Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer

Abstract

The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Similarities and differences between the metabolic programme of CD8 T cells and NK cells.
Fig. 2: Landscape of the metabolic alterations of CD8 T cells and NK cells in the tumour bed.
Fig. 3: Metabolic targets to improve the antitumour response of CD8 T cells and NK cells.

Similar content being viewed by others

References

  1. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    CAS  PubMed  Google Scholar 

  2. Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chiossone, L., Dumas, P.-Y., Vienne, M. & Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 18, 671 (2018).

    CAS  PubMed  Google Scholar 

  4. Huntington, N. D., Cursons, J. & Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020).

    CAS  PubMed  Google Scholar 

  5. Wolf, N. K., Kissiov, D. U. & Raulet, D. H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. 23, 90–105 (2023).

    CAS  PubMed  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  7. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vivier, E. et al. Natural killer cell therapies. Nature 626, 727–736 (2024).

    CAS  PubMed  Google Scholar 

  9. O’Brien, K. L. & Finlay, D. K. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 19, 282–290 (2019).

    PubMed  Google Scholar 

  10. Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. van de Windt, G. J. W. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Google Scholar 

  12. Makowski, L., Chaib, M. & Rathmell, J. C. Immunometabolism: from basic mechanisms to translation. Immunol. Rev. 295, 5–14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mattiola, I. & Diefenbach, A. Regulation of innate immune system function by the microbiome: consequences for tumor immunity and cancer immunotherapy. Semin. Immunol. 66, 101724 (2023).

    CAS  PubMed  Google Scholar 

  14. Matson, V., Chervin, C. S. & Gajewski, T. F. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 160, 600–613 (2021).

    CAS  PubMed  Google Scholar 

  15. Bell, H. N. & Zou, W. Beyond the barrier: unraveling the mechanisms of immunotherapy resistance. Annu. Rev. Immunol. 42, 521–550 (2024).

    CAS  PubMed  Google Scholar 

  16. Drijvers, J. M., Sharpe, A. H. & Haigis, M. C. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife 9, e62420 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Møller, S. H., Hsueh, P.-C., Yu, Y.-R., Zhang, L. & Ho, P.-C. Metabolic programs tailor T cell immunity in viral infection, cancer, and aging. Cell Metab. 34, 378–395 (2022).

    PubMed  Google Scholar 

  18. Warburg, O., Gawehn, K. & Geissler, A. W. Metabolism of leukocytes. Z. Naturforsch. B 13B, 515–516 (1958).

    CAS  PubMed  Google Scholar 

  19. Hedeskov, C. J. Early effects of phytohaemagglutinin on glucose metabolism of normal human lymphocytes. Biochem. J. 110, 373–380 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Roos, D. & Loos, J. A. Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes: II. Relative importance of glycolysis and oxidative phosphorylation on phytohaemagglutinin stimulation. Exp. Cell Res. 77, 127–135 (1973).

    CAS  PubMed  Google Scholar 

  21. Wang, T., Marquardt, C. & Foker, J. Aerobic glycolysis during lymphocyte proliferation. Nature 261, 702–705 (1976).

    CAS  PubMed  Google Scholar 

  22. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002). This study tied, for the first time, a signalling pathway primarily involved in T cell activation to cell metabolism regulation.

    CAS  PubMed  Google Scholar 

  23. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    CAS  PubMed  Google Scholar 

  24. Rathmell, J. C., Elstrom, R. L., Cinalli, R. M. & Thompson, C. B. Activated Akt promotes increased resting T cell size, CD28-independent T cell growth, and development of autoimmunity and lymphoma. Eur. J. Immunol. 33, 2223–2232 (2003).

    CAS  PubMed  Google Scholar 

  25. Powell, J. D. & Delgoffe, G. M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33, 301–311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tan, H. et al. Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brennan, P., Babbage, J. W., Thomas, G. & Cantrell, D. p70(s6k) integrates phosphatidylinositol 3-kinase and rapamycin-regulated signals for E2F regulation in T lymphocytes. Mol. Cell. Biol. 19, 4729–4738 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ben-Sahra, I. & Manning, B. D. mTORC1 signaling and the metabolic control of cell growth. Curr. Opin. Cell Biol. 45, 72–82 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, R. et al. The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fu, H. et al. The glucose transporter 2 regulates CD8+ T cell function via environment sensing. Nat. Metab. 5, 1969–1985 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018). This study describes a direct link between the proximal kinase Zap70 and the activity of PDH.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. DeBerardinis, R. J. & Chandel, N. S. We need to talk about the Warburg effect. Nat. Metab. 2, 127–129 (2020).

    PubMed  Google Scholar 

  35. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013). This study demonstrates that a glycolytic enzyme, GAPDH, moonlights and regulates IFNγ production, thus impacting CD8 T cell functions.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, K. et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 371, 405–410 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bantug, G. R. et al. Mitochondria-endoplasmic reticulum contact sites function as immunometabolic hubs that orchestrate the rapid recall response of memory CD8+ T cells. Immunity 48, 542–555.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, Y. et al. Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells. Mol. Cell 82, 3270–3283.e9 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kong, H. & Chandel, N. S. Regulation of redox balance in cancer and T cells. J. Biol. Chem. 293, 7499–7507 (2018).

    CAS  PubMed  Google Scholar 

  40. Klein Geltink, R. I. et al. Mitochondrial priming by CD28. Cell 171, 385–397.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fischer, M. et al. Early effector maturation of naïve human CD8+ T cells requires mitochondrial biogenesis. Eur. J. Immunol. 48, 1632–1643 (2018).

    CAS  PubMed  Google Scholar 

  43. Mehta, M. M., Weinberg, S. E. & Chandel, N. S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol. 17, 608–620 (2017).

    CAS  PubMed  Google Scholar 

  44. Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013). This study describes a role of mitochondria beyond ATP generation and the requirement for reactive oxygen species in T cell activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Reid, M. A., Dai, Z. & Locasale, J. W. The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat. Cell Biol. 19, 1298–1306 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1237 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    CAS  PubMed  Google Scholar 

  53. Ma, E. H. et al. Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity 51, 856–870.e5 (2019). This study uses in vivo metabolic labelling to quantify the outcome of glucose-derived carbons and shows that lactate excretion is less prevalent than in vitro. The characterization of the metabolic pathways actually used in an in vivo response is continued in ref. 54.

    CAS  PubMed  Google Scholar 

  54. Luda, K. M. et al. Ketolysis drives CD8+ T cell effector function through effects on histone acetylation. Immunity 56, 2021–2035.e8 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaymak, I. et al. Carbon source availability drives nutrient utilization in CD8+ T cells. Cell Metab. 34, 1298–1311.e6 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272.e17 (2017). This study describes the generation of a medium recapitulating the composition of human plasma and the impact this has on a number of metabolic processes.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Howden, A. J. M. et al. Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nat. Immunol. 20, 1542–1554 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, H. et al. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. Cell 184, 1245–1261.e21 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Minogue, E. et al. Glutarate regulates T cell metabolism and anti-tumour immunity. Nat. Metab. 5, 1747–1764 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, E. H. et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 25, 345–357 (2017).

    CAS  PubMed  Google Scholar 

  62. Locasale, J. W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Quinn, W. J. et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaneton, B. et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491, 458–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gnanaprakasam, J. N. R. et al. Asparagine restriction enhances CD8+ T cell metabolic fitness and antitumoral functionality through an NRF2-dependent stress response. Nat. Metab. 5, 1423–1439 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e13 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sheppard, S. et al. Fatty acid oxidation fuels natural killer cell responses against infection and cancer. Proc. Natl Acad. Sci. USA 121, e2319254121 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Raynor, J. L., Chapman, N. M. & Chi, H. Metabolic control of memory T-cell generation and stemness. Cold Spring Harb. Perspect. Biol. 13, a037770 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 624, 154–163 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ando, S. et al. mTOR regulates T cell exhaustion and PD-1 targeted immunotherapy response during chronic viral infection. J. Clin. Invest. 133, e160025 (2022).

    Google Scholar 

  75. Marçais, A. et al. High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors. eLife. Sciences 6, e26423 (2017).

    Google Scholar 

  76. Keating, S. E. et al. Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J. Immunol. 196, 2552–2560 (2016).

    CAS  PubMed  Google Scholar 

  77. Marçais, A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 15, 749–757 (2014). This study describes the non-redundant role of the kinase mTOR in murine NK cells during differentiation and cytokine activation.

    PubMed  PubMed Central  Google Scholar 

  78. Keppel, M. P., Saucier, N., Mah, A. Y., Vogel, T. P. & Cooper, M. A. Activation-specific metabolic requirements for NK cell IFN-γ production. J. Immunol. 194, 1954–1962 (2015). This study dissects the fuel requirement of resting murine NK cells to sustain effector functions in response to a number of stimuli.

    CAS  PubMed  Google Scholar 

  79. Picard, L. K., Littwitz-Salomon, E., Waldmann, H. & Watzl, C. Inhibition of glucose uptake blocks proliferation but not cytotoxic activity of NK cells. Cells 11, 3489 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kern, N. et al. Pivotal role of exogenous pyruvate in human Natural Killer cell metabolism. Nat. Metab. https://doi.org/10.1038/s42255-024-01188-4 (in the press).

  81. Romee, R. et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 8, 357ra123 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Donnelly, R. P. et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J. Immunol. 93, 4477–4784 (2014).

    Google Scholar 

  83. Mah-Som, A. Y. et al. Reliance on Cox10 and oxidative metabolism for antigen-specific NK cell expansion. Cell Rep. 35, 109209 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mah, A. Y. et al. Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. JCI Insight 2, e95128 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Sheppard, S. et al. Lactate dehydrogenase A-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep. 35, 109210 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Schimmer, S. et al. Fatty acids are crucial to fuel NK cells upon acute retrovirus infection. Front. Immunol. 14, 1296355 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ganz, T. & Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15, 500–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Santosa, E. K. et al. Control of nutrient uptake by IRF4 orchestrates innate immune memory. Nat. Immunol. 24, 1685–1697 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Littwitz-Salomon, E. et al. Metabolic requirements of NK cells during the acute response against retroviral infection. Nat. Commun. 12, 5376 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Assmann, N. et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol. 18, 1197–1206 (2017). This study, by making use of metabolic labelling in activated murine NK cells, demonstrates that the TCA cycle is in a specific configuration that involves a shuttle between citrate and malate and how this conditions effector functions.

    CAS  PubMed  Google Scholar 

  91. Loftus, R. M. et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018).

    PubMed  PubMed Central  Google Scholar 

  92. Li, J. H. et al. MEF2C regulates NK cell effector functions through control of lipid metabolism. Nat. Immunol. 25, 778–789 (2024).

    CAS  PubMed  Google Scholar 

  93. Castro, W. et al. The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nat. Immunol. 19, 809–820 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, J. E. et al. Aetyl CoA carboxylase 2 is dispensable for CD8+ T cell responses. PLoS One 10, e0137776 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016). This study is an early report of mitochondrial dysfunction in tumour-infiltrating CD8 T cells and how the correction of the mitochondrial defect restores effector potential.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu, H. et al. Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming. Nat. Commun. 14, 6858 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23, 327–336 (2017).

    CAS  PubMed  Google Scholar 

  100. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020). This study shows that repeated TCR stimulation leads to impairment of OxPhos that in turn negatively affects cell proliferation. Conversely, preventing mitochondrial oxidative stress rescues proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Yu, Y.-R. et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 21, 1540–1551 (2020).

    CAS  PubMed  Google Scholar 

  102. Bengsch, B. et al. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity 45, 358–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Taylor, C. T. & Scholz, C. C. The effect of HIF on metabolism and immunity. Nat. Rev. Nephrol. 18, 573–587 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Miska, J. et al. HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma. Cell Rep. 27, 226–237.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gemta, L. F. et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8+ T cells. Sci. Immunol. 4, eaap9520 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71, 5412–5422 (2011).

    CAS  PubMed  Google Scholar 

  109. Rocca, Y. S. et al. Altered phenotype in peripheral blood and tumor-associated NK cells from colorectal cancer patients. Innate Immun. 19, 76–85 (2013).

    CAS  PubMed  Google Scholar 

  110. Bi, J. & Tian, Z. NK cell exhaustion. Front. Immunol. 8, 760 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Kirschenbaum, D. et al. Time-resolved single-cell transcriptomics defines immune trajectories in glioblastoma. Cell 187, 149–165.e23 (2024).

    CAS  PubMed  Google Scholar 

  112. Pouxvielh, K. et al. Tumor-induced natural killer cell dysfunction is a rapid and reversible process uncoupled from the expression of immune checkpoints. Sci. Adv. 10, eadn0164 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Merino, A. M. et al. Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. J. Clin. Invest. 129, 3770–3785 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Dean, I. et al. Rapid functional impairment of natural killer cells following tumor entry limits anti-tumor immunity. Nat. Commun. 15, 683 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zheng, X. et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019).

    CAS  PubMed  Google Scholar 

  116. Poznanski, S. M. et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab. 33, 1205–1220.e5 (2021).

    CAS  PubMed  Google Scholar 

  117. Slattery, K. et al. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J. Immunother. Cancer 9, e002044 (2021).

    PubMed  PubMed Central  Google Scholar 

  118. Sullivan, M. R. et al. Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. eLife 8, e44235 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Reznik, E. et al. A landscape of metabolic variation across tumor types. Cells 6, 301–313.e3 (2018).

    CAS  Google Scholar 

  120. Xiao, Z., Dai, Z. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 3763 (2019).

    PubMed  PubMed Central  Google Scholar 

  121. Liu, X., Hoft, D. F. & Peng, G. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 43, 132–147 (2022).

    CAS  PubMed  Google Scholar 

  122. Raynor, J. L. & Chi, H. Nutrients: signal 4 in T cell immunity. J. Exp. Med. 221, e20221839 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015). This study describes the metabolic competition taking place in the tumour environment and how this is linked to tumour progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ho, P.-C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015). This study describes one example of a bioenergetic metabolite also acting as an immune modulator.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).

    CAS  PubMed  Google Scholar 

  126. Terness, P. et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. 196, 447–457 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Gropper, Y. et al. Culturing CTLs under hypoxic conditions enhances their cytolysis and improves their anti-tumor function. Cell Rep. 20, 2547–2555 (2017).

    CAS  PubMed  Google Scholar 

  128. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, Y. et al. Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells. J. Clin. Invest. 130, 5508–5522 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Corcoran, S. E. & O’Neill, L. A. J. HIF1α and metabolic reprogramming in inflammation. J. Clin. Invest. 126, 3699–3707 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Hamanaka, R. B. & Chandel, N. S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35, 505–513 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ni, J. et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity 52, 1075–1087.e8 (2020). This study describes the counter-intuitive finding that HIF1α is detrimental in NK cells infiltrating solid tumours.

    CAS  PubMed  Google Scholar 

  133. Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    CAS  PubMed  Google Scholar 

  134. Elia, I. et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metab. 34, 1137–1150.e6 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kumagai, S. et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40, 201–218.e9 (2022).

    CAS  PubMed  Google Scholar 

  136. Certo, M., Tsai, C.-H., Pucino, V., Ho, P.-C. & Mauro, C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat. Rev. Immunol. 21, 151–161 (2021).

    CAS  PubMed  Google Scholar 

  137. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Fischer, K. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819 (2007).

    CAS  PubMed  Google Scholar 

  139. Calcinotto, A. et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 72, 2746–2756 (2012).

    CAS  PubMed  Google Scholar 

  140. Tsai, Y.-L. et al. TCR signaling promotes formation of an STS1-Cbl-b complex with pH-sensitive phosphatase activity that suppresses T cell function in acidic environments. Immunity 56, 2682–2698.e9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tsai, C.-H. et al. Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell Metab. 35, 118–133.e7 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Harmon, C. et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol. Res. 7, 335–346 (2019).

    CAS  PubMed  Google Scholar 

  143. Dodard, G. et al. Inflammation-induced lactate leads to rapid loss of hepatic tissue-resident NK cells. Cell Rep. 32, 107855 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Feng, Q. et al. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity. Nat. Commun. 13, 4981 (2022). This study describes the positive role of lactate on CD8 T cells by disentangling the impact of acidification and lactate itself.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Parks, S. K., Mueller-Klieser, W. & Pouysségur, J. Lactate and acidity in the cancer microenvironment. Annu. Rev. Cancer Biol. 4, 141–158 (2020).

    Google Scholar 

  150. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Bunse, L. et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat. Med. 24, 1192–1203 (2018).

    CAS  PubMed  Google Scholar 

  153. Notarangelo, G. et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function. Science 377, 1519–1529 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540, 236–241 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Schneider, E. et al. CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nat. Commun. 12, 5911 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Neo, S. Y. et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J. Clin. Invest. 130, 1185–1198 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Allard, B., Allard, D., Buisseret, L. & Stagg, J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 611–629 (2020).

    CAS  PubMed  Google Scholar 

  159. Todd, K. L. et al. A2AR eGFP reporter mouse enables elucidation of A2AR expression dynamics during anti-tumor immune responses. Nat. Commun. 14, 6990 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Vigano, S. et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front. Immunol. 10, 925 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Young, A. et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003–1016 (2018).

    CAS  PubMed  Google Scholar 

  162. Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).

    CAS  PubMed  Google Scholar 

  163. McPhedran, S. J., Carleton, G. A. & Lum, J. J. Metabolic engineering for optimized CAR-T cell therapy. Nat. Metab. 6, 396–408 (2024).

    PubMed  Google Scholar 

  164. Liu, X., Hoft, D. F. & Peng, G. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol. 43, 132–147 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Michelet, X. et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19, 1330–1340 (2018).

    CAS  PubMed  Google Scholar 

  166. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2020).

    PubMed  PubMed Central  Google Scholar 

  167. Ma, X. et al. CD36-mediated ferroptosis dampens intratumoral CD8+ T cell effector function and impairs their antitumor ability. Cell Metab. 33, 1001–1012.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Nava Lauson, C. B. et al. Linoleic acid potentiates CD8+ T cell metabolic fitness and antitumor immunity. Cell Metab. 35, 633–650.e9 (2023).

    CAS  PubMed  Google Scholar 

  169. Ma, X. et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ T cells in tumors. Immunity 54, 1561–1577.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rostamian, H. et al. Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions. BMC Cancer 22, 39 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Belkahla, S. et al. The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci. Rep. 12, 3234 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Mangalhara, K. C. et al. Manipulating mitochondrial electron flow enhances tumor immunogenicity. Science 381, 1316–1323 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Triplett, T. A. et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 36, 758–764 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Platten, M., Nollen, E. A. A., Röhrig, U. F., Fallarino, F. & Opitz, C. A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 18, 379–401 (2019).

    CAS  PubMed  Google Scholar 

  176. Beloueche-Babari, M. et al. Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration. Br. J. Cancer 122, 895–903 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Klysz, D. D. et al. Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell 42, 266–282.e8 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Giuffrida, L. et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat. Commun. 12, 3236 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Tieu, V. et al. A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human T cells. Cell https://doi.org/10.1016/j.cell.2024.01.035 (2024). This study demonstrates that metabolic engineering of CAR T cells using a cutting-edge CRISPR-based platform leads to better antitumour functions.

    Article  PubMed  Google Scholar 

  180. Chambers, A. M. et al. Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors. eLife 11, e73699 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ma, J. et al. Lithium carbonate revitalizes tumor-reactive CD8+ T cells by shunting lactic acid into mitochondria. Nat. Immunol. 25, 552–561 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019). This study shows that tumour cells are more dependent on glutamine than effector T cells in a mouse model of colon cancer upon in vivo targeting of glutamine usage; a previously undefined specificity of tumour cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Oh, M.-H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Invest. 130, 3865–3884 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Edwards, D. N. et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Invest. 131, e140100 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Byun, J.-K. et al. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol. Cell 80, 592–606.e8 (2020).

    CAS  PubMed  Google Scholar 

  186. Nabe, S. et al. Reinforce the antitumor activity of CD8+ T cells via glutamine restriction. Cancer Sci. 109, 3737–3750 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Maia, A., Tarannum, M. & Romee, R. Genetic manipulation approaches to enhance the clinical application of NK cell-based immunotherapy. Stem Cell Transl. Med. 13, 230–242 (2024).

    CAS  Google Scholar 

  188. Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Felices, M. et al. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight 3, e96219 (2018).

    PubMed  PubMed Central  Google Scholar 

  190. Klebanoff, C. A. et al. Inhibition of AKT signaling uncouples T cell differentiation from expansion for receptor-engineered adoptive immunotherapy. JCI Insight 2, e95103 (2017). This study presents the unexpected finding that inhibition of the PI3K–AKT pathway in in vitro expanded T or CAR T cells, leads to a better in vivo anti-tumour response upon reinfusion without affecting cell yield.

    PubMed  PubMed Central  Google Scholar 

  191. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    CAS  PubMed  Google Scholar 

  192. Langdon, S. et al. Combination of dual mTORC1/2 inhibition and immune-checkpoint blockade potentiates anti-tumour immunity. OncoImmunology 7, e1458810 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Carnevalli, L. S. et al. PI3Kα/δ inhibition promotes anti-tumor immunity through direct enhancement of effector CD8+ T-cell activity. J. Immunother. Cancer 6, 158 (2018).

    PubMed  PubMed Central  Google Scholar 

  194. Urak, R. et al. Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy. J. Immunother. Cancer 5, 26 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Zheng, W. et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32, 1157–1167 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Suzuki, J. et al. The tumor suppressor menin prevents effector CD8 T-cell dysfunction by targeting mTORC1-dependent metabolic activation. Nat. Commun. 9, 3296 (2018).

    PubMed  PubMed Central  Google Scholar 

  197. Besson, L. et al. Cutting edge: mTORC1 inhibition in metastatic breast cancer patients negatively affects peripheral NK cell maturation and number. J. Immunol. 206, 2265–2270 (2021).

    CAS  PubMed  Google Scholar 

  198. Crist, M. et al. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J. Immunother. Cancer 10, e005632 (2022).

    PubMed  PubMed Central  Google Scholar 

  199. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, Y. et al. KIR-based inhibitory CARs overcome CAR-NK cell trogocytosis-mediated fratricide and tumor escape. Nat. Med. 28, 2133–2144 (2022).

    PubMed  PubMed Central  Google Scholar 

  201. Hu-Lieskovan, S. et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Sci. Transl. Med. 7, 279ra41 (2015).

    PubMed  PubMed Central  Google Scholar 

  202. Ebert, P. J. R. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44, 609–621 (2016).

    CAS  PubMed  Google Scholar 

  203. Liu, L. et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 21, 1639–1651 (2015).

    CAS  PubMed  Google Scholar 

  204. Verma, V. et al. MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nat. Immunol. 22, 53–66 (2020).

    PubMed  PubMed Central  Google Scholar 

  205. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Klein Geltink, R. I. et al. Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nat. Metab. 2, 703–716 (2020). This study shows that a transient glucose restriction in the culture medium metabolically primes their effector functions and enhances tumour clearance upon in vivo reinfusion.

    CAS  PubMed  Google Scholar 

  207. MacPherson, S. et al. Clinically relevant T cell expansion media activate distinct metabolic programs uncoupled from cellular function. Mol. Ther. Methods Clin. Dev. 24, 380–393 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Hermans, D. et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8+ T cell stemness and antitumor immunity. Proc. Natl Acad. Sci. USA 117, 6047–6055 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Li, C. et al. The transcription factor Bhlhe40 programs mitochondrial regulation of resident CD8+ T cell fitness and functionality. Immunity 51, 491–507.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Lontos, K. et al. Metabolic reprogramming via an engineered PGC-1α improves human chimeric antigen receptor T-cell therapy against solid tumors. J. Immunother. Cancer 11, e006522 (2023).

    PubMed  PubMed Central  Google Scholar 

  211. Dumauthioz, N. et al. Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell Mol. Immunol. 18, 1761–1771 (2021).

    CAS  PubMed  Google Scholar 

  212. Wu, M.-H. et al. Deleting the mitochondrial respiration negative regulator MCJ enhances the efficacy of CD8+ T cell adoptive therapies in pre-clinical studies. Nat. Commun. 15, 4444 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).

    CAS  PubMed  Google Scholar 

  214. Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Frisch, A., Wang, Y., Wang, Y., Lontos, K. & Delgoffe, G. 330 Redirecting glucose usage during in vitro expansion improves the in vivo persistence and function of adoptive T cell therapies for cancer. J. Immunother. Cancer 10, A347 (2022).

    Google Scholar 

  216. Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e9 (2017). This study shows that hypoxia and glucose restriction induce a metabolic rewiring of CD8 T cells towards FAO to preserve functions; mimicking this rewiring using a PPARα agonist improves response to PD1 blockade.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wenes, M. et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metab. 34, 731–746.e9 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Chamoto, K. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc. Natl Acad. Sci. USA 114, E761–E770 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Kondo, T. et al. The NOTCH-FOXM1 axis plays a key role in mitochondrial biogenesis in the induction of human stem cell memory-like CAR-T cells. Cancer Res. 80, 471–483 (2020).

    CAS  PubMed  Google Scholar 

  220. Alizadeh, D. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Shenoy, A. R., Kirschnek, S. & Häcker, G. IL-15 regulates Bcl-2 family members Bim and Mcl-1 through JAK/STAT and PI3K/AKT pathways in T cells. Eur. J. Immunol. 44, 2500–2507 (2014).

    CAS  PubMed  Google Scholar 

  222. Huntington, N. D. et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat. Immunol. 8, 856–863 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Wright, T. et al. Anti-apoptotic MCL-1 promotes long-chain fatty acid oxidation through interaction with ACSL1. Mol. Cell 84, 1338–1353.e8 (2024).

    CAS  PubMed  Google Scholar 

  224. Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Chen, Y. et al. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin. Cancer Res. 25, 2915–2924 (2019).

    CAS  PubMed  Google Scholar 

  226. Krenciute, G. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol. Res. 5, 571–581 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Li, L. et al. Loss of metabolic fitness drives tumor resistance after CAR-NK cell therapy and can be overcome by cytokine engineering. Sci. Adv. 9, eadd6997 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22, 746–756 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Sperling, A. S. et al. Updated phase I study results of PHE885, a T-Charge manufactured BCMA-directed CAR-T cell therapy, for patients (pts) with r/r multiple myeloma (RRMM). J. Clin. Oncol. 41, 8004–8004 (2023).

    Google Scholar 

  230. Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118–128 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Chan, J. D. et al. FOXO1 enhances CAR T cell stemness, metabolic fitness and efficacy. Nature 629, 201–210 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Doan, A. E. et al. FOXO1 is a master regulator of memory programming in CAR T cells. Nature 629, 211–218 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell Metab. 23, 63–76 (2016). This study shows that CD8 T cells with enhanced stemness capacities can be identified in a population and sorted using a common mitochondrial potential measure; these cells have enhanced anti-tumour capacities.

    CAS  PubMed  Google Scholar 

  235. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Terrén, I. et al. Metabolic changes of Interleukin-12/15/18-stimulated human NK cells. Sci. Rep. 11, 6472 (2021).

    PubMed  PubMed Central  Google Scholar 

  237. Dong, H. et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl Acad. Sci. USA 119, e2122379119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Gang, M. et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 136, 2308–2318 (2020).

    PubMed  PubMed Central  Google Scholar 

  239. Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54, 1698–1714.e5 (2021).

    CAS  PubMed  Google Scholar 

  240. Viel, S. et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 9, ra19 (2016).

    PubMed  Google Scholar 

  241. Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Sun, X. et al. Deletion of the mRNA endonuclease Regnase-1 promotes NK cell anti-tumor activity via OCT2-dependent transcription of Ifng. Immunity 57, 1360–1377.e13 (2024).

    CAS  PubMed  Google Scholar 

  245. Mino, T. et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161, 1058–1073 (2015).

    CAS  PubMed  Google Scholar 

  246. Nagahama, Y. et al. Regnase-1 controls colon epithelial regeneration via regulation of mTOR and purine metabolism. Proc. Natl Acad. Sci. USA 115, 11036–11041 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Zheng, W. et al. Regnase-1 suppresses TCF-1+ precursor exhausted T-cell formation to limit CAR–T-cell responses against ALL. Blood 138, 122–135 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Wang, L. et al. Induction of immortal-like and functional CAR T cells by defined factors. J. Exp. Med. 221, e20232368 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Mai, D. et al. Combined disruption of T cell inflammatory regulators Regnase-1 and Roquin-1 enhances antitumor activity of engineered human T cells. Proc. Natl Acad. Sci. USA 120, e2218632120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Ye, L. et al. A genome-scale gain-of-function CRISPR screen in CD8 T cells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metab. 34, 595–614.e14 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Si, X. et al. Mitochondrial isocitrate dehydrogenase impedes CAR T cell function by restraining antioxidant metabolism and histone acetylation. Cell Metab. 36, 176–192.e10 (2024).

    CAS  PubMed  Google Scholar 

  252. Demaria, O. et al. A tetraspecific engager armed with a non-alpha IL-2 variant harnesses natural killer cells against B cell non-Hodgkin lymphoma. Sci. Immunol. 9, eadp3720 2024).

    CAS  PubMed  Google Scholar 

  253. Böttcher, J. P. et al. NK cells stimulate recruitment of cdc1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018).

    PubMed  PubMed Central  Google Scholar 

  254. Walzer, T., Dalod, M., Robbins, S. H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l’union fait la force”. Blood 106, 2252–2258 (2005).

    CAS  PubMed  Google Scholar 

  255. Ferlazzo, G. & Moretta, L. Dendritic cell editing by natural killer cells. Crit. Rev. Oncog. 19, 67–75 (2014).

    PubMed  Google Scholar 

  256. Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394–398 (2012).

    CAS  Google Scholar 

  257. Narni-Mancinelli, E. et al. Tuning of natural killer cell reactivity by NKp46 and helios calibrates T cell responses. Science 335, 344–348 (2012).

    CAS  PubMed  Google Scholar 

  258. Kilian, M. et al. The immunoglobulin superfamily ligand B7H6 subjects T cell responses to NK cell surveillance. Sci. Immunol. 9, eadj7970 (2024).

    CAS  PubMed  Google Scholar 

  259. Buescher, J. M. et al. A roadmap for interpreting 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34, 189–201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Bartman, C. R., TeSlaa, T. & Rabinowitz, J. D. Quantitative flux analysis in mammals. Nat. Metab. 3, 896–908 (2021).

    PubMed  PubMed Central  Google Scholar 

  261. Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. van der Windt, G. J. W., Chang, C.-H. & Pearce, E. L. Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer. Curr. Protoc. Immunol. 113, 3.16B.1–3.16B.14 (2016).

    PubMed  Google Scholar 

  263. Argüello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075.e7 (2020).

    PubMed  PubMed Central  Google Scholar 

  264. Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2020).

    PubMed  PubMed Central  Google Scholar 

  265. Ahl, P. J. et al. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun. Biol. 3, 305 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Sinclair, L. V., Neyens, D., Ramsay, G., Taylor, P. M. & Cantrell, D. A. Single cell analysis of kynurenine and System L amino acid transport in T cells. Nat. Commun. 9, 1981 (2018).

    PubMed  PubMed Central  Google Scholar 

  267. Pelgrom, L. R. et al. QUAS-R: an SLC1A5-mediated glutamine uptake assay with single-cell resolution reveals metabolic heterogeneity with immune populations. Cell Rep. 42, 112828 (2023).

    CAS  PubMed  Google Scholar 

  268. Russo, E. et al. SPICE-Met: profiling and imaging energy metabolism at the single-cell level using a fluorescent reporter mouse. EMBO J. 41, e111528 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhang, Z., Cheng, X., Zhao, Y. & Yang, Y. Lighting up live-cell and in vivo central carbon metabolism with genetically encoded fluorescent sensors. Annu. Rev. Anal. Chem. 13, 293–314 (2020).

    CAS  Google Scholar 

  270. Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B. & Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50, 98–115 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Cosgrove, J. et al. A call for accessible tools to unlock single-cell immunometabolism research. Nat. Metab. 6, 779–782 (2024).

    PubMed  Google Scholar 

Download references

Acknowledgements

The T.W.–A.M. laboratory at the Centre International de Recherche en Infectiologie is supported by funding from the Agence Nationale de la Recherche, the Institut National du Cancer, the Ligue nationale contre le cancer, the Fondation ARC pour la recherche sur le cancer and institutional grants awarded to the Centre International de Recherche en Infectiologie. The E.V. laboratory at CIML is funded by the European Research Council under the European Union’s Horizon (Treatlivmets, grant agreement no. 101118936), MSDAvenir, Innate Pharma, and institutional grants awarded to the CIML (INSERM, CNRS and Aix-Marseille University). E.V. is “Natural Killer Cells” Chair, Fondation Gustave Roussy.

Author information

Authors and Affiliations

Authors

Contributions

A.M., T.W. and S.V. wrote the manuscript with the help of E.V. S.V. designed the figures. All authors contributed to the revision of the manuscript.

Corresponding author

Correspondence to Antoine Marçais.

Ethics declarations

Competing interests

S.V., T.W. and A.M. declare no competing interest. E.V. is a founder and employee of Innate Pharma.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Bruce McCreedy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viel, S., Vivier, E., Walzer, T. et al. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 24, 190–208 (2025). https://doi.org/10.1038/s41573-024-01098-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-024-01098-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer