Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA modification systems as therapeutic targets

Abstract

Ribonucleotide bases can be chemically modified by cellular enzymes such as methyltransferases to regulate RNA metabolism and biological processes. The association between abnormal levels of RNA modification effector proteins and human diseases has spurred interest in therapeutic targeting of RNA modification systems, and an agent that inhibits the RNA-methylating enzyme METTL3 has entered clinical trials. Despite the promise of these pathways, therapeutic agents targeting proteins that write, read and erase RNA modifications are still limited. In this Review, we describe the cellular functions and disease associations of proteins that regulate RNA modifications. We focus on the N6-methyladenosine pathway, highlighting early-stage advances in inhibitor development such as against the YTH reader proteins, but we also discuss the potential of targeting other RNA modification pathways. Targeting RNA modification systems offers a new strategy for treating cancer, improving immunotherapy and enhancing stem cell therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The m6A modification and m6A-regulating proteins.
Fig. 2: Signalling pathways regulated by m6A.
Fig. 3: Potential therapeutic applications for targeting RNA modifications.
Fig. 4: Inhibitors that target RNA modification writer, eraser and reader proteins.
Fig. 5: Inhibitors targeting m6A writer, eraser and reader proteins can inhibit AML in mice.

Similar content being viewed by others

References

  1. Davis, F. F. & Allen, F. W. Ribonucleic acids from yeast which contain a fifth nucleotide. J. Biol. Chem. 227, 907–915 (1957).

    Article  CAS  PubMed  Google Scholar 

  2. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 50, D231–D235 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Pan, T. Modifications and functional genomics of human transfer RNA. Cell Res. 28, 395–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Topisirovic, I., Svitkin, Y. V., Sonenberg, N. & Shatkin, A. J. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA 2, 277–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 4, 62 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhong, S. et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20, 1278–1288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Jia, G. et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He, C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 6, 863–865 (2010). Together with Jia et al. (2011), this paper pinpoints the biological significance of reversible m6A modification.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y., Lu, L. & Li, X. Detection technologies for RNA modifications. Exp. Mol. Med. 54, 1601–1616 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geula, S. et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Mendel, M. et al. Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development. Mol. Cell 71, 986–1000.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, M. et al. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 19, 69 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lin, Z. et al. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res. 27, 1216–1230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fustin, J. M. et al. Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proc. Natl Acad. Sci. USA 115, 5980–5985 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, N. et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45, 6051–6063 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roundtree, I. A. et al. YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. eLife 6, e31311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Erales, J. et al. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc. Natl Acad. Sci. USA 114, 12934–12939 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, F. et al. ALKBH1-mediated tRNA demethylation regulates translation. Cell 167, 816–828.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pandolfini, L. et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol. Cell 74, 1278–1290.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abakir, A. et al. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat. Genet. 52, 48–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Wei, J. & He, C. Chromatin and transcriptional regulation by reversible RNA methylation. Curr. Opin. Cell Biol. 70, 109–115 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, C. et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 8, 4766–4781 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, J. et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat. Cell Biol. 20, 1074–1083 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xia, P. et al. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis. 12, 691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagy, Z. et al. An ALYREF-MYCN coactivator complex drives neuroblastoma tumorigenesis through effects on USP3 and MYCN stability. Nat. Commun. 12, 1881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raj, N. et al. The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Mol. Cell 82, 2370–2384.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ofir-Rosenfeld, Y. et al. STC-15, an oral small molecule inhibitor of the RNA methyltransferase METTL3, inhibits tumour growth through activation of anti-cancer immune responses associated with increased interferon signalling, and synergises with T cell checkpoint blockade. Eur. J. Cancer 174, S123 (2022). Together with Yankova et al. (2021), this paper develops and characterizes the first drug designed to target an RNA-modifying protein.

    Article  Google Scholar 

  32. Peng, S. et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci. Transl. Med. 11, eaau7116 (2019).

    Article  PubMed  Google Scholar 

  33. Wei, C. M., Gershowitz, A. & Moss, B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4, 379–386 (1975).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    Article  PubMed  Google Scholar 

  38. Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, K. et al. Mettl3-mediated m6A regulates spermatogonial differentiation and meiosis initiation. Cell Res. 27, 1100–1114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, C. et al. m6A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Xiang, Y. et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi, H. et al. m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature 563, 249–253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Winkler, R. et al. m6A modification controls the innate immune response to infection by targeting type I interferons. Nat. Immunol. 20, 173–182 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y. et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 33, 1221–1233.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, L. et al. m6A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat. Biotechnol. 40, 1210–1219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao, Y. L. et al. Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination. Nat. Biotechnol. 41, 993–1003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, P., Doxtader, K. A. & Nam, Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63, 306–317 (2016). This study presents the crystal structure of the METTL3/METTL14 complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyake, K. et al. A cancer-associated METTL14 mutation induces aberrant m6A modification, affecting tumor growth. Cell Rep. 42, 112688 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Yuan, Y., Du, Y., Wang, L. & Liu, X. The m6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J. Cancer 11, 3588–3595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vu, L. P. et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23, 1369–1376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sang, L. et al. The m6A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J. Cancer 13, 1019–1030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miao, W., Chen, J., Jia, L., Ma, J. & Song, D. The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochem. Biophys. Res. Commun. 516, 719–725 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Peng, W. et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway. J. Exp. Clin. Cancer Res. 38, 393 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Han, J. et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer 18, 110 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhang, J. et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun. 10, 1858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell 62, 335–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, H. B. et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548, 338–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu, T. X. et al. A new model of spontaneous colitis in mice induced by deletion of an RNA m6A methyltransferase component METTL14 in T cells. Cell. Mol. Gastroenterol. Hepatol. 10, 747–761 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wang, H. et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat. Commun. 10, 1898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang, L. et al. m6A RNA methyltransferases METTL3/14 regulate immune responses to anti‐PD‐1 therapy. EMBO J. 39, e104514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsai, K., Courtney, D. G. & Cullen, B. R. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog. 14, e1006919 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moroz-Omori, E. V. et al. METTL3 inhibitors for epitranscriptomic modulation of cellular processes. ChemMedChem 16, 3035–3043 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dolbois, A. et al. 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J. Med. Chem. 64, 12738–12760 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Yanagi, Y. et al. EBV exploits RNA m6A modification to promote cell survival and progeny virus production during lytic cycle. Front. Microbiol. 13, 870816 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sturgess, K. et al. Pharmacological inhibition of METTL3 impacts specific haematopoietic lineages. Leukemia 37, 2133–2137 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gao, Y. et al. m6A modification prevents formation of endogenous double-stranded RNAs and deleterious innate immune responses during hematopoietic development. Immunity 52, 1007–1021.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guirguis, A. A. et al. Inhibition of METTL3 results in a cell-intrinsic interferon response that enhances antitumor immunity. Cancer Discov. 13, 2228–2247 (2023).

    Article  PubMed  Google Scholar 

  70. Selberg, S. et al. Discovery of small molecules that activate RNA methylation through cooperative binding to the METTL3-14-WTAP complex active site. Cell Rep. 26, 3762–3771.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Cui, Q. et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18, 2622–2634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Deng, R. et al. m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. OncoTargets Ther. 12, 4391–4402 (2019).

    Article  CAS  Google Scholar 

  73. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).

    Article  PubMed  Google Scholar 

  75. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Sugita, A. et al. The cap-specific m6A methyltransferase, PCIF1/CAPAM, is dynamically recruited to the gene promoter in a transcription-dependent manner. J. Biochem. 170, 203–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Zhuo, W. et al. m6Am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov. 8, 48 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mauer, J. et al. FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat. Chem. Biol. 15, 340–347 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, J. et al. Landscape and regulation of m6A and m6Am methylome across human and mouse tissues. Mol. Cell 77, 426–440.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Relier, S. et al. FTO-mediated cytoplasmic m6Am demethylation adjusts stem-like properties in colorectal cancer cell. Nat. Commun. 12, 1716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Y., Su, R., Deng, X., Chen, Y. & Chen, J. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8, 598–614 (2022). This review highlights the oncogenic role of FTO and summarizes FTO inhibitor development.

    Article  PubMed  Google Scholar 

  82. Wei, J. et al. FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science 376, 968–973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yan, F. et al. A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res. 28, 1062–1076 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, S. et al. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat. Commun. 10, 2782 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Niu, Y. et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol. Cancer 18, 46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Huang, H. et al. FTO-Dependent N6-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Res. 80, 3200–3214 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jeschke, J. et al. Downregulation of the FTO m6A RNA demethylase promotes EMT-mediated progression of epithelial tumors and sensitivity to Wnt inhibitors. Nat. Cancer 2, 611–628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang, X. et al. Structural insights into FTO’s catalytic mechanism for the demethylation of multiple RNA substrates. Proc. Natl Acad. Sci. USA 116, 2919–2924 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Toh, J. D. W. et al. Distinct RNA N-demethylation pathways catalyzed by nonheme iron ALKBH5 and FTO enzymes enable regulation of formaldehyde release rates. Proc. Natl Acad. Sci. USA 117, 25284–25292 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, B. et al. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct. Target. Ther. 6, 377 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Çaǧlayan, A. O. et al. A patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP. J. Hum. Genet. 61, 395–403 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zheng, Q., Hou, J., Zhou, Y., Li, Z. & Cao, X. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. Nat. Immunol. 18, 1094–1103 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Rubio, R. M., Depledge, D. P., Bianco, C., Thompson, L. & Mohr, I. RNA m6 A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev. 32, 1472–1484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Y. et al. N6-methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication. Science 365, 1171–1176 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Zhou, J. et al. m6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity. Sci. Adv. 7, eabg0470 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qiu, X. et al. m6A demethylase ALKBH5 regulates PD-L1 expression and tumor immunoenvironment in intrahepatic cholangiocarcinoma. Cancer Res. 81, 4778–4793 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Li, N. et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc. Natl Acad. Sci. USA 117, 20159–20170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dong, F. et al. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 81, 5876–5888 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, S. et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31, 591–606.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, C. et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc. Natl Acad. Sci. USA 113, E2047–E2056 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Shen, C. et al. RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell 27, 64–80.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, J. et al. Leukemogenic chromatin alterations promote AML leukemia stem cells via a KDM4C-ALKBH5-AXL signaling axis. Cell Stem Cell 27, 81–97.e8 (2020).

    Article  PubMed  Google Scholar 

  104. Yu, F. et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 49, 5779–5797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, B. et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J. Am. Chem. Soc. 134, 17963–17971 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Zheng, G. et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem. Neurosci. 5, 658–665 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Singh, B. et al. Important role of FTO in the survival of rare panresistant triple-negative inflammatory breast cancer cells facing a severe metabolic challenge. PLoS ONE 11, e0159072 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Toh, J. D. W. et al. A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N6-methyladenosine demethylase FTO. Chem. Sci. 6, 112–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172, 90–105.e23 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Huang, Y. et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43, 373–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Su, R. et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38, 79–96.e11 (2020). This study presents FTO inhibitors with anti-tumour effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huff, S., Tiwari, S. K., Gonzalez, G. M., Wang, Y. & Rana, T. M. m6A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem. Biol. 16, 324–333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Malacrida, A. et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg. Med. Chem. 28, 115300 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Selberg, S., Seli, N., Kankuri, E. & Karelson, M. Rational design of novel anticancer small-molecule RNA m6A demethylase ALKBH5 inhibitors. ACS Omega 6, 13310–13320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fang, Z. et al. Discovery of a potent, selective and cell active inhibitor of m6A demethylase ALKBH5. Eur. J. Med. Chem. 238, 114446 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Shi, R. et al. Linking the YTH domain to cancer: the importance of YTH family proteins in epigenetics. Cell Death Dis. 12, 346 (2021). This review summarizes the structure and biological functions of YTH family proteins and their disease implications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 181, 1582–1595.e18 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hu, J. et al. YTHDF1 is a potential pan-cancer biomarker for prognosis and immunotherapy. Front. Oncol. 11, 607224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, T. et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48, 3816–3831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jin, H. et al. N6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. eBioMedicine 47, 195–207 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Liu, X. S. et al. Comprehensive analysis of YTHDF1 immune infiltrates and ceRNA in human esophageal carcinoma. Front. Genet. 13, 835265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566, 270–274 (2019). This study reveals m6A regulation of the cancer immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Olazagoitia-Garmendia, A. et al. Gluten-induced RNA methylation changes regulate intestinal inflammation via allele-specific XPO1 translation in epithelial cells. Gut 71, 68–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, P. et al. Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol. Ther. Oncolytics 20, 228–239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nishizawa, Y. et al. Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget 9, 7476–7486 (2018).

    Article  PubMed  Google Scholar 

  127. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017). A review on the molecular functions of RNA modifications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhao, B. S. et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, Z. et al. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 28, 904–917 (2018). This study shows that YTHDF2 regulates stem cell expansion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yao, Y. et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2–dependent manner. FASEB J. 33, 7529–7544 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Heck, A. M., Russo, J., Wilusz, J., Nishimura, E. O. & Wilusz, C. J. YTHDF2 destabilizes m6A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells. RNA 26, 739–755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Paris, J. et al. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25, 137–148.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen, M. et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67, 2254–2270 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Einstein, J. M. et al. Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer. Mol. Cell 81, 3048–3064.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, J. et al. YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell Cycle 16, 2259–2271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ma, S. et al. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J. Exp. Med. 218, e20210279 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, L. et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell 41, 1294–1308.e8 (2023). This study reveals YTHDF2 regulation of cancer radiotherapy and reports a YTHDF2 inhibitor that can enhance the effect of radiotherapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, L. et al. YTHDF2/m6A/NF‐κB axis controls anti‐tumor immunity by regulating intratumoral Tregs. EMBO J. 42, e113126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chang, G. et al. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell 38, 857–871.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ni, W. et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol. Cancer 18, 143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang, Y. et al. RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proc. Natl Acad. Sci. USA 116, 976–981 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10–S17 (2004).

    Article  PubMed  Google Scholar 

  143. Zou, Z. et al. FMRP phosphorylation modulates neuronal translation through YTHDF1. Mol. Cell 83, 4304–4317 (2023). This study shows the role of YTHDF1 in neuronal development and presents a YTHDF1 inhibitor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhuang, M. et al. YTHDF2 in dentate gyrus is the m6A reader mediating m6A modification in hippocampus-dependent learning and memory. Mol. Psychiatry 28, 1679–1691 (2023).

    CAS  PubMed  Google Scholar 

  145. Ries, R. J. et al. m6A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jain, S. et al. ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yen, Y. P. & Chen, J. A. The m6A epitranscriptome on neural development and degeneration. J. Biomed. Sci. 28, 40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zou, Z., Sepich-Poore, C., Zhou, X., Wei, J. & He, C. The mechanism underlying redundant functions of the YTHDF proteins. Genome Biol. 24, 17 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lasman, L. et al. Context-dependent compensation between functional Ythdf m6A reader proteins. Genes Dev. 34, 1373–1391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, Z. et al. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nat. Genet. 52, 939–949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rauch, S. & Dickinson, B. C. Targeted m6A reader proteins to study the epitranscriptome. in. Methods Enzymol. 621, 1–16 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Chen, Y. et al. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. Nat. Cell Biol. 25, 1676–1690 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tsai, K. et al. Epitranscriptomic addition of m6A regulates HIV-1 RNA stability and alternative splicing. Genes Dev. 35, 992–1004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, R. X. et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun. 10, 4695 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Cheng, Y. et al. N6-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 39, 958–972.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, J. et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hsu, P. J. et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27, 1115–1127 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bailey, A. S. et al. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife 6, e26116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. McGlacken-Byrne, S. M. et al. Pathogenic variants in the human m6A reader YTHDC2 are associated with primary ovarian insufficiency. JCI Insight 7, e154671 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Macveigh-Fierro, D., Cicerchia, A., Cadorette, A., Sharma, V. & Muller, M. The m6A reader YTHDC2 is essential for escape from KSHV SOX-induced RNA decay. Proc. Natl Acad. Sci. USA 119, e2116662119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, J. et al. Downregulation of m6A reader YTHDC2 promotes the proliferation and migration of malignant lung cells via CYLD/NF-κB pathway. Int. J. Biol. Sci. 17, 2633–2651 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Huang, H. et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–296 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mahapatra, L., Andruska, N., Mao, C., Le, J. & Shapiro, D. J. A novel IMP1 inhibitor, BTYNB, targets c-Myc and inhibits melanoma and ovarian cancer cell proliferation. Transl. Oncol. 10, 818–827 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Barghash, A., Helms, V. & Kessler, S. M. Overexpression of IGF2 mRNA-binding protein 2 (IMP2/p62) as a feature of basal-like breast cancer correlates with short survival. Scand. J. Immunol. 82, 142–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Xu, X., Yu, Y., Zong, K., Lv, P. & Gu, Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J. Exp. Clin. Cancer Res. 38, 497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Weng, H. et al. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell 40, 1566–1582.e10 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, N. et al. The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability. Exp. Mol. Med. 54, 194–205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiang, L. et al. Knockdown of m6A reader IGF2BP3 inhibited hypoxia-induced cell migration and angiogenesis by regulating hypoxia inducible factor-1α in stomach cancer. Front. Oncol. 11, 711207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wan, W. et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol. Cancer 21, 60 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wolf, D. A., Lin, Y., Duan, H. & Cheng, Y. eIF-Three to Tango: emerging functions of translation initiation factor eIF3 in protein synthesis and disease. J. Mol. Cell Biol. 12, 403–409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Alarcón, C. R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zhu, F., Yang, T., Yao, M., Shen, T. & Fang, C. HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma. Front. Oncol. 11, 716921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, L. C. et al. M6A RNA methylation regulator HNRNPC contributes to tumorigenesis and predicts prognosis in glioblastoma multiforme. Front. Oncol. 10, 536875 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Huang, X. T. et al. HNRNPC impedes m6A-dependent anti-metastatic alternative splicing events in pancreatic ductal adenocarcinoma. Cancer Lett. 518, 196–206 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Xu, C. et al. Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J. Biol. Chem. 290, 24902–24913 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Sikorski, V., Selberg, S., Lalowski, M., Karelson, M. & Kankuri, E. The structure and function of YTHDF epitranscriptomic m6A readers. Trends Pharmacol. Sci. 44, 335–353 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Fu, Y. & Zhuang, X. m6A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955–963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Micaelli, M. et al. Small-molecule ebselen binds to YTHDF proteins interfering with the recognition of N6-methyladenosine-modified RNAs. ACS Pharmacol. Transl. Sci. 5, 872–891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zálešák, F. et al. Structure-based design of a potent and selective YTHDC1 ligand. J. Med. Chem. 67, 9516–9535 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Yang, S. et al. Discovery of a selective YTHDC1 inhibitor that targets acute myeloid leukemia. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2644364/v1 (2023).

  183. Wallis, N. et al. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. RNA Biol. 19, 26–43 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Tomikawa, C. 7-Methylguanosine modifications in transfer RNA (tRNA). Int. J. Mol. Sci. 19, 4080 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ramanathan, A., Robb, G. B. & Chan, S. H. mRNA capping: biological functions and applications. Nucleic Acids Res. 44, 7511–7526 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Zhang, L. S. et al. Transcriptome-wide mapping of internal N7-methylguanosine methylome in mammalian mRNA. Mol. Cell 74, 1304–1316.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhao, Z. et al. QKI shuttles internal m7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell 186, 3208–3226.e27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Alexandrov, A., Martzen, M. R. & Phizicky, E. M. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 8, 1253–1266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Orellana, E. A. et al. METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation. Mol. Cell 81, 3323–3338.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ma, J. et al. METTL1/WDR4-mediated m7G tRNA modifications and m7G codon usage promote mRNA translation and lung cancer progression. Mol. Ther. 29, 3422–3435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen, J. et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun. 42, 223–244 (2022).

    Article  Google Scholar 

  192. Dai, Z. et al. N7-methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol. Cell 81, 3339–3355.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Liu, Y. et al. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging 11, 12328–12344 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jin, X. et al. Structural insight into how WDR4 promotes the tRNA N7-methylguanosine methyltransferase activity of METTL1. Cell Discov. 9, 65 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tuorto, F. et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 19, 900–905 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Zhang, X. et al. The tRNA methyltransferase NSun2 stabilizes p16INK4 mRNA by methylating the 3′-untranslated region of p16. Nat. Commun. 3, 712 (2012).

    Article  PubMed  Google Scholar 

  197. Chan, C. T. Y. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

    Article  PubMed  Google Scholar 

  198. Gigova, A., Duggimpudi, S., Pollex, T., Schaefer, M. & Koš, M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA 20, 1632–1644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nakano, S. et al. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet. Nat. Chem. Biol. 12, 546–551 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Metodiev, M. D. et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 10, e1004110 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Huang, T., Chen, W., Liu, J., Gu, N. & Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Yang, X. et al. 5-methylcytosine promotes mRNA export-NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, X. et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21, 978–990 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Yi, J. et al. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget 8, 20751–20765 (2017).

    Article  PubMed  Google Scholar 

  205. Gu, X. et al. Vital roles of m5C RNA modification in cancer and immune cell biology. Front. Immunol. 14, 1207371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Blanco, S. et al. Stem cell function and stress response are controlled by protein synthesis. Nature 534, 335–340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sun, Z. et al. Aberrant NSUN2-mediated m5C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene 39, 6906–6919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Blanco, S. et al. Aberrant methylation of tRNAs links cellular stress to neuro‐developmental disorders. EMBO J. 33, 2020–2039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Chen, H. et al. m5C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat. Commun. 11, 2834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Yang, H. et al. FMRP promotes transcription-coupled homologous recombination via facilitating TET1-mediated m5C RNA modification demethylation. Proc. Natl Acad. Sci. USA 119, e2116251119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, J. Z. et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 41, 560–575 (2021).

    Article  Google Scholar 

  212. Wang, J. et al. ALYREF drives cancer cell proliferation through an ALYREF-MYC positive feedback loop in glioblastoma. OncoTargets Ther. 14, 144–155 (2021).

    Google Scholar 

  213. Eckwahl, M. et al. 5-Methylcytosine RNA modifications promote retrovirus replication in an ALYREF reader protein-dependent manner. J. Virol. 94, e00544-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Zou, F. et al. Drosophila YBX1 homolog YPS promotes ovarian germ line stem cell development by preferentially recognizing 5-methylcytosine RNAs. Proc. Natl Acad. Sci. USA 117, 3603–3609 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Fu, L. et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 136, 11582–11585 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  217. Guallar, D. et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat. Genet. 50, 443–451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Lan, J. et al. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nat. Commun. 11, 4956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li, Y. et al. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 30, 1072–1090.e10 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Tulstrup, M. et al. TET2 mutations are associated with hypermethylation at key regulatory enhancers in normal and malignant hematopoiesis. Nat. Commun. 12, 6061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rasmussen, K. D. et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes. Dev. 29, 910–922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hon, G. C. et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Saikia, M., Fu, Y., Pavon-Eternod, M., Chuan, H. & Pan, T. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA 16, 1317–1327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li, X. et al. Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68, 993–1005.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Safra, M. et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551, 251–255 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Wang, B., Niu, L., Wang, Z. & Zhao, Z. RNA m1A methyltransferase TRMT6 predicts poorer prognosis and promotes malignant behavior in glioma. Front. Mol. Biosci. 8, 692130 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Wang, Y. et al. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat. Commun. 12, 6314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bar-Yaacov, D. et al. Mitochondrial 16S rRNA is methylated by tRNA Methyltransferase TRMT61B in all vertebrates. PLoS Biol. 14, e1002557 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Sekar, S. et al. Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes. Neurobiol. Aging 36, 583–591 (2015).

    Article  CAS  PubMed  Google Scholar 

  231. Metodiev, M. D. et al. Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am. J. Hum. Genet. 98, 993–1000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Wang, Q., Zhang, Q., Huang, Y. & Zhang, J. m1A regulator TRMT10C predicts poorer survival and contributes to malignant behavior in gynecological cancers. DNA Cell Biol. 39, 1767–1778 (2020).

    Article  CAS  PubMed  Google Scholar 

  233. Zheng, Q., Yu, X., Zhang, Q., He, Y. & Guo, W. Genetic characteristics and prognostic implications of m1A regulators in pancreatic cancer. Biosci. Rep. 41, BSR20210337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Wu, L. et al. Association of N6-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarction-associated transcripts. Cell Death Dis. 10, 909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kawarada, L. et al. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res. 45, 7401–7415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Haag, S. et al. NSUN3 and ABH1 modify the wobble position of mt‐tRNAMet to expand codon recognition in mitochondrial translation. EMBO J. 35, 2104–2119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhang, L.-S. et al. ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nat. Cell Biol. 23, 684–691 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  239. Ueda, Y. et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci. Rep. 7, 42271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Woo, H. H. & Chambers, S. K. Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 35–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Cerneckis, J., Cui, Q., He, C., Yi, C. & Shi, Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends Pharmacol. Sci. 43, 522–535 (2022).

    Article  CAS  PubMed  Google Scholar 

  242. Mort, M., Ivanov, D., Cooper, D. N. & Chuzhanova, N. A. A meta-analysis of nonsense mutations causing human genetic disease. Hum. Mutat. 29, 1037–1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  243. Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645–659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Beneventi, G. et al. The small Cajal body-specific RNA 15 (SCARNA15) directs p53 and redox homeostasis via selective splicing in cancer cells. NAR Cancer 3, zcab026 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  245. McMahon, M. et al. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife 8, e48847 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Cui, Q. et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat. Cancer 2, 932–949 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Zhang, M. et al. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat. Chem. Biol. 19, 1185–1195 (2023).

    Article  CAS  PubMed  Google Scholar 

  249. Dimitrova, D. G., Teysset, L. & Carré, C. RNA 2′-O-methylation (Nm) modification in human diseases. Genes 10, 117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Nagayoshi, Y. et al. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. Sci. Adv. 7, eabf3072 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Elliott, B. A. et al. Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo. Nat. Commun. 10, 3401 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Marcel, V. et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318–330 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Schuberth-Wagner, C. et al. A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2’O-methylated self RNA. Immunity 43, 41–51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Despic, V. & Jaffrey, S. R. mRNA ageing shapes the Cap2 methylome in mammalian mRNA. Nature 614, 358–366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ringeard, M., Marchand, V., Decroly, E., Motorin, Y. & Bennasser, Y. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565, 500–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  256. Baghban, R. et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 18, 59 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Xu, B., Liu, D., Wang, Z., Tian, R. & Zuo, Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell. Mol. Life Sci. 78, 129–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  258. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Wei, J. & He, C. Site-specific m6A editing. Nat. Chem. Biol. 15, 848–849 (2019).

    Article  CAS  PubMed  Google Scholar 

  260. Li, J. et al. Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res. 48, 5684–5694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Wilson, C., Chen, P. J., Miao, Z. & Liu, D. R. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat. Biotechnol. 38, 1431–1440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Percharde, M. et al. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Shi, Y. et al. Chemically modified platforms for better RNA therapeutics. Chem. Rev. 124, 929–1033 (2024).

    Article  CAS  PubMed  Google Scholar 

  265. Egli, M. & Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 51, 2529–2573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Liu, A. & Wang, X. The pivotal role of chemical modifications in mRNA therapeutics. Front. Cell Dev. Biol. 10, 901510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  268. Nance, K. D. & Meier, J. L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci. 7, 748–756 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from National Institutes of Health (NIH) Grant RM1 HG008935 (C.H.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Chuan He.

Ethics declarations

Competing interests

C.H. is a scientific founder, a member of the scientific advisory board and equity holder of Aferna Bio, Inc. and Ellis Bio Inc.; a scientific cofounder and equity holder of Accent Therapeutics, Inc.; and a member of the scientific advisory board of Rona Therapeutics. L.Z., J.W. and Z.Z. declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Konstantinos Tzelepis, who co-reviewed with Eliza Yankova, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wei, J., Zou, Z. et al. RNA modification systems as therapeutic targets. Nat Rev Drug Discov (2025). https://doi.org/10.1038/s41573-025-01280-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-025-01280-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research