439 (2018).

    PubMed  Google Scholar 

  234. Lok C.N. et al. Potent gene-specific inhibitory properties of mixed-backbone antisense oligonucleotides comprised of 2′-deoxy-2′-fluoro-D-arabinose and 2′-deoxyribose nucleotides. Biochemistry 41, 3457–3467 (2002).

    CAS  PubMed  Google Scholar 

  235. Kalota, A. et al. 2′-Deoxy-2′-fluoro-β-D-arabinonucleic acid (2′F-ANA) modified oligonucleotides (ON) effect highly efficient, and persistent, gene silencing. Nucleic Acids Res. 34, 451–461 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Dowler, T. et al. Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-β-D-arabinonucleic acid (FANA). Nucleic Acids Res. 34, 1669–1675 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Alves Ferreira-Bravo, I., Cozens, C., Holliger, P. & DeStefano, J. J. Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res. 43, 9587–9599 (2015).

    PubMed  PubMed Central  Google Scholar 

  238. Lietard, J. et al. Mapping the affinity landscape of thrombin-binding aptamers on 2′F-ANA/DNA chimeric G-quadruplex microarrays. Nucleic Acids Res. 45, 1619–1632 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Aurup, H., Tuschl, T., Benseler, F., Ludwig, J. & Eckstein, F. Oligonucleotide duplexes containing 2′-amino-2′-deoxycytidines: thermal stability and chemical reactivity. Nucleic Acids Res. 22, 20–24 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Jana, S. K. et al. Nucleoside analogues with a seven-membered sugar ring: synthesis and structural compatibility in DNA–RNA hybrids. J. Org. Chem. 87, 2367–2379 (2022).

    CAS  PubMed  Google Scholar 

  241. Sheehan, D. et al. Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids Res. 31, 4109–4118 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the National Institutes of Health (1R01GM135646-01) to K.T.G. and the National Science and Engineering Council of Canada (NSERC) Discovery Grant #2022-03372 to M.J.D. Additionally, H.M.B. and M.J.D. are members of the Centre de recherche en biologie structurale, funded by Fonds de Recherche du Québec (Health Sector) Research Centres Grant #288558 and H.M.B. received graduate funding support from Fonds de Recherche du Québec - Nature et Technologies doctoral scholarship #332295 and the NSERC CREATE Programmed Molecules for Therapeutics, Sensing, and Diagnostics (PROMOTE) training program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the literature, discussing the article’s content, preparing figures, and writing and/or substantial editing.

Corresponding authors

Correspondence to Keith T. Gagnon, Masad J. Damha or Daniel O’Reilly.

Ethics declarations

Competing interests

There are no competing interests to declare.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Michael Rosenberg, Ayal Hendel, Laura Sepp-Lorenzino, Sabin Mulepati and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

2′-OH contacts

Hydrogen bonding interactions between the 2′-hydroxyl (2′-OH) groups of the gRNA nucleotides and the Cas amino acids, as well as between nucleotides.

Base editors

(BEs). Systems consisting of a dCas9 fused to either a cytidine deaminase, for cytosine base editors, or an adenosine deaminase, for adenine base editors, which allow for the precise conversion of specific DNA bases (such as, C to T or A to G) without double-strand breaks.

Chemical modification

Either a naturally occurring or synthetic modification to the phosphate, sugar or nucleobase of nucleotides.

Click chemistry

A biocompatible chemical reaction that allows for efficient and specific joining of two biomolecules.

CRISPR RNA

(crRNA). An RNA molecule composed of a spacer-derived guide region and a repeat-derived trans-activating CRISPR RNA-pairing or 5′ handle region.

dCas9

A Cas9 protein with mutations in both nuclease domains (RuvC and HNH), resulting in a catalytically inactive enzyme still capable of binding to DNA via guide RNA.

Double-strand breaks

(DSBs). DNA damage types in which both strands of the DNA double helix are cleaved, forming either a blunt or staggered break.

Ex vivo gene editing

A therapeutic approach in which patient cells are isolated, edited outside of the body and subsequently reintroduced back into the patient.

Guide RNA

(gRNA). A generalized term for an RNA molecule that directs the CRISPR–Cas effector enzyme to a specific DNA sequence through complementary base pairing.

Homology-directed repair

(HDR) A precise DNA repair pathway guided by a homologous DNA template to repair double-strand breaks.

In vivo gene editing

A therapeutic approach in which the gene editing components are delivered directly into a patient via local or systemic delivery.

Lipid nanoparticle

(LNP). A vesicle composed of lipid moieties used to encapsulate nucleic acids or proteins and deliver these therapeutic agents into cells.

nCas9

A Cas9 protein with either the RuvC or HNH catalytic domain mutated, resulting in a Cas9 that can introduce a single-strand break (that is, a nick) into DNA by cleaving only one DNA strand.

Non-homologous end joining

(NHEJ). A DNA repair pathway in which double-strand breaks are repaired by directly joining the ends, often resulting in insertions or deletions at the site.

Non-target strand

The DNA strand opposite the target strand that contains the protospacer adjacent motif and remains unbound during CRISPR–Cas-mediated cleavage.

Off-target effects

Unintended cleavages or modifications of DNA at sites other than the intended target sequence.

Prime editing guide RNA

(pegRNA). An RNA molecule used in prime editing that combines the properties of a gRNA, a reverse transcriptase template and a template sequence encoding the desired edit to direct the fusion protein to the target DNA site.

Prime editors

Systems consisting of an nCas9 fused to a reverse transcriptase enzyme and guided by a pegRNA to enable precise edits without double-strand breaks.

Protospacer adjacent motif

(PAM). A short, specific DNA sequence adjacent to the target site that is essential for the recognition and binding of the Cas enzyme.

Ribonucleoprotein (RNP) complex

A complex composed of both RNA and protein.

R-loop

A nucleic acid structure that forms when an RNA strand binds to one strand of a DNA double helix, creating an RNA:DNA hybrid duplex and displacing the other DNA strand.

Seed region

The first 5–10 nucleotides directly adjacent to the PAM that initiate base pairing between the gRNA and the target strand.

Single-guide RNA

(sgRNA). An RNA molecule created by fusing the Cas9 crRNA and trans-activating CRISPR RNA into a single construct.

Sugar pucker conformations

Conformations of the ribose ring in a nucleotide, with C2′-endo corresponding to DNA-like sugars with B-form helical structures and C3′-endo corresponding to RNA-like sugars with A-form helical structures.

Target strand

The DNA strand that is complementary to the gRNA.

Trans-activating CRISPR RNA

(tracrRNA). An RNA molecule that hybridizes to the crRNA and anchors the gRNA construct to Cas9 through its stem loop structures.

Transcriptional activation

(CRISPRa). A technique using dCas9 fused to transcriptional activation domains and directed by a gRNA to specific genomic loci to upregulate gene expression.

Transcriptional interference

(CRISPRi). A method using dCas9 fused to repressor domains to repress gene expression when guided to specific genomic loci by a gRNA.

Viral vectors

Modified viruses used to deliver nucleic acids into cells for therapeutic purposes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barber, H.M., Pater, A.A., Gagnon, K.T. et al. Chemical engineering of CRISPR–Cas systems for therapeutic application. Nat Rev Drug Discov 24, 209–230 (2025). https://doi.org/10.1038/s41573-024-01086-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-024-01086-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing