Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting neutrophils for cancer therapy

Abstract

Neutrophils are among the most abundant immune cell types in the tumour microenvironment and have been associated with poor outcomes across multiple cancer types. Yet despite mounting evidence of their role in tumour progression, therapeutic strategies targeting neutrophils have only recently gained attention and remain limited in scope. This is probably due to the increasing number of distinct neutrophil subtypes identified in cancer and the limited understanding of the mechanisms by which these subsets influence tumour progression and immune evasion. In this Review, we discuss the spectrum of neutrophil subtypes — including those with antitumour activity — and their potential to polarize towards tumour-suppressive phenotypes. We explore the molecular pathways and effector functions by which neutrophils modulate cancer progression, with an emphasis on identifying tractable therapeutic targets. Finally, we examine emerging clinical trials aimed at modulating neutrophil lineages and consider their implications for patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neutrophil development.
Fig. 2: Neutrophil phenotypes in cancer.
Fig. 3: Therapeutic strategies to target neutrophils.

Similar content being viewed by others

References

  1. Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Hedrick, C. C. & Malanchi, I. Neutrophils in cancer: heterogeneous and multifaceted. Nat. Rev. Immunol. 22, 173–187 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Quail, D. F. et al. Neutrophil phenotypes and functions in cancer: a consensus statement. J. Exp. Med. 219, e20220011 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Jaillon, S. et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat. Rev. Cancer 20, 485–503 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e1218 (2020). This seminal article reported that tissues can co-opt neutrophil fates to serve tissue specific roles and thus demonstrated an unprecedented level of neutrophil heterogeneity.

    Article  CAS  PubMed  Google Scholar 

  7. Xie, X. et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat. Immunol. 21, 1119–1133 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Grieshaber-Bouyer, R. et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 12, 2856 (2021). This article provides an original description of neutrotime, a novel classification schema based on of a single, chronologically ordered neutrophil developmental spectrum.

    Article  CAS  PubMed  Google Scholar 

  9. Hackert, N. S. et al. Human and mouse neutrophils share core transcriptional programs in both homeostatic and inflamed contexts. Nat. Commun. 14, 8133 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. 209, 772–782 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Montaldo, E. et al. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat. Immunol. 23, 1470–1483 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Matlung, H. L. et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 23, 3946–3959.e3946 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464.e1420 (2023). This was the first report to show that neutrophils could be therapeutically polarized into antitumour phenotypes using immunotherapeutic approaches.

    Article  CAS  PubMed  Google Scholar 

  14. Kwok, I. et al. Combinatorial single-cell analyses of granulocyte–monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53, 303–318.e305 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, Y. P. et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24, 2329–2341.e2328 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e368 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Calzetti, F. et al. CD66bCD64dimCD115 cells in the human bone marrow represent neutrophil-committed progenitors. Nat. Immunol. 23, 679–691 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Palomino-Segura, M., Sicilia, J., Ballesteros, I. & Hidalgo, A. Strategies of neutrophil diversification. Nat. Immunol. 24, 575–584 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017). This study demonstrates that adenocarcinomas induce bone marrow stromal cells to supply a unique subset of SiglecF-high tumour-promoting neutrophils to sites of tumorigenesis.

    Article  PubMed  Google Scholar 

  20. Pfirschke, C. et al. Tumor-promoting Ly-6G+ SiglecFhigh cells are mature and long-lived neutrophils. Cell Rep. 32, 108164 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Yvan-Charvet, L. & Ng, L. G. Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol. 40, 598–612 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Lawrence, S. M., Corriden, R. & Nizet, V. How neutrophils meet their end. Trends Immunol. 41, 531–544 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, D. et al. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury. Sci. Rep. 6, 20545 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Hind, L. E. & Huttenlocher, A. Neutrophil reverse migration and a chemokinetic resolution. Dev. Cell 47, 404–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Brostjan, C. & Oehler, R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov. 6, 26 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Greenlee-Wacker, M. C. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol. Rev. 273, 357–370 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Adrover, J. M., McDowell, S. A. C., He, X. Y., Quail, D. F. & Egeblad, M. NETworking with cancer: the bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 41, 505–526 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Coffelt, S. B. et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Kwak, J. W. et al. CXCR1/2 antagonism inhibits neutrophil function and not recrtuitment in cancer. Oncoimmunology (in the press).

  34. Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Karin, M. Inflammation and cancer: the long reach of Ras. Nat. Med. 11, 20–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Ji, H. et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 25, 2105–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Chang, S. H. et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc. Natl Acad. Sci. USA 111, 5664–5669 (2014). This study demonstrates that TH17-mediated immunity enhances recruitment of pro-tumour neutrophils to sites of tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  39. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Shaul, M. E. & Fridlender, Z. G. Tumour-associated neutrophils in patients with cancer. Nat. Rev. Clin. Oncol. 16, 601–620 (2019).

    Article  PubMed  Google Scholar 

  41. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015). This article provides a comprehensive assessment of immune cell content across 30 cancer types showing that neutrophil content predicted mortality greater than any other immune population.

    Article  CAS  PubMed  Google Scholar 

  42. Berry, R. S. et al. High levels of tumor-associated neutrophils are associated with improved overall survival in patients with stage II colorectal cancer. PLoS ONE 12, e0188799 (2017).

    Article  PubMed  Google Scholar 

  43. Galdiero, M. R. et al. Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Int. J. Cancer 139, 446–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Droeser, R. A. et al. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PLoS ONE 8, e64814 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Kuang, D. M. et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J. Hepatol. 54, 948–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Jensen, H. K. et al. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J. Clin. Oncol. 27, 4709–4717 (2009).

    Article  PubMed  Google Scholar 

  47. Carus, A., Ladekarl, M., Hager, H., Nedergaard, B. S. & Donskov, F. Tumour-associated CD66b+ neutrophil count is an independent prognostic factor for recurrence in localised cervical cancer. Br. J. Cancer 108, 2116–2122 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Wislez, M. et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res. 63, 1405–1412 (2003).

    CAS  PubMed  Google Scholar 

  49. Bellocq, A. et al. Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am. J. Pathol. 152, 83–92 (1998).

    CAS  PubMed  Google Scholar 

  50. Jensen, T. O. et al. Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer 118, 2476–2485 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Shen, M. et al. Tumor-associated neutrophils as a new prognostic factor in cancer: a systematic review and meta-analysis. PLoS ONE 9, e98259 (2014).

    Article  PubMed  Google Scholar 

  52. Yamashita, J., Ogawa, M. & Shirakusa, T. Free-form neutrophil elastase is an independent marker predicting recurrence in primary breast cancer. J. Leukoc. Biol. 57, 375–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Kargl, J. et al. Neutrophils dominate the immune cell composition in non-small cell lung cancer. Nat. Commun. 8, 14381 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Eruslanov, E. B. et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J. Clin. Invest. 124, 5466–5480 (2014).

    Article  PubMed  Google Scholar 

  55. Rakaee, M. et al. Prognostic effect of intratumoral neutrophils across histological subtypes of non-small cell lung cancer. Oncotarget 7, 72184–72196 (2016).

    Article  PubMed  Google Scholar 

  56. Ponzetta, A. et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell 178, 346–360.e324 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Carnevale, S. et al. Neutrophils mediate protection against colitis and carcinogenesis by controlling bacterial invasion and IL22 production by γδ T cells. Cancer Immunol. Res. 12, 413–426 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Lizotte, P. H. et al. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes. JCI Insight 1, e89014 (2016).

    Article  PubMed  Google Scholar 

  59. Ilie, M. et al. Predictive clinical outcome of the intratumoral CD66b-positive neutrophil-to-CD8-positive T-cell ratio in patients with resectable nonsmall cell lung cancer. Cancer 118, 1726–1737 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Kargl, J. et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4, e130850 (2019). This is the first article to report that neutrophil-infiltrated cancers do not respond to immune checkpoint inhibitor therapy.

    Article  PubMed  Google Scholar 

  61. Benguigui, M. et al. Interferon-stimulated neutrophils as a predictor of immunotherapy response. Cancer Cell 42, 253–265.e212 (2024). This article demonstrates that IFN-stimulated neutrophils express Ly6E, which acts as a biomarker for favourable treatment response to immune checkpoint blockade.

    Article  CAS  PubMed  Google Scholar 

  62. Faria, S. S. et al. The neutrophil-to-lymphocyte ratio: a narrative review. Ecancermedicalscience 10, 702 (2016).

    PubMed  Google Scholar 

  63. Grenader, T. et al. Derived neutrophil lymphocyte ratio is predictive of survival from intermittent therapy in advanced colorectal cancer: a post hoc analysis of the MRC COIN study. Br. J. Cancer 114, 612–615 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Krenn-Pilko, S. et al. The elevated preoperative platelet-to-lymphocyte ratio predicts poor prognosis in breast cancer patients. Br. J. Cancer 110, 2524–2530 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. McNamara, M. G. et al. Neutrophil/lymphocyte ratio as a prognostic factor in biliary tract cancer. Eur. J. Cancer 50, 1581–1589 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Sonpavde, G. et al. Prognostic impact of the neutrophil-to-lymphocyte ratio in men with metastatic castration-resistant prostate cancer. Clin. Genitourin. Cancer 12, 317–324 (2014).

    Article  PubMed  Google Scholar 

  67. Ma, J. et al. Neutrophil-to-lymphocyte ratio (NLR) as a predictor for recurrence in patients with stage III melanoma. Sci. Rep. 8, 4044 (2018).

    Article  PubMed  Google Scholar 

  68. Bar-Ad, V. et al. Neutrophil to lymphocyte ratio associated with prognosis of lung cancer. Clin. Transl. Oncol. 19, 711–717 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Templeton, A. J. et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl Cancer Inst. 106, dju124 (2014).

    Article  PubMed  Google Scholar 

  70. Cupp, M. A. et al. Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 18, 360 (2020).

    Article  PubMed  Google Scholar 

  71. Kim, H. R. et al. The ratio of peripheral regulatory T cells to Lox-1+ polymorphonuclear myeloid-derived suppressor cells predicts the early response to anti-PD-1 therapy in patients with non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 199, 243–246 (2019).

    Article  PubMed  Google Scholar 

  72. Yu, Y., Qian, L. & Cui, J. Value of neutrophil-to-lymphocyte ratio for predicting lung cancer prognosis: a meta-analysis of 7,219 patients. Mol. Clin. Oncol. 7, 498–506 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Shao, Y. et al. Prognostic value of pretreatment neutrophil-to-lymphocyte ratio in renal cell carcinoma: a systematic review and meta-analysis. BMC Urol. 20, 90 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Cassidy, M. R. et al. Neutrophil to lymphocyte ratio is associated with outcome during ipilimumab treatment. EBioMedicine 18, 56–61 (2017).

    Article  PubMed  Google Scholar 

  75. Jiang, T. et al. Pretreatment neutrophil-to-lymphocyte ratio is associated with outcome of advanced-stage cancer patients treated with immunotherapy: a meta-analysis. Cancer Immunol. Immunother. 67, 713–727 (2018).

    Article  PubMed  Google Scholar 

  76. Valero, C. et al. Pretreatment neutrophil-to-lymphocyte ratio and mutational burden as biomarkers of tumor response to immune checkpoint inhibitors. Nat. Commun. 12, 729 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Lalani, A. A. et al. Change in neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma. J. Immunother. Cancer 6, 5 (2018).

    Article  PubMed  Google Scholar 

  78. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Gong, L. et al. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol. Cancer 12, 154 (2013).

    Article  PubMed  Google Scholar 

  80. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S. & Weiss, S. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120, 1151–1164 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Wculek, S. K., Bridgeman, V. L., Peakman, F. & Malanchi, I. Early neutrophil responses to chemical carcinogenesis shape long-term lung cancer susceptibility. iScience 23, 101277 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Fialkow, L., Wang, Y. & Downey, G. P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med. 42, 153–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Knaapen, A. M., Gungor, N., Schins, R. P., Borm, P. J. & Van Schooten, F. J. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis 21, 225–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Harrison, J. E. & Schultz, J. Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem. 251, 1371–1374 (1976).

    Article  CAS  PubMed  Google Scholar 

  85. Gungor, N. et al. Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis 25, 149–154 (2010).

    Article  PubMed  Google Scholar 

  86. Lu, Y. et al. Prognostic significance and immunological role of HPRT1 in human cancers. Biomol. Biomed. 24, 262–291 (2024).

    Article  CAS  PubMed  Google Scholar 

  87. Feyler, A. et al. Point: myeloperoxidase -463G –> a polymorphism and lung cancer risk. Cancer Epidemiol. Biomark. Prev. 11, 1550–1554 (2002).

    CAS  Google Scholar 

  88. Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 16, 219–223 (2010). This is one of the first studies to provide a mechanistic basis for the ability of neutrophils to promote tumour growth.

    Article  CAS  PubMed  Google Scholar 

  89. Gregory, A. D., Hale, P., Perlmutter, D. H. & Houghton, A. M. Clathrin pit-mediated endocytosis of neutrophil elastase and cathepsin G by cancer cells. J. Biol. Chem. 287, 35341–35350 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Metz, H. E. et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc. Natl Acad. Sci. USA 113, 8795–8800 (2016).

    Article  CAS  PubMed  Google Scholar 

  91. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I. & Quigley, J. P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 104, 20262–20267 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R. & Jorcyk, C. L. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res. 65, 8896–8904 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Shojaei, F., Singh, M., Thompson, J. D. & Ferrara, N. Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc. Natl Acad. Sci. USA 105, 2640–2645 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Keane, M. P., Belperio, J. A., Xue, Y. Y., Burdick, M. D. & Strieter, R. M. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J. Immunol. 172, 2853–2860 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Pold, M. et al. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC ligand (CXCL)5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Res. 64, 1853–1860 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Arenberg, D. A. et al. Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J. Clin. Invest. 102, 465–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Mollaoglu, G. et al. The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment. Immunity 49, 764–779 e769 (2018). This article demonstrates that tumour-associated neutrophils can alter cancer cell differentiation status and fate.

    Article  CAS  PubMed  Google Scholar 

  100. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334 e1310 (2019). This is a seminal report of novel neutrophil transcriptional subtypes in cancer using single-cell RNA sequencing.

    Article  CAS  PubMed  Google Scholar 

  101. Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520 e1508 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Veglia, F. et al. Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J. Exp. Med. 218, e20201803 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Tang, K. H. et al. Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC. Cancer Discov. 12, 47–61 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Kusmartsev, S., Nefedova, Y., Yoder, D. & Gabrilovich, D. I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172, 989–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Bronte, V. et al. Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood 96, 3838–3846 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Bronte, V., Serafini, P., Apolloni, E. & Zanovello, P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother. 24, 431–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Gabrilovich, D. I., Velders, M. P., Sotomayor, E. M. & Kast, W. M. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 5398–5406 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 21, 485–498 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Schmielau, J. & Finn, O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61, 4756–4760 (2001).

    CAS  PubMed  Google Scholar 

  113. Miret, J. J. et al. Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor immunity. J. Immunother. Cancer 7, 32 (2019).

    Article  PubMed  Google Scholar 

  114. Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Nagaraj, S. et al. Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat. Med. 13, 828–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, H. et al. Annexin A2/TLR2/MYD88 pathway induces arginase 1 expression in tumor-associated neutrophils. J. Clin. Invest. 132, e153643 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Davis, R. J. et al. Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3Kdelta/gamma. Cancer Res. 77, 2607–2619 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Clavijo, P. E. et al. Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of granulocytic myeloid cells. Oncotarget 8, 55804–55820 (2017).

    Article  PubMed  Google Scholar 

  119. Bronte, V. et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 7, 12150 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, aaf8943 (2016).

    Article  PubMed  Google Scholar 

  121. Condamine, T. et al. ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J. Clin. Invest. 124, 2626–2639 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, C. et al. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 621, 830–839 (2023). This article was the first to identify CD300ld as a marker for PMN-MDSC that is required for both PMN-MDSC recruitment and immunosuppressive function in cancer.

    Article  CAS  PubMed  Google Scholar 

  123. Masucci, M. T., Minopoli, M., Del Vecchio, S. & Carriero, M. V. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front. Immunol. 11, 1749 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Alfaro, C. et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin. Cancer Res. 22, 3924–3936 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. El Rayes, T. et al. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc. Natl Acad. Sci. USA 112, 16000–16005 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Demers, M. et al. Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5, e1134073 (2016).

    Article  PubMed  Google Scholar 

  127. Demers, M. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc. Natl Acad. Sci. USA 109, 13076–13081 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Rayes, R. F. et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight 5, e128008 (2019).

    Article  PubMed  Google Scholar 

  129. Cools-Lartigue, J. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Invest. 123, 3446–3458 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Spiegel, A. et al. Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov. 6, 630–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Szczerba, B. M. et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 8, 361ra138 (2016).

    Article  PubMed  Google Scholar 

  133. McDowell, S. A. C. et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2, 545–562 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Teijeira, A. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e858 (2020). This study showed that NETs form a shield around cancer cells protecting them from infiltration by immune cells, such as CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  135. Thalin, C. et al. NETosis promotes cancer-associated arterial microthrombosis presenting as ischemic stroke with troponin elevation. Thromb. Res. 139, 56–64 (2016).

    Article  PubMed  Google Scholar 

  136. Martinod, K. & Wagner, D. D. Thrombosis: tangled up in NETs. Blood 123, 2768–2776 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018). This article provides a detailed mechanistic analysis that demonstrates that NET-derived proteinases generate a novel laminin cleavage product that induces outgrowth of dormant metastases.

    Article  PubMed  Google Scholar 

  138. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009). This article reports, for the first time, the ability of neutrophils to polarize into pro-tumour (N2) and antitumour (N1) phenotypes.

    Article  CAS  PubMed  Google Scholar 

  139. Shrestha, S. et al. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. Oncoimmunology 5, e1067744 (2016).

    Article  PubMed  Google Scholar 

  140. Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Gershkovitz, M. et al. Microenvironmental cues determine tumor cell susceptibility to neutrophil cytotoxicity. Cancer Res. 78, 5050–5059 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Gershkovitz, M. et al. TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res. 78, 2680–2690 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Finisguerra, V. et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature 522, 349–353 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Dance, A. Core concept: cells nibble one another via the under-appreciated process of trogocytosis. Proc. Natl Acad. Sci. USA 116, 17608–17610 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Bouti, P. et al. Kindlin3-dependent CD11b/CD18-integrin activation is required for potentiation of neutrophil cytotoxicity by CD47-SIRPα checkpoint disruption. Cancer Immunol. Res. 9, 147–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Singhal, S. et al. Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135 (2016). This article reports the identification of a novel subset of tumour-associated neutrophils that express HLA-DR and function as antigen presenting cells in cancer.

    Article  CAS  PubMed  Google Scholar 

  147. Linde, I. L. et al. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 41, 356–372 e310 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Hirschhorn, D. et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 186, 1432–1447.e1417 (2023). This is the first article to report that antigen-specific T cells combined with OX40 co-stimulation can induced neutrophils to eliminate antigen-escape variants.

    Article  CAS  PubMed  Google Scholar 

  149. Kruse, B. et al. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours. Nature 618, 1033–1040 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Janne, P. A. et al. Randomized, double-blind, phase II trial comparing gemcitabine-cisplatin plus the LTB4 antagonist LY293111 versus gemcitabine–cisplatin plus placebo in first-line non-small-cell lung cancer. J. Thorac. Oncol. 9, 126–131 (2014).

    Article  PubMed  Google Scholar 

  151. Di Maio, M. et al. Chemotherapy-induced neutropenia and treatment efficacy in advanced non-small-cell lung cancer: a pooled analysis of three randomised trials. Lancet Oncol. 6, 669–677 (2005).

    Article  PubMed  Google Scholar 

  152. Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Kowanetz, M. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl Acad. Sci. USA 107, 21248–21255 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Cardot-Ruffino, V. et al. G-CSF rescue of FOLFIRINOX-induced neutropenia leads to systemic immune suppression in mice and humans. J. Immunother. Cancer 11, e006589 (2023).

    Article  PubMed  Google Scholar 

  155. Kozopas, K. M., Yang, T., Buchan, H. L., Zhou, P. & Craig, R. W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl Acad. Sci. USA 90, 3516–3520 (1993).

    Article  CAS  PubMed  Google Scholar 

  156. Zhou, P., Qian, L., Kozopas, K. M. & Craig, R. W. Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89, 630–643 (1997).

    Article  CAS  PubMed  Google Scholar 

  157. Dzhagalov, I., St John, A. & He, Y. W. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood 109, 1620–1626 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Yeh, Y. Y. et al. Up-regulation of CDK9 kinase activity and Mcl-1 stability contributes to the acquired resistance to cyclin-dependent kinase inhibitors in leukemia. Oncotarget 6, 2667–2679 (2015).

    Article  PubMed  Google Scholar 

  159. Diamond, J. R. et al. First-in-human dose-escalation study of cyclin-dependent kinase 9 inhibitor VIP152 in patients with advanced malignancies shows early signs of clinical efficacy. Clin. Cancer Res. 28, 1285–1293 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Rennard, S. I. et al. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 191, 1001–1011 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Kirsten, A. M. et al. The safety and tolerability of oral AZD5069, a selective CXCR2 antagonist, in patients with moderate-to-severe COPD. Pulm. Pharmacol. Ther. 31, 36–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Richardson, R. M., Pridgen, B. C., Haribabu, B., Ali, H. & Snyderman, R. Differential cross-regulation of the human chemokine receptors CXCR1 and CXCR2. Evidence for time-dependent signal generation. J. Biol. Chem. 273, 23830–23836 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Baggiolini, M., Dewald, B. & Moser, B. Human chemokines: an update. Annu. Rev. Immunol. 15, 675–705 (1997).

    Article  CAS  PubMed  Google Scholar 

  164. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016). This is the first study to demonstrate the therapeutic potential CXCRR2 antagonists as cancer treatment.

    Article  CAS  PubMed  Google Scholar 

  165. Sun, L. et al. Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight 4, e126853 (2019).

    Article  PubMed  Google Scholar 

  166. Liao, W. et al. KRAS–IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35, 559–572.e557 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Jamieson, T. et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. Invest. 122, 3127–3144 (2012).

    Article  CAS  PubMed  Google Scholar 

  168. Highfill, S. L. et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6, 237ra267 (2014).

    Article  Google Scholar 

  169. Dominguez, C., McCampbell, K. K., David, J. M. & Palena, C. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight 2, e94296 (2017).

    Article  PubMed  Google Scholar 

  170. Raccosta, L. et al. The oxysterol–CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J. Exp. Med. 210, 1711–1728 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Greene, S. et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin. Cancer Res. 26, 1420–1431 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Guo, C. et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature 623, 1053–1061 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020). This study identified a clear cut point in serum IL-8 content predictive of therapeutic response to immune checkpoint blockade across multiple cancer types.

    Article  CAS  PubMed  Google Scholar 

  174. Patel, S. P. et al. Safety and efficacy of first-in-class CXCR1/2 inhibitor SX-682 in combination with pembrolizumab in patients with metastatic melanoma with disease progression on anti-PD1 therapy. J. Clin. Oncol. https://doi.org/10.1200/JCO.2024.42.16_suppl.9508 (2024).

  175. Canavan, T. N., Elmets, C. A., Cantrell, W. L., Evans, J. M. & Elewski, B. E. Anti-IL-17 medications used in the treatment of plaque psoriasis and psoriatic arthritis: a comprehensive review. Am. J. Clin. Dermatol. 17, 33–47 (2016).

    Article  PubMed  Google Scholar 

  176. Wang, W. M. & Jin, H. Z. Role of neutrophils in psoriasis. J. Immunol. Res. 2020, 3709749 (2020).

    Article  PubMed  Google Scholar 

  177. Mark, N. M. et al. Chronic obstructive pulmonary disease alters immune cell composition and immune checkpoint inhibitor efficacy in non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 197, 325–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Kwak, J. W. et al. Complement activation via a C3a receptor pathway alters CD4+ T lymphocytes and mediates lung cancer progression. Cancer Res. 78, 143–156 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Pagano, M. B. et al. Complement-dependent neutrophil recruitment is critical for the development of elastase-induced abdominal aortic aneurysm. Circulation 119, 1805–1813 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Jayne, D. R. W., Merkel, P. A., Schall, T. J., Bekker, P. & Group, A. S. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Ariga, M. et al. Nonredundant function of phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation. J. Immunol. 173, 7531–7538 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Jacob, C., Szilagyi, C., Allen, J. M., Bertrand, C. & Lagente, V. Role of PDE4 in superoxide anion generation through p44/42MAPK regulation: a cAMP and a PKA-independent mechanism. Br. J. Pharmacol. 143, 257–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  183. Rabe, K. F., Calverley, P. M. A., Martinez, F. J. & Fabbri, L. M. Effect of roflumilast in patients with severe COPD and a history of hospitalisation. Eur. Respir. J. 50, 1700158 (2017).

    Article  PubMed  Google Scholar 

  184. Dunne, A. E. et al. Direct inhibitory effect of the PDE4 inhibitor roflumilast on neutrophil migration in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 60, 445–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Tsunoda, T. et al. Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol. Cancer 11, 46 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Bronte, V. & Zanovello, P. Regulation of immune responses by l-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  187. Rodriguez, P. C. et al. Regulation of T cell receptor CD3ζ chain expression by l-arginine. J. Biol. Chem. 277, 21123–21129 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Munder, M. et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood 105, 2549–2556 (2005).

    Article  CAS  PubMed  Google Scholar 

  189. Jacobsen, L. C., Theilgaard-Monch, K., Christensen, E. I. & Borregaard, N. Arginase 1 is expressed in myelocytes/metamyelocytes and localized in gelatinase granules of human neutrophils. Blood 109, 3084–3087 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Manne, A., Woods, E., Tsung, A. & Mittra, A. Biliary tract cancers: treatment updates and future directions in the era of precision medicine and immuno-oncology. Front. Oncol. 11, 768009 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Bakker, E. M. et al. Improved treatment response to dornase alfa in cystic fibrosis patients using controlled inhalation. Eur. Respir. J. 38, 1328–1335 (2011).

    Article  CAS  PubMed  Google Scholar 

  192. Gajendran, C. et al. Alleviation of arthritis through prevention of neutrophil extracellular traps by an orally available inhibitor of protein arginine deiminase 4. Sci. Rep. 13, 3189 (2023).

    Article  CAS  PubMed  Google Scholar 

  193. Keir, H. R. et al. CXCL-8-dependent and -independent neutrophil activation in COPD: experiences from a pilot study of the CXCR2 antagonist danirixin. ERJ Open Res. 6, 00583–02020 (2020).

    Article  PubMed  Google Scholar 

  194. Elborn, J. S. et al. Efficacy, safety and effect on biomarkers of AZD9668 in cystic fibrosis. Eur. Respir. J. 40, 969–976 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. Scannevin, R. H. et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J. Biol. Chem. 292, 17963–17974 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Korkmaz, B., Horwitz, M. S., Jenne, D. E. & Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev. 62, 726–759 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Inada, M., Yamashita, J. & Ogawa, M. Neutrophil elastase inhibitor (ONO-5046-Na) inhibits the growth of human lung cancer cell lines transplanted into severe combined immunodeficiency (scid) mice. Res. Commun. Mol. Pathol. Pharmacol. 97, 229–232 (1997).

    CAS  PubMed  Google Scholar 

  198. Kawabata, K. et al. ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun. 177, 814–820 (1991).

    Article  CAS  PubMed  Google Scholar 

  199. Pu, S. et al. Effect of sivelestat sodium in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC Pulm. Med. 17, 148 (2017).

    Article  PubMed  Google Scholar 

  200. Stockley, R. et al. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir. Med. 107, 524–533 (2013).

    Article  PubMed  Google Scholar 

  201. Cui, C. et al. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis. Cell 184, 3163–3177.e3121 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Demkow, U. & van Overveld, F. J. Role of elastases in the pathogenesis of chronic obstructive pulmonary disease: implications for treatment. Eur. J. Med. Res. 15, 27–35 (2010).

    Article  PubMed  Google Scholar 

  203. Lee, W. L. & Downey, G. P. Leukocyte elastase: physiological functions and role in acute lung injury. Am. J. Respir. Crit. Care Med. 164, 896–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Wakeham, D. J. & New, K. J. Neutrophil elastase: a key factor in the development of aortic aneurysm. Am. J. Hypertens. 37, 321–322 (2024).

    Article  PubMed  Google Scholar 

  205. Dallegri, F. et al. Tumor cell lysis by activated human neutrophils: analysis of neutrophil-delivered oxidative attack and role of leukocyte function-associated antigen 1. Inflammation 15, 15–30 (1991).

    Article  CAS  PubMed  Google Scholar 

  206. Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47-SIRPα immune checkpoint. Immunity 52, 742–752 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Ring, N. G. et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc. Natl Acad. Sci. USA 114, E10578–E10585 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Jiang, Z., Sun, H., Yu, J., Tian, W. & Song, Y. Targeting CD47 for cancer immunotherapy. J. Hematol. Oncol. 14, 180 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Kohrt, H. E. et al. Combination strategies to enhance antitumor ADCC. Immunotherapy 4, 511–527 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. Singhal, S. et al. Human tumor-associated macrophages and neutrophils regulate antitumor antibody efficacy through lethal and sublethal trogocytosis. Cancer Res. 84, 1029–1047 (2024).

    Article  CAS  PubMed  Google Scholar 

  211. Behrens, L. M., van Egmond, M. & van den Berg, T. K. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol. Rev. 314, 280–301 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Pascal, V. et al. Anti-CD20 IgA can protect mice against lymphoma development: evaluation of the direct impact of IgA and cytotoxic effector recruitment on CD20 target cells. Haematologica 97, 1686–1694 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Leusen, J. H. IgA as therapeutic antibody. Mol. Immunol. 68, 35–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Bohlander, F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front. Immunol. 14, 1127339 (2023).

    Article  PubMed  Google Scholar 

  215. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  216. Pang, Y. et al. TGF-β signaling in myeloid cells is required for tumor metastasis. Cancer Discov. 3, 936–951 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Lichtenstein, A. K., Berek, J., Kahle, J. & Zighelboim, J. Role of inflammatory neutrophils in antitumor effects induced by intraperitoneal administration of Corynebacterium parvum in mice. Cancer Res. 44, 5118–5123 (1984).

    CAS  PubMed  Google Scholar 

  218. Lichtenstein, A. K., Kahle, J., Berek, J. & Zighelboim, J. Successful immunotherapy with intraperitoneal Corynebacterium parvum in a murine ovarian cancer model is associated with the recruitment of tumor-lytic neutrophils into the peritoneal cavity. J. Immunol. 133, 519–526 (1984).

    Article  CAS  PubMed  Google Scholar 

  219. Yam, A. O. et al. Neutrophil conversion to a tumor-killing phenotype underpins effective microbial therapy. Cancer Res. 83, 1315–1328 (2023).

    Article  CAS  PubMed  Google Scholar 

  220. Hong, F. et al. β-Glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res. 63, 9023–9031 (2003).

    CAS  PubMed  Google Scholar 

  221. Kalafati, L. et al. Innate immune training of granulopoiesis promotes anti-tumor activity. Cell 183, 771–785.e712 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. He, G. et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 34, 141 (2015).

    Article  PubMed  Google Scholar 

  223. Ravi, A. et al. Genomic and transcriptomic analysis of checkpoint blockade response in advanced non-small cell lung cancer. Nat. Genet. 55, 807–819 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Gauchat, J. F. et al. Human CD40-ligand: molecular cloning, cellular distribution and regulation of expression by factors controlling IgE production. FEBS Lett. 315, 259–266 (1993).

    Article  CAS  PubMed  Google Scholar 

  225. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  226. Lum, H. D. et al. In vivo CD40 ligation can induce T-cell-independent antitumor effects that involve macrophages. J. Leukoc. Biol. 79, 1181–1192 (2006).

    Article  CAS  PubMed  Google Scholar 

  227. Li, D. K. & Wang, W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies. Oncol. Lett. 20, 176 (2020).

    CAS  PubMed  Google Scholar 

  228. Padron, L. J. et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 28, 1167–1177 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Weiss, S. A. et al. A phase II trial of the CD40 agonistic antibody sotigalimab (APX005M) in combination with nivolumab in subjects with metastatic melanoma with confirmed disease progression on anti-PD-1 therapy. Clin. Cancer Res. 30, 74–81 (2024).

    Article  CAS  PubMed  Google Scholar 

  230. ElTanbouly, M. A., Croteau, W., Noelle, R. J. & Lines, J. L. VISTA: a novel immunotherapy target for normalizing innate and adaptive immunity. Semin. Immunol. 42, 101308 (2019).

    Article  CAS  PubMed  Google Scholar 

  231. Lines, J. L. et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 74, 1924–1932 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Lee, W. L. & Downey, G. P. Neutrophil activation and acute lung injury. Curr. Opin. Crit. Care 7, 1–7 (2001).

    CAS  PubMed  Google Scholar 

  233. Dancey, J. T., Deubelbeiss, K. A., Harker, L. A. & Finch, C. A. Neutrophil kinetics in man. J. Clin. Invest. 58, 705–715 (1976).

    Article  CAS  PubMed  Google Scholar 

  234. Fouret, P. et al. Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J. Exp. Med. 169, 833–845 (1989).

    Article  CAS  PubMed  Google Scholar 

  235. Rorvig, S., Ostergaard, O., Heegaard, N. H. & Borregaard, N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J. Leukoc. Biol. 94, 711–721 (2013).

    Article  PubMed  Google Scholar 

  236. Manley, H. R., Keightley, M. C. & Lieschke, G. J. The neutrophil nucleus: an important influence on neutrophil migration and function. Front. Immunol. 9, 2867 (2018).

    Article  CAS  PubMed  Google Scholar 

  237. Huh, S. J., Liang, S., Sharma, A., Dong, C. & Robertson, G. P. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 70, 6071–6082 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  241. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  242. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17, 816–826 (2015).

    Article  CAS  PubMed  Google Scholar 

  243. Spicer, J. D. et al. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 72, 3919–3927 (2012). This is a seminal report of how neutrophils can engage circulating tumour cells and promote subsequent metastasis formation.

    Article  CAS  PubMed  Google Scholar 

  244. Li, R. et al. Chronic IL-1β-induced inflammation regulates epithelial-to-mesenchymal transition memory phenotypes via epigenetic modifications in non-small cell lung cancer. Sci. Rep. 10, 377 (2020).

    Article  PubMed  Google Scholar 

  245. Harris, E. S., Weyrich, A. S. & Zimmerman, G. A. Lessons from rare maladies: leukocyte adhesion deficiency syndromes. Curr. Opin. Hematol. 20, 16–25 (2013).

    CAS  PubMed  Google Scholar 

  246. Kaplan, J., De Domenico, I. & Ward, D. M. Chediak–Higashi syndrome. Curr. Opin. Hematol. 15, 22–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  247. Song, E. et al. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin. Mol. Allergy 9, 10 (2011).

    Article  CAS  PubMed  Google Scholar 

  248. Abraham, E. Neutrophils and acute lung injury. Crit. Care Med. 31, S195–S199 (2003).

    Article  PubMed  Google Scholar 

  249. Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 19, 177–191 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to A.M.H. from the NIH (nos. R01CA282465 and P50CA228944).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article

Corresponding author

Correspondence to A. McGarry Houghton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Paul Kubes, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Citrullination

A post-translational modification whereby the amino acid arginine is converted to a unique amino acid termed citrulline. In neutrophils, this process is catalysed by the enzyme peptidyl arginine deiminase-4 (PAD4).

Cross-dressing

The ability of some antigen presenting cells to display an exogenous peptide/MHC complex originating from a neighbouring cell or extracellular vesicle.

Engineered bioparticles

Heat-killed or chemically killed bacteria (such as S.aureus) that can be engineered to induce an inflammatory response.

HLA-DR+ neutrophils

A subset of neutrophils that display the MHC class II cell surface marker, HLA-DR. This affords the ability of this neutrophil subset to present antigen in a similar fashion to macrophages and dendritic cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, J.W., Houghton, A.M. Targeting neutrophils for cancer therapy. Nat Rev Drug Discov 24, 666–684 (2025). https://doi.org/10.1038/s41573-025-01210-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41573-025-01210-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer