Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational drug repurposing: approaches, evaluation of in silico resources and case studies

Abstract

Repurposing of existing drugs for new indications has attracted substantial attention owing to its potential to accelerate drug development and reduce costs. Hundreds of computational resources such as databases and predictive platforms have been developed that can be applied for drug repurposing, making it challenging to select the right resource for a specific drug repurposing project. With the aim of helping to address this challenge, here we overview computational approaches to drug repurposing based on a comprehensive survey of available in silico resources using a purpose-built drug repurposing ontology that classifies the resources into hierarchical categories and provides application-specific information. We also present an expert evaluation of selected resources and three drug repurposing case studies implemented within the Horizon Europe REMEDi4ALL project to demonstrate the practical use of the resources. This comprehensive Review with expert evaluations and case studies provides guidelines and recommendations on the best use of various in silico resources for drug repurposing and establishes a basis for a sustainable and extendable drug repurposing web catalogue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The drug repurposing ontology.
Fig. 2: In silico support for target-based and phenotypic drug repurposing.
Fig. 3: Repurposing synergistic drug combinations against SARS-CoV-2.
Fig. 4: Characterizing the simvastatin and valproic acid combination in metastatic pancreatic ductal adenocarcinoma.

Similar content being viewed by others

References

  1. Schuhmacher, A., Hinder, M., Von Stegmann Und Stein, A., Hartl, D. & Gassmann, O. Analysis of pharma R&D productivity – a new perspective needed. Drug Discov. Today 28, 103726 (2023).

    Article  PubMed  Google Scholar 

  2. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  3. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Batta, A., Kalra, B. S. & Khirasaria, R. Trends in FDA drug approvals over last 2 decades: an observational study. J. Fam. Med. Prim. Care 9, 105–114 (2020).

    Article  Google Scholar 

  6. Shaughnessy, A. F. Old drugs, new tricks. BMJ 342, d741 (2011).

    Article  PubMed  Google Scholar 

  7. Pushpakom, S. et al. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18, 41–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, S. C., Sung, B., Prasad, S., Webb, L. J. & Aggarwal, B. B. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol. Sci. 34, 508–517 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Austin, C. P., Mount, B. A. & Colvis, C. M. Envisioning an actionable research agenda to facilitate repurposing of off-patent drugs. Nat. Rev. Drug Discov. 20, 723–724 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Hechtelt Jonker, A. et al. IRDiRC Drug Repurposing Guidebook: making better use of existing drugs to tackle rare diseases. Nat. Rev. Drug Discov. 22, 937–938 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Zappacosta, A. R. Reversal of baldness in patient receiving minoxidil for hypertension. N. Engl. J. Med. 303, 1480–1481 (1980).

    Article  CAS  PubMed  Google Scholar 

  12. Joensuu, H. Treatment of inoperable gastrointestinal stromal tumor (GIST) with Imatinib (Glivec, Gleevec). Med. Klin. Munich Ger. 1983 97, 28–30 (2002).

    Google Scholar 

  13. Langedijk, J., Mantel-Teeuwisse, A. K., Slijkerman, D. S. & Schutjens, M.-H. D. B. Drug repositioning and repurposing: terminology and definitions in literature. Drug Discov. Today 20, 1027–1034 (2015).

    Article  PubMed  Google Scholar 

  14. Boolell, M., Gepi-Attee, S., Gingell, J. C. & Allen, M. J. Sildenafil, a novel effective oral therapy for male erectile dysfunction. Br. J. Urol. 78, 257–261 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Landgren, O. & Iskander, K. Modern multiple myeloma therapy: deep, sustained treatment response and good clinical outcomes. J. Intern. Med. 281, 365–382 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Holderfield, M., Nagel, T. E. & Stuart, D. D. Mechanism and consequences of RAF kinase activation by small-molecule inhibitors. Br. J. Cancer 111, 640–645 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. White, P. T. & Cohen, M. S. The discovery and development of sorafenib for the treatment of thyroid cancer. Expert Opin. Drug Discov. 10, 427–439 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Agrawal, K., Das, V., Vyas, P. & Hajdúch, M. Nucleosidic DNA demethylating epigenetic drugs - a comprehensive review from discovery to clinic. Pharmacol. Ther. 188, 45–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 384, 693–704 (2021).

    Article  Google Scholar 

  21. Beigel, J. H. et al. Remdesivir for the treatment of COVID-19 - final report. N. Engl. J. Med. 383, 1813–1826 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Marconi, V. C. et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir. Med. 9, 1407–1418 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mullard, A. FDA approves first-in-class NK3 receptor antagonist for hot flushes. Nat. Rev. Drug Discov. 22, 526 (2023).

    PubMed  Google Scholar 

  24. Sahragardjoonegani, B., Beall, R. F., Kesselheim, A. S. & Hollis, A. Repurposing existing drugs for new uses: a cohort study of the frequency of FDA-granted new indication exclusivities since 1997. J. Pharm. Policy Pract. 14, 3 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Oprea, T. I. & Mestres, J. Drug repurposing: far beyond new targets for old drugs. AAPS J. 14, 759–763 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schipper, L. J., Zeverijn, L. J., Garnett, M. J. & Voest, E. E. Can drug repurposing accelerate precision oncology? Cancer Discov. 12, 1634–1641 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Verbaanderd, C., Meheus, L., Huys, I. & Pantziarka, P. Repurposing drugs in oncology: next steps. Trends Cancer 3, 543–546 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Ji, X., Freudenberg, J. M. & Agarwal, P. Integrating biological networks for drug target prediction and prioritization. Methods Mol. Biol. 1903, 203–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 11, eaaw8412 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wu, Y. et al. Discovery of noncancer drug effects on survival in electronic health records of patients with cancer: a new paradigm for drug repurposing. JCO Clin. Cancer Inform. 3, 1–9 (2019).

    Article  PubMed  Google Scholar 

  31. Corsello, S. M. et al. The drug repurposing hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Shameer, K. et al. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief. Bioinform. 19, 656–678 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Sam, E. & Athri, P. Web-based drug repurposing tools: a survey. Brief. Bioinform. 20, 299–316 (2019).

    Article  PubMed  Google Scholar 

  34. Song, C. M., Lim, S. J. & Tong, J. C. Recent advances in computer-aided drug design. Brief. Bioinform. 10, 579–591 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, X., Wang, Y., Byrne, R., Schneider, G. & Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119, 10520–10594 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Tanoli, Z. et al. Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Brief. Bioinform. 22, 1656–1678 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Tanoli, Z., Vähä-Koskela, M. & Aittokallio, T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin. Drug Discov. 16, 977–989 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Dudley, J. T., Deshpande, T. & Butte, A. J. Exploiting drug–disease relationships for computational drug repositioning. Brief. Bioinform. 12, 303–311 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jin, G. & Wong, S. T. C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 19, 637–644 (2014).

    Article  PubMed  Google Scholar 

  40. Li, J. et al. A survey of current trends in computational drug repositioning. Brief. Bioinform. 17, 2–12 (2016).

    Article  PubMed  Google Scholar 

  41. Carrasco-Ramiro, F., Peiró-Pastor, R. & Aguado, B. Human genomics projects and precision medicine. Gene Ther. 24, 551–561 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 317–332 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

    Article  CAS  Google Scholar 

  44. Reay, W. R. & Cairns, M. J. Advancing the use of genome-wide association studies for drug repurposing. Nat. Rev. Genet. 22, 658–671 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Ochoa, D. et al. Human genetics evidence supports two-thirds of the 2021 FDA-approved drugs. Nat. Rev. Drug Discov. 21, 551–551 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Rusina, P. V. et al. Genetic support for FDA-approved drugs over the past decade. Nat. Rev. Drug Discov. 22, 864–864 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Razuvayevskaya, O., Lopez, I., Dunham, I. & Ochoa, D. Genetic factors associated with reasons for clinical trial stoppage. Nat. Genet. 56, 1862–1867 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Solomon, B. D., Nguyen, A.-D., Bear, K. A. & Wolfsberg, T. G. Clinical genomic database. Proc. Natl Acad. Sci. USA 110, 9851–9855 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. DiStefano, M. T. et al. The Gene Curation Coalition: a global effort to harmonize gene–disease evidence resources. Genet. Med. 24, 1732–1742 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wang, Q. et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597, 527–532 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl. Med. 9, eaag1166 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  54. Pinero, J. et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, bav028 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  55. Bamford, S. et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br. J. Cancer 91, 355–358 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Sondka, Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 52, D1210–D1217 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. McDonagh, E. M. et al. Human genetics and genomics for drug target identification and prioritization: open targets’ perspective. Annu. Rev. Biomed. Data Sci. 7, 59–81 (2024).

    Article  PubMed  Google Scholar 

  58. Wu, P. et al. Integrating gene expression and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension. Nat. Commun. 13, 46 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Shuey, M. M. et al. A genetically supported drug repurposing pipeline for diabetes treatment using electronic health records. eBioMedicine 94, 104674 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Fernández-Torras, A., Duran-Frigola, M., Bertoni, M., Locatelli, M. & Aloy, P. Integrating and formatting biomedical data as pre-calculated knowledge graph embeddings in the Bioteque. Nat. Commun. 13, 5304 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  61. Gordillo-Marañón, M. et al. Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics. Nat. Commun. 12, 6120 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  62. Ren, Y. et al. iUMRG: multi-layered network-guided propagation modeling for the inference of susceptibility genes and potential drugs against uveal melanoma. NPJ Syst. Biol. Appl. 8, 18 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Kharkar, P. S., Warrier, S. & Gaud, R. S. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med. Chem. 6, 333–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Pinzi, L. & Rastelli, G. Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci. 20, 4331 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lyu, J., Irwin, J. J. & Shoichet, B. K. Modeling the expansion of virtual screening libraries. Nat. Chem. Biol. 19, 712–718 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kim, S. S., Aprahamian, M. L. & Lindert, S. Improving inverse docking target identification with Z-score selection. Chem. Biol. Drug Des. 93, 1105–1116 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Dotolo, S., Marabotti, A., Facchiano, A. & Tagliaferri, R. A review on drug repurposing applicable to COVID-19. Brief. Bioinform. 22, 726–741 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Macip, G. et al. Haste makes waste: a critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Med. Res. Rev. 42, 744–769 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Pence, H. E. & Williams, A. ChemSpider: an online chemical information resource. J. Chem. Educ. 87, 1123–1124 (2010).

    Article  CAS  Google Scholar 

  70. Irwin, J. J. et al. ZINC20—a free ultralarge-scale chemical database for ligand discovery. J. Chem. Inf. Model. 60, 6065–6073 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 636, E4 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Xu, X., Huang, M. & Zou, X. Docking-based inverse virtual screening: methods, applications, and challenges. Biophys. Rep. 4, 1–16 (2018).

    Article  PubMed  Google Scholar 

  75. Gimeno, A. et al. The light and dark sides of virtual screening: what is there to know? Int. J. Mol. Sci. 20, 1375 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Friesner, R. A. et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Tran-Nguyen, V.-K., Junaid, M., Simeon, S. & Ballester, P. J. A practical guide to machine-learning scoring for structure-based virtual screening. Nat. Protoc. 18, 3460–3511 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Seeliger, D. & De Groot, B. L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 24, 417–422 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Rahman, N. et al. Drug repurposing for the identification of new Bcl-2 inhibitors: in vitro, STD-NMR, molecular docking, and dynamic simulation studies. Life Sci. 334, 122181 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Ajiboye, J. et al. Identification of potent and orally efficacious phosphodiesterase inhibitors in Cryptosporidium parvum-infected immunocompromised male mice. Nat. Commun. 15, 8272 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Kinnings, S. L. et al. Drug discovery using chemical systems biology: repositioning the safe medicine comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput. Biol. 5, e1000423 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  85. Salentin, S. et al. From malaria to cancer: computational drug repositioning of amodiaquine using PLIP interaction patterns. Sci. Rep. 7, 11401 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  86. Beccari, A., Dionigi, L., Nicastri, E., Manelfi, C. & Gavioli, E. in Exscalate4CoV (eds Coletti, S. & Bernardi, G.) 19–26 (Springer, 2023); https://doi.org/10.1007/978-3-031-30691-4_3.

  87. Carpenter, K. A. & Altman, R. B. Databases of ligand-binding pockets and protein-ligand interactions. Comput. Struct. Biotechnol. J. 23, 1320–1338 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Kim, S. et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47, D1102–D1109 (2019).

    Article  PubMed  Google Scholar 

  89. Wang, Y. et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37, W623–W633 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Zdrazil, B. et al. The ChEMBL database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 52, D1180–D1192 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Omer, S. E. et al. Drug repurposing for SARS-CoV-2 main protease: molecular docking and molecular dynamics investigations. Biochem. Biophys. Rep. 29, 101225 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Mullins, J. G. L. Drug repurposing in silico screening platforms. Biochem. Soc. Trans. 50, 747–758 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Padalino, G. et al. Using ChEMBL to complement schistosome drug discovery. Pharmaceutics 15, 1359 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Milacic, M. et al. The Reactome pathway knowledgebase 2024. Nucleic Acids Res. 52, D672–D678 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Han, M., Jung, S. & Lee, D. Drug repurposing for Parkinson’s disease by biological pathway based edge-weighted network proximity analysis. Sci. Rep. 14, 21258 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Xu, Y., Kong, J. & Hu, P. Computational drug repurposing for Alzheimer’s disease using risk genes from GWAS and single-cell RNA sequencing studies. Front. Pharmacol. 12, 617537 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Szklarczyk, D. et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Hermjakob, H. IntAct: an open source molecular interaction database. Nucleic Acids Res. 32, 452D–455D (2004).

    Article  Google Scholar 

  101. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Afief, A. R. et al. Integration of genomic variants and bioinformatic-based approach to drive drug repurposing for multiple sclerosis. Biochem. Biophys. Rep. 32, 101337 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Doshi, M. B. et al. Disruption of sugar nucleotide clearance is a therapeutic vulnerability of cancer cells. Nature 623, 625–632 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Bondeson, D. P. et al. Phosphate dysregulation via the XPR1–KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer. Nat. Cancer 3, 681–695 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Bi, J. et al. Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Rep. 37, 109957 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Vazquez, F. & Sellers, W. R. Are CRISPR screens providing the next generation of therapeutic targets? Cancer Res. 81, 5806–5809 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Tian, R. et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat. Neurosci. 24, 1020–1034 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Roberts, M. A. et al. Parallel CRISPR-Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation. Dev. Cell 58, 1782–1800.e10 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Corsello, S. M. et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Baranyi, M., Buday, L. & Hegedűs, B. K-Ras prenylation as a potential anticancer target. Cancer Metastasis Rev. 39, 1127–1141 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Yu, C. et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat. Biotechnol. 34, 419–423 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Rees, M. G. et al. Systematic identification of biomarker-driven drug combinations to overcome resistance. Nat. Chem. Biol. 18, 615–624 (2022).

    Article  CAS  PubMed  Google Scholar 

  114. Payton, M. et al. Small-molecule inhibition of kinesin KIF18A reveals a mitotic vulnerability enriched in chromosomally unstable cancers. Nat. Cancer 5, 66–84 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  115. Huang, R. et al. The NCATS pharmaceutical collection: a 10-year update. Drug Discov. Today 24, 2341–2349 (2019).

    Article  PubMed  Google Scholar 

  116. Caffall, Z. F. et al. The HIV protease inhibitor, ritonavir, corrects diverse brain phenotypes across development in mouse model of DYT-TOR1A dystonia. Sci. Transl. Med. 13, eabd3904 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Ianevski, A., Giri, A. K. & Aittokallio, T. SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples. Nucleic Acids Res. 50, W739–W743 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Larsson, P. et al. Repurposing proteasome inhibitors for improved treatment of triple-negative breast cancer. Cell Death Discov. 10, 57 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Duarte, D., Rêma, A., Amorim, I. & Vale, N. Drug combinations: a new strategy to extend drug repurposing and epithelial-mesenchymal transition in breast and colon cancer cells. Biomolecules 12, 190 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452.e17 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Lim, G. et al. Identification of new target proteins of a Urotensin-II receptor antagonist using transcriptome-based drug repositioning approach. Sci. Rep. 11, 17138 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Paranjpe, M. D., Taubes, A. & Sirota, M. Insights into computational drug repurposing for neurodegenerative disease. Trends Pharmacol. Sci. 40, 565–576 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Koudijs, K. K. M., Terwisscha Van Scheltinga, A. G. T., Böhringer, S., Schimmel, K. J. M. & Guchelaar, H.-J. Transcriptome signature reversion as a method to reposition drugs against cancer for precision oncology. Cancer J. 25, 116–120 (2019).

    Article  PubMed  Google Scholar 

  125. Le, B. L. et al. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci. Rep. 11, 12310 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Pauls, E. et al. Identification and drug-induced reversion of molecular signatures of Alzheimer’s disease onset and progression in AppNL-G-F, AppNL-F, and 3xTg-AD mouse models. Genome Med. 13, 168 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  127. Wilk, E. J. et al. Prioritized polycystic kidney disease drug targets and repurposing candidates from pre-cystic and cystic mouse Pkd2 model gene expression reversion. Mol. Med. 29, 67 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Wang, X. et al. LINCS dataset-based repositioning of rosiglitazone as a potential anti-human adenovirus drug. Antivir. Res. 179, 104789 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Osorio, D., Tekpli, X., Kristensen, V. N. & Kuijjer, M. L. Drug combination prediction for cancer treatment using disease-specific drug response profiles and single-cell transcriptional signatures. Preprint at bioRxiv https://doi.org/10.1101/2022.03.31.486602 (2024).

  130. Li, X. et al. The anti-leprosy drug clofazimine reduces polyQ toxicity through activation of PPARγ. eBioMedicine 103, 105124 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Carvalho, D. M. et al. Repurposing vandetanib plus everolimus for the treatment of ACVR1-mutant diffuse intrinsic pontine glioma. Cancer Discov. 12, 416–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Pinto, J. P., Machado, R. S. R., Xavier, J. M. & Futschik, M. E. Targeting molecular networks for drug research. Front. Genet. 5, 160 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  133. Avram, S. et al. DrugCentral 2023 extends human clinical data and integrates veterinary drugs. Nucleic Acids Res. 51, D1276–D1287 (2023).

    Article  CAS  PubMed  Google Scholar 

  134. Davis, A. P. et al. Comparative Toxicogenomics Database (CTD): update 2023. Nucleic Acids Res. 51, D1257–D1262 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, Y. et al. DrugRepo: a novel approach to repurposing drugs based on chemical and genomic features. Sci. Rep. 12, 21116 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Kuhn, M., Letunic, I., Jensen, L. J. & Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Tanaka, Y. et al. OnSIDES (ON-label SIDE effectS resource) database: extracting adverse drug events from drug labels using natural language processing models. Preprint at medRxiv https://doi.org/10.1101/2024.03.22.24304724 (2024).

  138. Tatonetti, N. P., Ye, P. P., Daneshjou, R. & Altman, R. B. Data-driven prediction of drug effects and interactions. Sci. Transl. Med. 4, 125ra131 (2012).

    Article  Google Scholar 

  139. Galeano, D., Li, S., Gerstein, M. & Paccanaro, A. Predicting the frequencies of drug side effects. Nat. Commun. 11, 4575 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Galeano, D. & Paccanaro, A. Machine learning prediction of side effects for drugs in clinical trials. Cell Rep. Methods 2, 100358 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Knox, C. et al. DrugBank 6.0: the drugbank knowledgebase for 2024. Nucleic Acids Res. 52, D1265–D1275 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. Sadegh, S. et al. Network medicine for disease module identification and drug repurposing with the NeDRex platform. Nat. Commun. 12, 6848 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Williams, A. J. et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J. Cheminformatics 9, 61 (2017).

    Article  Google Scholar 

  144. Sutherland, J. J., Yonchev, D., Fekete, A. & Urban, L. A preclinical secondary pharmacology resource illuminates target-adverse drug reaction associations of marketed drugs. Nat. Commun. 14, 4323 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Nagaraj, A. B. et al. Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene 37, 403–414 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Lin, C.-Y. et al. Membrane protein-regulated networks across human cancers. Nat. Commun. 10, 3131 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  147. Xu, C. et al. Accurate drug repositioning through non-tissue-specific core signatures from cancer transcriptomes. Cell Rep. 25, 523–535.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. De Bruijn, I. et al. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cbioportal. Cancer Res. 83, 3861–3867 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  149. Variant Interpretation for Cancer Consortium. A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nat. Genet. 52, 448–457 (2020).

    Article  PubMed Central  Google Scholar 

  150. Nikolski, M. et al. Roadmap for a European cancer data management and precision medicine infrastructure. Nat. Cancer 5, 367–372 (2024).

    Article  PubMed  Google Scholar 

  151. Ganna, A. et al. The European Health Data Space can be a boost for research beyond borders. Nat. Med. 30, 3053–3056 (2024).

    Article  CAS  PubMed  Google Scholar 

  152. Siggaard, T. et al. Disease trajectory browser for exploring temporal, population-wide disease progression patterns in 7.2 million Danish patients. Nat. Commun. 11, 4952 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Rodriguez, S. et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat. Commun. 12, 1033 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Kc, G. B. et al. A machine learning platform to estimate anti-SARS-CoV-2 activities. Nat. Mach. Intell. 3, 527–535 (2021).

    Article  Google Scholar 

  155. Fernández-Torras, A., Comajuncosa-Creus, A., Duran-Frigola, M. & Aloy, P. Connecting chemistry and biology through molecular descriptors. Curr. Opin. Chem. Biol. 66, 102090 (2022).

    Article  PubMed  Google Scholar 

  156. Bender, A. et al. Evaluation guidelines for machine learning tools in the chemical sciences. Nat. Rev. Chem. 6, 428–442 (2022).

    Article  PubMed  Google Scholar 

  157. Huang, K. et al. Artificial intelligence foundation for therapeutic science. Nat. Chem. Biol. 18, 1033–1036 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Sharma, B. et al. Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Sci. Rep. 13, 4908 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  161. Pham, T.-H., Qiu, Y., Zeng, J., Xie, L. & Zhang, P. A deep learning framework for high-throughput mechanism-driven phenotype compound screening and its application to COVID-19 drug repurposing. Nat. Mach. Intell. 3, 247–257 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  162. Huang, K. et al. A foundation model for clinician-centered drug repurposing. Nat. Med. 30, 3601–3613 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Xu, J. et al. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease. Cell Rep. 41, 111717 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Kanemaru, K. et al. Spatially resolved multiomics of human cardiac niches. Nature 619, 801–810 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Ianevski, A. et al. Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones. Nat. Commun. 15, 8579 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. White, J. M. et al. Drug combinations as a first line of defense against coronaviruses and other emerging viruses. mBio 12, e0334721 (2021).

    Article  PubMed  Google Scholar 

  167. Zagidullin, B. et al. DrugComb: an integrative cancer drug combination data portal. Nucleic Acids Res. 47, W43–W51 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Asano, T. et al. In silico drug screening approach using L1000-based connectivity map and its application to COVID-19. Front. Cardiovasc. Med. 9, 842641 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Bobrowski, T. et al. Synergistic and antagonistic drug combinations against SARS-CoV-2. Mol. Ther. 29, 873–885 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Liu, Y. & Zhao, H. Predicting synergistic effects between compounds through their structural similarity and effects on transcriptomes. Bioinformatics 32, 3782–3789 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Bento, A. P. et al. An open source chemical structure curation pipeline using RDKit. J. Cheminformatics 12, 51 (2020).

    Article  CAS  Google Scholar 

  172. Jin, W. et al. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl Acad. Sci. USA 118, e2105070118 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  173. Gaulton, A. et al. The ChEMBL database in 2017. Nucleic Acids Res. 45, D945–D954 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Tanoli, Z. et al. Drug Target Commons 2.0: a community platform for systematic analysis of drug–target interaction profiles. Database 2018, 1–13 (2018).

    Article  PubMed  Google Scholar 

  175. Gilson, M. K. et al. BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 44, D1045–D1053 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Alexander, S. P. et al. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: overview. Br. J. Pharmacol. 174, S1–S16 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Wishart, D. S. et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Wagner, A. H. et al. DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res. 44, D1036–D1044 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. Allison, M. NCATS launches drug repurposing program. Nat. Biotechnol. 30, 571–572 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Iannelli, F. et al. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. J. Exp. Clin. Cancer Res. 39, 213 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Roca, M. S. et al. Abstract 1840: repurposing of valproic acid and simvastatin in pancreatic cancer: in vitro and in vivo synergistic antitumor interaction and sensitization to gemcitabine/nab-paclitaxel via inhibition of TGFβ-EMT signaling pathway. Cancer Res. 82 (Suppl. 12), 1840 (2022).

    Article  Google Scholar 

  182. Duran-Frigola, M. et al. Extending the small-molecule similarity principle to all levels of biology with the chemical checker. Nat. Biotechnol. 38, 1087–1096 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Zhou, Y. et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 50, D1398–D1407 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, N., Liu, Y. & Jeong, H. Drug-drug interaction potentials of tyrosine kinase inhibitors via inhibition of UDP-glucuronosyltransferases. Sci. Rep. 5, 17778 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  185. Goon, C. P. et al. UGT1A1 mediated drug interactions and its clinical relevance. Curr. Drug Metab. 17, 100–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Marques, S. C. & Ikediobi, O. N. The clinical application of UGT1A1 pharmacogenetic testing: gene-environment interactions. Hum. Genomics 4, 238–249 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Zhou, Y. et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6, 14 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Cheng, F., Kovács, I. A. & Barabási, A.-L. Network-based prediction of drug combinations. Nat. Commun. 10, 1197 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  189. Sakaeda, T., Tamon, A., Kadoyama, K. & Okuno, Y. Data mining of the public version of the FDA adverse event reporting system. Int. J. Med. Sci. 10, 796–803 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  190. Liu, J., Lee, J., Salazar Hernandez, M. A., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. Aittokallio, T. What are the current challenges for machine learning in drug discovery and repurposing? Expert Opin. Drug Discov. 17, 423–425 (2022).

    Article  CAS  PubMed  Google Scholar 

  192. Maier, A. et al. Drugst.One — a plug-and-play solution for online systems medicine and network-based drug repurposing. Nucleic Acids Res. 52, W481–W488 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  193. Ianevski, A. et al. RepurposeDrugs: an interactive web-portal and predictive platform for repurposing mono- and combination therapies. Brief. Bioinform. 25, bbae328 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Wynants, L. et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 369, m1328 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  195. Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

    Article  Google Scholar 

  196. Sheridan, C. Can single-cell biology realize the promise of precision medicine? Nat. Biotechnol. 42, 159–162 (2024).

    Article  CAS  PubMed  Google Scholar 

  197. Pemovska, T. et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature 519, 102–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Lee, S. et al. High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity. Nat. Med. 30, 3196–3208 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Kornauth, C. et al. Functional precision medicine provides clinical benefit in advanced aggressive hematologic cancers and identifies exceptional responders. Cancer Discov. 12, 372–387 (2022).

    Article  PubMed  Google Scholar 

  200. Letai, A., Bhola, P. & Welm, A. L. Functional precision oncology: testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 40, 26–35 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. Dolgin, E. The future of precision cancer therapy might be to try everything. Nature 626, 470–473 (2024).

    Article  CAS  PubMed  Google Scholar 

  202. Ashburn, T. T. & Thor, K. B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Parvathaneni, V., Kulkarni, N. S., Muth, A. & Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today 24, 2076–2085 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Oprea, T. I. & Overington, J. P. Computational and practical aspects of drug repositioning. Assay. Drug Dev. Technol. 13, 299–306 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  205. Eastman, R. T. et al. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent. Sci. 6, 672–683 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  206. Painter, G. R., Natchus, M. G., Cohen, O., Holman, W. & Painter, W. P. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19. Curr. Opin. Virol. 50, 17–22 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  207. Huang, R. et al. Biological activity-based modeling identifies antiviral leads against SARS-CoV-2. Nat. Biotechnol. 39, 747–753 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  208. Wang, L. et al. Susceptibility to SARS-CoV-2 of cell lines and substrates commonly used to diagnose and isolate influenza and other viruses. Emerg. Infect. Dis. 27, 1380–1392 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  209. Morselli Gysi, D. et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl Acad. Sci. USA 118, e2025581118 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  210. Galindez, G. et al. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat. Comput. Sci. 1, 33–41 (2021).

    Article  PubMed  Google Scholar 

  211. Sanchez-Burgos, L., Gómez-López, G., Al-Shahrour, F. & Fernandez-Capetillo, O. An in silico analysis identifies drugs potentially modulating the cytokine storm triggered by SARS-CoV-2 infection. Sci. Rep. 12, 1626 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  212. Lobo, S. M. et al. Efficacy of oral 20-hydroxyecdysone (BIO101), a MAS receptor activator, in adults with severe COVID-19 (COVA): a randomized, placebo-controlled, phase 2/3 trial. eClinicalMedicine 68, 102383 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  213. Brimacombe, K. R. et al. An OpenData portal to share COVID-19 drug repurposing data in real time. Preprint at bioRxiv https://doi.org/10.1101/2020.06.04.135046 (2020).

Download references

Acknowledgements

The authors thank authors of the resources who have made their data and tools publicly available. They thank J. Tang for his valuable suggestions when conducting the survey. This work was supported by the REMEDi4ALL project, which has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement No. 101057442. Views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union, who cannot be held responsible for them. Other funding sources include the Research Council of Finland (grant 351507 to Z.T. and grants 345803 and 340141 to T.A.) and Cancer Society of Finland (grants 4709137 and 4706788 to T.A.). For questions about the web catalogue, resource annotations, expert survey or the user guide, please contact Z.T. (ziaurrehman.tanoli@helsinki.fi).

Author information

Authors and Affiliations

Authors

Contributions

Development of the repurposing ontology: Z.T. Implementation of the online catalogue website: A.K., Z.T., T.A. Data analysis: Z.T, A.F.-T., U.O.Ö., L.F., Y.G., R.G.-S., J.C.-P., T.A. Demonstrator use cases: Z.T., A.F.-T., A.B., O.S., P.G., D.C.L., Y.G., P.Ö., J.Q., J.C.-P., M.F., L.F., B.S.-L., M.T., A.K., T.A. User guide for the top-15 resources: Z.T., K.M.N., U.O.Ö., L.F., M.V.-K., U.S., M.M., A.I., T.A. Annotations of the resources in the web catalogue: Z.T., M.V.-K., U.S., M.F., J.Q., T.A. Evaluation of the resources: Z.T., A.F.-T., M.V.-K., M.d.K., A.I., Y.G., P.G., O.S., U.S., H.L., M.F., L.F., J.Q., J.C.-P., T.A., M.M., K.W., H.X., A.E.U., B.S.-L., W.S., F.B., E.B., S.P., J.S., A.P., M.J., S.C., I.G.G., T.C., A.R.B. Leading the survey implementation: Z.T. and T.A. Figures: Z.T., A.F.-T., U.O.Ö., K.M.N. Drafting the manuscript: Z.T., A.F.-T., M.F., J.Q., J.C.-P., M.d.K., K.W., T.A. All the authors read and approved the final version.

Corresponding authors

Correspondence to Ziaurrehman Tanoli or Tero Aittokallio.

Ethics declarations

Competing interests

A.F.-T., I.G.G., R.G.-S., J.Q. and J.M. are employees of Chemotargets, a partner of the REMEDi4ALL project. ClarityVista is a software platform developed by Chemotargets. J.C.-P. and O.S. declare ownership in Phenaros Pharmaceuticals AB. T.C. and A.R.B. are employees of Dompé farmaceutici SpA, a partner of the REMEDi4ALL project. All the other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks David Ochoa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ChatGPT-4: https://openai.com/index/gpt-4/

ClinGen: https://clinicalgenome.org

ClinicalTrials: clinicaltrials.gov

Cure ID: https://cure.ncats.io/home

Drug Interaction Checker: https://go.drugbank.com/drug-interaction-checker

Drug Repurposing Central: https://drugrepocentral.scienceopen.com/collection/fee38437-df5d-4641-bd7f-b1b61882cd75

FinnGen: https://www.finngen.fi/en

Genebass: https://app.genebass.org

GTEx: https://gtexportal.org/home/

Human Cell Atlas: https://www.humancellatlas.org

In-silico Drug Repurposing Catalogue - REMEDi4ALL: https://remedi4all.org/in-silico-drug-repurposing-catalogue/

Orphanet: https://www.orpha.net

PheWAS Portal: https://azphewas.com

PubMed: https://pubmed.ncbi.nlm.nih.gov/

REMEDi4ALL project: https://remedi4all.org/

Sage Bionetworks: https://sagebionetworks.org

UK Biobank: https://www.ukbiobank.ac.uk

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanoli, Z., Fernández-Torras, A., Özcan, U.O. et al. Computational drug repurposing: approaches, evaluation of in silico resources and case studies. Nat Rev Drug Discov 24, 521–542 (2025). https://doi.org/10.1038/s41573-025-01164-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-025-01164-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research