Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of chronic obstructive pulmonary disease: current pipeline and new opportunities  

Abstract

Chronic obstructive pulmonary disease (COPD) is an inflammatory disorder of the lungs that affects about 10% of the adult population and is currently the third leading global cause of death. COPD is the result of multiple, repeated and dynamic gene–environment interactions, starting early in life, that determine the lung function trajectory that a given individual follows over a lifetime. Increasing understanding of COPD pathogenesis has opened many new opportunities for drug development, including recently approved monoclonal antibodies that reduce inflammatory cytokine signalling by targeting the IL-4α receptor or the eosinophil-activating IL-5. Drugs targeting a range of other culprits involved in COPD, including neutrophils, alarmins and kinases, are also in clinical development. As the current pipeline of drugs in development for COPD matures, potential areas for novel therapies continue to emerge while lessons from ongoing trials such as patient stratification can be used to refine the design of future trials in this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential lung-function trajectories from childhood to old age.
Fig. 2: Overview of the inflammation network in COPD.
Fig. 3: Pharmacological targets of drugs currently or recently in COPD clinical trials.

Similar content being viewed by others

References  

  1. Agusti, A. et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur. Respir. J. 61, 2300239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fletcher, C., Peto, R., Tinker, C. & Speizer, F. The Natural History of Chronic Bronchitis and Emphysema. (Oxford University Press, 1976).

  3. Fletcher, C. & Peto, R. The natural history of chronic airflow obstruction. Br. Med. J. 1, 1645–1648 (1977).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Lange, P. et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 373, 111–122 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Agusti, A. & Faner, R. Lung function trajectories in health and disease. Lancet Respir. Med. 7, 358–364 (2019).

    Article  PubMed  Google Scholar 

  6. Agustí, A., Noell, G., Brugada, J. & Faner, R. Lung function in early adulthood and health in later life: a transgenerational cohort analysis. Lancet Respir. Med. 5, 935–945 (2017).

    Article  PubMed  Google Scholar 

  7. Agusti, A. & Hogg, J. C. Update on the pathogenesis of chronic obstructive pulmonary disease. N. Engl. J. Med. 381, 1248–1256 (2019).

    Article  PubMed  CAS  Google Scholar 

  8. Agustí, A., Melén, E., DeMeo, D. L., Breyer-Kohansal, R. & Faner, R. Pathogenesis of chronic obstructive pulmonary disease: understanding the contributions of gene–environment interactions across the lifespan. Lancet Respir. Med. 10, 512–524 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Melen, E. et al. Lung function trajectories: relevance and implementation in clinical practice. Lancet 403, 1494–1503 (2024).

    Article  PubMed  Google Scholar 

  10. Agusti, A. The path to personalized medicine in COPD. Thorax 69, 857–864 (2014).

    Article  PubMed  Google Scholar 

  11. Fabbri, L. M. et al. COPD and multimorbidity: recognising and addressing a syndemic occurrence. Lancet Respir. Med. 11, 1020–1034 (2023).

    Article  PubMed  Google Scholar 

  12. Celli, B. R. & Agustí, A. COPD: time to improve its taxonomy? ERJ Open Res. 4, 00132-2017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stolz, D. et al. Towards the elimination of chronic obstructive pulmonary disease: a lancet commission. Lancet 400, 921–972 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Agusti, A. et al. Treatable traits: toward precision medicine of airway diseases. Eur. Respir. J. 47, 410–419 (2016).

    Article  PubMed  Google Scholar 

  15. Boaventura, R., Sibila, O., Agusti, A. & Chalmers, J. D. Treatable traits in bronchiectasis. Eur. Respir. J. 52, 1801269 (2018).

    Article  PubMed  Google Scholar 

  16. Agusti, A. et al. Moving towards a treatable traits model of care for the management of obstructive airways diseases. Respir. Med. 187, 106572 (2021).

    Article  PubMed  Google Scholar 

  17. Papi, A. et al. From treatable traits to GETomics in airway disease: moving towards clinical practice. Eur. Respir. Rev. 33, 230143 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lipson, D. A. et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N. Engl. J. Med. 378, 1671–1680 (2018).

    Article  PubMed  CAS  Google Scholar 

  19. Rabe, K. F. et al. Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD. N. Engl. J. Med. 383, 35–48 (2020).

    Article  PubMed  CAS  Google Scholar 

  20. Singh, D. et al. Blood eosinophils and chronic obstructive pulmonary disease: a global initiative for chronic obstructive lung disease science committee 2022 review. Am. J. Respir. Crit. Care Med. 206, 17–24 (2022).

    Article  PubMed  CAS  Google Scholar 

  21. Lea, S., Higham, A., Beech, A. & Singh, D. How inhaled corticosteroids target inflammation in COPD. Eur. Respir. Rev. 32, 230084 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leung, C. et al. Transcriptomic profiling of the airway epithelium in COPD links airway eosinophilia to type 2 inflammation and corticosteroid response. Eur. Respir. J. 65, 2401875 (2025).

    Article  PubMed  CAS  Google Scholar 

  23. Agusti, A. et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7, e37483 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hogg, J. C. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364, 709–721 (2004).

    Article  PubMed  Google Scholar 

  25. Hunninghake, G. W. & Crystal, R. G. Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am. Rev. Respir. Dis. 128, 833–838 (1983).

    PubMed  CAS  Google Scholar 

  26. Murphy, T. F., Sethi, S., Hill, S. L. & Stockley, R. A. Inflammatory markers in bacterial exacerbations of COPD. Am. J. Respir. Crit. Care Med. 165, 132 (2002).

    Article  PubMed  Google Scholar 

  27. Polosukhin, V. V. et al. Small airway determinants of airflow limitation in chronic obstructive pulmonary disease. Thorax 76, 1079–1088 (2021).

    Article  PubMed  Google Scholar 

  28. Cazzola, M., Stolz, D., Rogliani, P. & Matera, M. G. α1-antitrypsin deficiency and chronic respiratory disorders. Eur. Respir. Rev. 29, 190073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  29. McElvaney, N. G. et al. Long-term efficacy and safety of alpha1 proteinase inhibitor treatment for emphysema caused by severe alpha1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir. Med. 5, 51–60 (2017).

    Article  PubMed  CAS  Google Scholar 

  30. Hogg, J. C. et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 350, 2645–2653 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Bewley, M. A. et al. Opsonic phagocytosis in chronic obstructive pulmonary disease is enhanced by Nrf2 agonists. Am. J. Respir. Crit. Care Med. 198, 739–750 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Donnelly, L. E. & Barnes, P. J. Defective phagocytosis in airways disease. Chest 141, 1055–1062 (2012).

    Article  PubMed  Google Scholar 

  33. Noguera, A. et al. An investigation of the resolution of inflammation (catabasis) in COPD. Respir. Res. 13, 101 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Christenson, S. A. et al. An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. J. Clin. Invest. 129, 169–181 (2019).

    Article  PubMed  Google Scholar 

  35. Ryan, A. W. et al. Chromosome 5q candidate genes in coeliac disease: genetic variation at IL4, IL5, IL9, IL13, IL17B and NR3C1. Tissue Antigens 65, 150–155 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Liew, F. Y. TH1 and TH2 cells: a historical perspective. Nat. Rev. Immunol. 2, 55–60 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. Higham, A., Dungwa, J., Pham, T. H., McCrae, C. & Singh, D. Increased mast cell activation in eosinophilic chronic obstructive pulmonary disease. Clin. Transl. Immunol. 11, e1417 (2022).

    Article  CAS  Google Scholar 

  38. Li, J. et al. COPD lung studies of Nrf2 expression and the effects of Nrf2 activators. Inflammopharmacology 30, 1431–1443 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Higham, A. et al. Type 2 inflammation in eosinophilic chronic obstructive pulmonary disease. Allergy 76, 1861–1864 (2021).

    Article  PubMed  Google Scholar 

  40. George, L. et al. Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy 75, 370–380 (2020).

    Article  PubMed  CAS  Google Scholar 

  41. Christenson, S. A. et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 191, 758–766 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang, Z. et al. Inflammatory endotype–associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am. J. Respir. Crit. Care Med. 203, 1488–1502 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Beech, A. S. et al. Bacteria and sputum inflammatory cell counts; a COPD cohort analysis. Respir. Res. 21, 289 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Van Rossem, I., Hanon, S., Verbanck, S. & Vanderhelst, E. Blood eosinophil counts in chronic obstructive pulmonary disease: adding within-day variability to the equation. Am. J. Respir. Crit. Care Med. 205, 727–729 (2022).

    Article  PubMed  Google Scholar 

  45. Long, G. H. et al. The stability of blood eosinophils in chronic obstructive pulmonary disease. Respir. Res. 21, 15 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Higham, A. & Singh, D. Stability of eosinophilic inflammation in COPD bronchial biopsies. Eur. Respir. J. 56, 2003802 (2020).

    Article  Google Scholar 

  47. Kim, V. L. et al. Impact and associations of eosinophilic inflammation in COPD: analysis of the AERIS cohort. Eur. Respir. J. 50, 1700853 (2017).

    Article  PubMed  Google Scholar 

  48. Mayhew, D. et al. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax 73, 422–430 (2018).

    Article  PubMed  Google Scholar 

  49. Southworth, T. et al. The relationship between airway immunoglobulin activity and eosinophils in COPD. J. Cell Mol. Med. 25, 2203–2212 (2021).

    Article  PubMed  CAS  Google Scholar 

  50. Martinez-Garcia, M. A. et al. Inhaled steroids, circulating eosinophils, chronic airway infection, and pneumonia risk in chronic obstructive pulmonary disease. a network analysis. Am. J. Respir. Crit. Care Med. 201, 1078–1085 (2020).

    Article  PubMed  CAS  Google Scholar 

  51. Paul, W. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nat. Rev. Immunol. 10, 225–235 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Goetzl, E. J. Th2 cells in rapid immune responses and protective avoidance reactions. FASEB J. 38, e23485 (2024).

    Article  PubMed  CAS  Google Scholar 

  53. Tan, H. T., Sugita, K. & Akdis, C. A. Novel biologicals for the treatment of allergic diseases and asthma. Curr. Allergy Asthma Rep. 16, 70 (2016).

    Article  PubMed  Google Scholar 

  54. Walker, J. A. & McKenzie, A. N. J. T(H)2 cell development and function. Nat. Rev. Immunol. 18, 121–133 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Severson, E. A., Lee, W. Y., Capaldo, C. T., Nusrat, A. & Parkos, C. A. Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1A, regulate beta1 integrin levels, and enhance cell migration. Mol. Biol. Cell 20, 1916–1925 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Karpathiou, G., Papoudou-Bai, A., Ferrand, E., Dumollard, J. M. & Peoc’h, M. STAT6: A review of a signaling pathway implicated in various diseases with a special emphasis in its usefulness in pathology. Pathol. Res. Pract. 223, 153477 (2021).

    Article  PubMed  CAS  Google Scholar 

  57. Yang, D., Han, Z. & Oppenheim, J. J. Alarmins and immunity. Immunol. Rev. 280, 41–56 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cayrol, C. & Girard, J.-P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 31, 31–37 (2014).

    Article  PubMed  CAS  Google Scholar 

  59. Riera-Martinez, L., Canaves-Gomez, L., Iglesias, A., Martin-Medina, A. & Cosio, B. G. The role of IL-33/ST2 in COPD and its future as an antibody therapy. Int. J. Mol. Sci. 24, 8702 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cohen, E. S. et al. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat. Commun. 6, 8327 (2015).

    Article  PubMed  CAS  Google Scholar 

  61. Strickson, S. et al. Oxidised IL-33 drives COPD epithelial pathogenesis via ST2-independent RAGE/EGFR signalling complex. Eur. Respir. J. 62, 2202210 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pace, E. et al. Cigarette smoke alters IL-33 expression and release in airway epithelial cells. Biochim. Biophys. Acta 1842, 1630–1637 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Kearley, J. et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42, 566–579 (2015).

    Article  PubMed  CAS  Google Scholar 

  64. Abdo, M. et al. Association of airway inflammation and smoking status with IL-33 level in sputum of patients with asthma or COPD. Eur. Respir. J. 64, 2400347 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Faiz, A. et al. IL-33 expression is lower in current smokers at both transcriptomic and protein levels. Am. J. Respir. Crit. Care Med. 208, 1075–1087 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bogiatzi, S. I. et al. Cutting edge: proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J. Immunol. 178, 3373–3377 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. Ying, S. et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J. Immunol. 181, 2790–2798 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Zhang, K. et al. Constitutive and inducible thymic stromal lymphopoietin expression in human airway smooth muscle cells: role in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell Mol. Physiol. 293, L375–L382 (2007).

    Article  PubMed  CAS  Google Scholar 

  69. Calven, J. et al. Viral stimuli trigger exaggerated thymic stromal lymphopoietin expression by chronic obstructive pulmonary disease epithelium: role of endosomal TLR3 and cytosolic RIG-I-like helicases. J. Innate Immun. 4, 86–99 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Ebina-Shibuya, R. & Leonard, W. J. Role of thymic stromal lymphopoietin in allergy and beyond. Nat. Rev. Immunol. 23, 24–37 (2023).

    Article  PubMed  CAS  Google Scholar 

  71. Singh, D., Lea, S. & Mathioudakis, A. G. Inhaled phosphodiesterase inhibitors for the treatment of chronic obstructive pulmonary disease. Drugs 81, 1821–1830 (2021).

    Article  PubMed  CAS  Google Scholar 

  72. Sherpa, R. T., Koziol-White, C. J. & Panettieri, R. A. Jr Advancing obstructive airway disease treatment: dual PDE3/4 inhibition as a therapeutic strategy. Cells 14, 659 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Banner, K. H. & Press, N. J. Dual PDE3/4 inhibitors as therapeutic agents for chronic obstructive pulmonary disease. Br. J. Pharmacol. 157, 892–906 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Beute, J. et al. A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight 3, e94888 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barnes, P. J. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacol. Rev. 68, 788–815 (2016).

    Article  PubMed  CAS  Google Scholar 

  76. Pelaia, C., Vatrella, A., Sciacqua, A., Terracciano, R. & Pelaia, G. Role of p38-mitogen-activated protein kinase in COPD: pathobiological implications and therapeutic perspectives. Expert Rev. Respir. Med. 14, 485–491 (2020).

    Article  PubMed  CAS  Google Scholar 

  77. Gaffey, K., Reynolds, S., Plumb, J., Kaur, M. & Singh, D. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs. Eur. Respir. J. 42, 28–41 (2013).

    Article  PubMed  CAS  Google Scholar 

  78. Renda, T. et al. Increased activation of p38 MAPK in COPD. Eur. Respir. J. 31, 62–69 (2008).

    Article  PubMed  CAS  Google Scholar 

  79. Bai, Y. R. et al. The recent advance of Interleukin-1 receptor associated kinase 4 inhibitors for the treatment of inflammation and related diseases. Eur. J. Med. Chem. 258, 115606 (2023).

    Article  PubMed  CAS  Google Scholar 

  80. Lavazais, S. et al. IRAK4 inhibition dampens pathogenic processes driving inflammatory skin diseases. Sci. Transl. Med. 15, eabj3289 (2023).

    Article  PubMed  CAS  Google Scholar 

  81. Hisert, K. B. et al. Understanding and addressing the needs of people with cystic fibrosis in the era of CFTR modulator therapy. Lancet Respir. Med. 11, 916–931 (2023).

    Article  PubMed  CAS  Google Scholar 

  82. Dransfield, M. et al. Cystic fibrosis transmembrane conductance regulator: roles in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 205, 631–640 (2022).

    Article  PubMed  CAS  Google Scholar 

  83. Raju, S. V. et al. Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am. J. Respir. Crit. Care Med. 188, 1321–1330 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Hassan, F. et al. Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir. Res. 15, 69 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Le Gars, M. et al. Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo. Am. J. Respir. Crit. Care Med. 187, 170–179 (2013).

    Article  PubMed  Google Scholar 

  86. Raju, S. V. et al. The cystic fibrosis transmembrane conductance regulator potentiator ivacaftor augments mucociliary clearance abrogating cystic fibrosis transmembrane conductance regulator inhibition by cigarette smoke. Am. J. Respir. Cell Mol. Biol. 56, 99–108 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Teerapuncharoen, K. et al. Acquired cystic fibrosis transmembrane conductance regulator dysfunction and radiographic bronchiectasis in current and former smokers: a cross-sectional study. Ann. Am. Thorac. Soc. 16, 150–153 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dransfield, M. T. et al. Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest 144, 498–506 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Diaz, A. A. et al. Airway-occluding mucus plugs and mortality in patients with chronic obstructive pulmonary disease. JAMA 329, 1832–1839 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Audousset, C., McGovern, T. & Martin, J. G. Role of Nrf2 in disease: novel molecular mechanisms and therapeutic approaches - pulmonary disease/asthma. Front. Physiol. 12, 727806 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Barnes, P. J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants 11, 965 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Bellezza, I., Giambanco, I., Minelli, A. & Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 1865, 721–733 (2018).

    Article  PubMed  CAS  Google Scholar 

  93. Ryan, E. M. et al. NRF2 activation reprograms defects in oxidative metabolism to restore macrophage function in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 207, 998–1011 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  PubMed  CAS  Google Scholar 

  96. Faner, R. et al. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Res. 2, 00002-02016 (2016).

    Article  PubMed  Google Scholar 

  97. Barnes, P. J. & Celli, B. R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 33, 1165–1185 (2009).

    Article  PubMed  CAS  Google Scholar 

  98. Brusselle, G. G. & Koppelman, G. H. Biologic therapies for severe asthma. N. Engl. J. Med. 386, 157–171 (2022).

    Article  PubMed  CAS  Google Scholar 

  99. Pavord, I. D. et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N. Engl. J. Med. 377, 1613–1629 (2017).

    Article  PubMed  CAS  Google Scholar 

  100. Yousuf, A., Ibrahim, W., Greening, N. J. & Brightling, C. E. T2 biologics for chronic obstructive pulmonary disease. J. Allergy Clin. Immunology: Pract. 7, 1405–1416 (2019).

    Google Scholar 

  101. Singh, D. et al. Benralizumab prevents recurrent exacerbations in patients with chronic obstructive pulmonary disease: a post hoc analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 18, 1595–1599 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Rennard, S. I. et al. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 191, 1001–1011 (2015).

    Article  PubMed  CAS  Google Scholar 

  103. Calverley, P. M. A. et al. A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. Respir. Res. 18, 153 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Eich, A. et al. A randomized, placebo-controlled phase 2 trial of CNTO 6785 in chronic obstructive pulmonary disease. COPD 14, 476–483 (2017).

    Article  PubMed  Google Scholar 

  105. Mahler, D. A., Huang, S., Tabrizi, M. & Bell, G. M. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest 126, 926–934 (2004).

    Article  PubMed  CAS  Google Scholar 

  106. Kuna, P., Jenkins, M., O’Brien, C. D. & Fahy, W. A. AZD9668, a neutrophil elastase inhibitor, plus ongoing budesonide/formoterol in patients with COPD. Respir. Med. 106, 531–539 (2012).

    Article  PubMed  Google Scholar 

  107. Matera, M. G., Cazzola, M. & Page, C. Prospects for COPD treatment. Curr. Opin. Pharmacol. 56, 74–84 (2021).

    Article  PubMed  CAS  Google Scholar 

  108. Chalmers, J. D. et al. Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis. N. Engl. J. Med. 383, 2127–2137 (2020).

    Article  PubMed  CAS  Google Scholar 

  109. Perea, L., Faner, R., Chalmers, J. D. & Sibila, O. Pathophysiology and genomics of bronchiectasis. Eur. Respir. Rev. 33, 240055 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Inghardt, T. et al. Discovery of AZD4831, a mechanism-based irreversible inhibitor of myeloperoxidase, as a potential treatment for heart failure with preserved ejection fraction. J. Med. Chem. 65, 11485–11496 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Sciurba, F. C. et al. Mepolizumab to prevent exacerbations of COPD with an eosinophilic phenotype. N. Engl. J. Med. 392, 1710–1720 (2025).

    Article  PubMed  CAS  Google Scholar 

  112. Criner, G. J. et al. Benralizumab for the prevention of COPD exacerbations. N. Engl. J. Med. 381, 1023–1034 (2019).

    Article  PubMed  CAS  Google Scholar 

  113. Criner, G. J. et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir. Med. 8, 158–170 (2020).

    Article  PubMed  CAS  Google Scholar 

  114. Jackson, D. J. et al. Twice-yearly depemokimab in severe asthma with an eosinophilic phenotype. N. Engl. J. Med. 391, 2337–2349 (2024).

    Article  PubMed  CAS  Google Scholar 

  115. Beck, J. M. ABCs of the lung microbiome. Ann. Am. Thorac. Soc. 11, S3–S6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Castro, M. et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N. Engl. J. Med. 378, 2486–2496 (2018).

    Article  PubMed  CAS  Google Scholar 

  117. Kondo, M. et al. Elimination of IL-13 reverses established goblet cell metaplasia into ciliated epithelia in airway epithelial cell culture. Allergol. Int. 55, 329–336 (2006).

    Article  PubMed  CAS  Google Scholar 

  118. Bhatt, S. P. et al. Dupilumab for COPD with type 2 inflammation indicated by elevated eosinophils. N. Engl. J. Med. 389, 205–214 (2023).

    Article  PubMed  CAS  Google Scholar 

  119. Bhatt, S. P. et al. Dupilumab for COPD with blood eosinophil evidence of type 2 inflammation. N. Engl. J. Med. 390, 2274–2283 (2024).

    Article  PubMed  CAS  Google Scholar 

  120. Carson, J. L. et al. Interleukin-13 stimulates production of nitric oxide in cultured human nasal epithelium. In Vitro Cell. Dev. Biol. Anim. 54, 200–204 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Pavord, I. D. et al. Baseline FeNO independently predicts the dupilumab response in patients with moderate-to-severe asthma. J. Allergy Clin. Immunol. Pract. 11, 1213–1220.e1212 (2023).

    Article  PubMed  CAS  Google Scholar 

  122. Higham, A., Beech, A., Dean, J. & Singh, D. Exhaled nitric oxide, eosinophils and current smoking in COPD patients. ERJ Open Res. 9, 00686-2023 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Agusti, A. Biologics for COPD — finally here. N. Engl. J. Med. 389, 274–275 (2023).

    Article  PubMed  Google Scholar 

  124. Rabe, K. F. et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir. Med. 9, 1288–1298 (2021).

    Article  PubMed  CAS  Google Scholar 

  125. Cherry, W. B., Yoon, J., Bartemes, K. R., Iijima, K. & Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol. 121, 1484–1490 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Tworek, D. et al. The association between airway eosinophilic inflammation and IL-33 in stable non-atopic COPD. Respir. Res. 19, 108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. England, E. et al. Tozorakimab (MEDI3506): an anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Sci. Rep. 13, 9825 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Reid, F. et al. A randomized phase 1 study of the anti-interleukin-33 antibody tozorakimab in healthy adults and patients with chronic obstructive pulmonary disease. Clin. Pharmacol. Ther. 115, 565–575 (2024).

    Article  PubMed  CAS  Google Scholar 

  129. Singh, D. et al. A phase 2a trial of the IL-33 mAb tozorakimab in patients with COPD: FRONTIER-4. Eur. Respir. J. 66, 2402231 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Vogelmeier, C. F. et al. COPDCompEx: a novel composite endpoint for COPD exacerbations to enable faster clinical development. Respir. Med. 173, 106175 (2020).

    Article  PubMed  Google Scholar 

  131. Wilkinson, T. et al. A randomised phase 2a study to investigate the effects of blocking interleukin-33 with tozorakimab in patients hospitalised with COVID-19: ACCORD-2. ERJ Open Res. 9, 00249-2023 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yousuf, A. J. et al. Astegolimab, an anti-ST2, in chronic obstructive pulmonary disease - COPD-ST2OP : a phase IIa, placebo-controlled trial. Lancet Respir. Med. 10, 469–477 (2022).

    Article  PubMed  CAS  Google Scholar 

  133. Kelsen, S. G. et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J. Allergy Clin. Immunol. 148, 790–798 (2021).

    Article  PubMed  CAS  Google Scholar 

  134. Corren, J. et al. Efficacy of tezepelumab in severe, uncontrolled asthma: pooled analysis of the PATHWAY and NAVIGATOR clinical trials. Am. J. Respir. Crit. Care Med. 208, 13–24 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Singh, D. et al. Efficacy and safety of tezepelumab versus placebo in adults with moderate to very severe chronic obstructive pulmonary disease (COURSE): a randomised, placebo-controlled, phase 2a trial. Lancet Respir. Med. 13, 47–58 (2025).

    Article  PubMed  Google Scholar 

  136. Crocetti, L., Floresta, G., Cilibrizzi, A. & Giovannoni, M. P. An overview of PDE4 inhibitors in clinical trials: 2010 to early 2022. Molecules 27, 4964 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Singh, D. et al. Effect of the inhaled PDE4 inhibitor CHF6001 on biomarkers of inflammation in COPD. Respir. Res. 20, 180 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Singh, D. et al. Efficacy and safety of CHF6001, a novel inhaled PDE4 inhibitor in COPD: the PIONEER study. Respir. Res. 21, 246 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Govoni, M. et al. Sputum and blood transcriptomics characterisation of the inhaled PDE4 inhibitor CHF6001 on top of triple therapy in patients with chronic bronchitis. Respir. Res. 21, 72 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Singh, D., Abbott-Banner, K., Bengtsson, T. & Newman, K. The short-term bronchodilator effects of the dual phosphodiesterase 3 and 4 inhibitor RPL554 in COPD. Eur. Respir. J. 52, 1801074 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ferguson, G. T., Kerwin, E. M., Rheault, T., Bengtsson, T. & Rickard, K. A dose-ranging study of the novel inhaled dual PDE 3 and 4 inhibitor ensifentrine in patients with COPD receiving maintenance tiotropium therapy. Int. J. Chron. Obstruct. Pulmon. Dis. 16, 1137–1148 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Anzueto, A. et al. Ensifentrine, a novel phosphodiesterase 3 and 4 inhibitor for the treatment of chronic obstructive pulmonary disease: randomized, double-blind, placebo-controlled, multicenter phase iii trials (the ENHANCE Trials). Am. J. Respir. Crit. Care Med. 208, 406–416 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Charron, C. E. et al. RV568, a narrow-spectrum kinase inhibitor with p38 MAPK-alpha and -gamma selectivity, suppresses COPD inflammation. Eur. Respir. J. 50, 1700188 (2017).

    Article  PubMed  Google Scholar 

  144. Ytterberg, S. R. et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 316–326 (2022).

    Article  PubMed  CAS  Google Scholar 

  145. Braithwaite, I. E. et al. Inhaled JAK inhibitor GDC-0214 reduces exhaled nitric oxide in patients with mild asthma: a randomized, controlled, proof-of-activity trial. J. Allergy Clin. Immunol. 148, 783–789 (2021).

    Article  PubMed  CAS  Google Scholar 

  146. Chen, H. et al. Effects of inhaled JAK inhibitor GDC-4379 on exhaled nitric oxide and peripheral biomarkers of inflammation. Pulm. Pharmacol. Ther. 75, 102133 (2022).

    Article  PubMed  CAS  Google Scholar 

  147. Rowe, S. M. et al. Efficacy and safety of the CFTR potentiator icenticaftor (QBW251) in COPD: results from a phase 2 randomized trial. Int. J. Chron. Obstruct. Pulmon. Dis. 15, 2399–2409 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Martinez, F. J. et al. Icenticaftor, a CFTR potentiator, in COPD: a multicenter, parallel-group, double-blind clinical trial. Am. J. Respir. Crit. Care Med. 208, 417–427 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Galietta, L. J. V. TMEM16A (ANO1) as a therapeutic target in cystic fibrosis. Curr. Opin. Pharmacol. 64, 102206 (2022).

    Article  PubMed  CAS  Google Scholar 

  150. Danahay, H. L. et al. TMEM16A potentiation: a novel therapeutic approach for the treatment of cystic fibrosis. Am. J. Respir. Crit. Care Med. 201, 946–954 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Agustí, A., Aliberti, S., Blasi, F., Miravitlles, M. & Papi, A. Occluding mucous airway plugs in patients with obstructive lung diseases: a new treatable trait? ERJ Open Res. 11, 00793-2024 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Klughammer, B. et al. A randomized, double-blind phase 1b study evaluating the safety, tolerability, pharmacokinetics and pharmacodynamics of the NLRP3 inhibitor selnoflast in patients with moderate to severe active ulcerative colitis. Clin. Transl. Med. 13, e1471 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Yang, I. A., Jenkins, C. R. & Salvi, S. S. Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir. Med. 10, 491–511 (2022).

    Article  Google Scholar 

  154. Breyer-Kohansal, R. et al. Factors associated with low lung function in different age bins in the general population. Am. J. Respir. Crit. Care Med. 202, 292–296 (2020).

    Article  PubMed  Google Scholar 

  155. Hernandez-Pacheco, N. et al. Exploring the genetics of airflow limitation in lung function across the lifespan – a polygenic risk score study. eClinicalMedicine 75, 102731 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Martinez, F. J. et al. Treatment trials in young patients with COPD and pre-COPD patients: time to move forward. Am. J. Respir. Crit. Care Med. 205, 275–287 (2022).

    Article  PubMed  Google Scholar 

  157. Kohansal, R. et al. The natural history of chronic airflow obstruction revisited: an analysis of the framingham offspring cohort. Am. J. Respir. Crit. Care Med. 180, 3–10 (2009).

    Article  PubMed  Google Scholar 

  158. Wang, G. et al. Plasticity of individual lung function states from childhood to adulthood. Am. J. Respir. Crit. Care Med. 207, 406–415 (2023).

    Article  PubMed  CAS  Google Scholar 

  159. Checkley, W. et al. Maternal vitamin a supplementation and lung function in offspring. N. Engl. J. Med. 362, 1784–1794 (2010).

    Article  PubMed  CAS  Google Scholar 

  160. Martinez-Garcia, M. A. et al. Factors associated with bronchiectasis in patients with COPD. Chest 140, 1130–1137 (2011).

    Article  PubMed  CAS  Google Scholar 

  161. Hurst, J. R., Elborn, J. S. & Soyza, A. D. COPD-bronchiectasis overlap syndrome. Eur. Respir. J. 45, 310–313 (2015).

    Article  PubMed  Google Scholar 

  162. Dou, S. et al. High prevalence of bronchiectasis in emphysema-predominant COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 13, 2041–2047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Traversi, L. et al. ROSE: radiology, obstruction, symptoms and exposure - a Delphi consensus definition of the association of COPD and bronchiectasis by the EMBARC Airways Working Group. ERJ Open Res. 7, 00399-2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Martinez-Garcia, M. A. & Miravitlles, M. The impact of chronic bronchial infection in COPD: a proposal for management. Int. J. Chron. Obstruct. Pulmon. Dis. 17, 621–630 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Faner, R. et al. The microbiome in respiratory medicine: current challenges and future perspectives. Eur. Respir. J. 49, 1602086 (2017).

    Article  PubMed  Google Scholar 

  166. Liang, W. et al. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease. Cell Host Microbe 31, 1054–1070.e1059 (2023).

    Article  PubMed  CAS  Google Scholar 

  167. Rosenberg, H., Airaksinen, M. M. & Tammisto, T. Inhibition of energy production by halothane metabolites. Acta Pharmacol. Toxicol. 28, 327–333 (1970).

    Article  CAS  Google Scholar 

  168. Lonergan, M. et al. Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD. Respir. Res. 21, 166 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Millares, L. et al. Relationship between the respiratory microbiome and the severity of airflow limitation, history of exacerbations and circulating eosinophils in COPD patients. BMC Pulm. Med. 19, 112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Castellani, C. A. et al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med. 12, 84 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Dicker, A. J. et al. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 147, 158–167 (2021).

    Article  PubMed  CAS  Google Scholar 

  172. Martínez-García, M. et al. Chronic bronchial infection is associated with more rapid lung function decline in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 19, 1842–1847 (2022).

    Article  PubMed  Google Scholar 

  173. Martinez-Garcia, M. Á et al. Chronic bronchial infection and incident cardiovascular events in chronic obstructive pulmonary disease patients: a long-term observational study. Respirology 26, 776–785 (2021).

    Article  PubMed  Google Scholar 

  174. Cheng, Y. W. & Fischer, M. Fecal microbiota transplantation. Clin. Colon Rectal Surg. 36, 151–156 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct. Target. Ther. 8, 200 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Sánchez-Ramón, S. et al. Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Front. Immunol. 9, 2936 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Laupèze, B., Del Giudice, G., Doherty, M. T. & Van der Most, R. Vaccination as a preventative measure contributing to immune fitness. NPJ Vaccines 6, 93 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Penders, Y. et al. Burden of respiratory syncytial virus disease in adults with asthma and chronic obstructive pulmonary disease: a systematic literature review. Curr. Allergy Asthma Rep. 25, 14 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Beghe, B., Verduri, A., Roca, M. & Fabbri, L. M. Exacerbation of respiratory symptoms in COPD patients may not be exacerbations of COPD. Eur. Respir. J. 41, 993–995 (2013).

    Article  PubMed  Google Scholar 

  180. José Soler-Cataluña, J. et al. Exacerbations in COPD: a personalised approach to care. Lancet Respir. Med. 11, 224–226 (2023).

    Article  PubMed  Google Scholar 

  181. Bafadhel, M. et al. Acute exacerbations of COPD: identification of biological clusters and their biomarkers. Am. J. Respir. Crit. Care Med. 184, 662–671 (2011).

    Article  PubMed  Google Scholar 

  182. Ramakrishnan, S. et al. Treating eosinophilic exacerbations of asthma and COPD with benralizumab (ABRA): a double-blind, double-dummy, active placebo-controlled randomised trial. Lancet Respir. Med. 13, 59–68 (2025).

    Article  PubMed  Google Scholar 

  183. Flynn, C. A. et al. Mepolizumab for COPD with eosinophilic phenotype following hospitalization. NEJM Evid. 4, EVIDoa2500012 (2025).

    Article  PubMed  Google Scholar 

  184. Polverino, F. et al. Metformin: experimental and clinical evidence for a potential role in emphysema treatment. Am. J. Respir. Crit. Care Med. 204, 651–666 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Singh, D. et al. Implications of cardiopulmonary risk for the management of COPD: a narrative review. Adv. Ther. 41, 2151–2167 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Ito, K. & Barnes, P. J. COPD as a disease of accelerated lung aging. Chest 135, 173–180 (2009).

    Article  PubMed  Google Scholar 

  187. Mercado, N., Ito, K. & Barnes, P. J. Accelerated ageing of the lung in COPD: new concepts. Thorax 70, 482–489 (2015).

    Article  PubMed  Google Scholar 

  188. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  189. Pellegrino, D., Casas-Recasens, S., Faner, R., Palange, P. & Agusti, A. When GETomics meets aging and exercise in COPD. Respir. Med. 216, 107294 (2023).

    Article  PubMed  CAS  Google Scholar 

  190. Morla, M. et al. Telomere shortening in smokers with and without COPD. Eur. Respir. J. 27, 525–528 (2006).

    Article  PubMed  CAS  Google Scholar 

  191. Córdoba-Lanús, E. et al. Telomere length dynamics over 10-years and related outcomes in patients with COPD. Respir. Res. 22, 56 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Casas-Recasens, S. et al. Epigenome-wide association studies of COPD and lung function: a systematic review. Am. J. Respir. Crit. Care Med. 210, 766–778 (2024).

    Article  PubMed  CAS  Google Scholar 

  193. Min, T., Bodas, M., Mazur, S. & Vij, N. Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J. Mol. Med. 89, 577–593 (2011).

    Article  PubMed  CAS  Google Scholar 

  194. Casas-Recasens, S. et al. Telomere length but not mitochondrial DNA copy number is altered in both young and old COPD. Front. Med. 8, 761767 (2021).

    Article  Google Scholar 

  195. Puente-Maestu, L. et al. Abnormal transition pore kinetics and cytochrome C release in muscle mitochondria of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 40, 746–750 (2009).

    Article  PubMed  CAS  Google Scholar 

  196. Barnes, P. J. Senescence in COPD and its comorbidities. Annu. Rev. Physiol. 79, 517–539 (2017).

    Article  PubMed  CAS  Google Scholar 

  197. Ghosh, M. et al. Exhaustion of airway basal progenitor cells in early and established chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 197, 885–896 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Schneider, J. L. et al. The aging lung: physiology, disease, and immunity. Cell 184, 1990–2019 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Baker, J. R., Donnelly, L. E. & Barnes, P. J. Senotherapy: a new horizon for COPD therapy. Chest 158, 562–570 (2020).

    Article  PubMed  CAS  Google Scholar 

  200. Stolk, J. et al. Randomized controlled trial for emphysema with a selective agonist of the gamma type retinoic acid receptor. Eur. Respir. J. 40, 306–312 (2012).

    Article  PubMed  CAS  Google Scholar 

  201. Ng-Blichfeldt, J. P., Gosens, R., Dean, C., Griffiths, M. & Hind, M. Regenerative pharmacology for COPD: breathing new life into old lungs. Thorax 74, 890–897 (2019).

    Article  PubMed  Google Scholar 

  202. Glassberg, M. K., Csete, I., Simonet, E. & Elliot, S. J. Stem cell therapy for COPD: hope and exploitation. Chest 160, 1271–1281 (2021).

    Article  PubMed  CAS  Google Scholar 

  203. Wang, Y. et al. Autologous transplantation of P63+ lung progenitor cells for chronic obstructive pulmonary disease therapy. Sci. Transl. Med. 16, eadi3360 (2024).

    Article  PubMed  CAS  Google Scholar 

  204. Li, W., Li, G., Zhou, W., Wang, H. & Zheng, Y. Effect of autoimmune cell therapy on immune cell content in patients with COPD: a randomized controlled trial. Comput. Math. Methods Med. 2022, 8361665 (2022). Retraction 2023, 9763428 (2023).

    PubMed  PubMed Central  Google Scholar 

  205. Skurikhin, E. et al. Potential of stem cells and CART as a potential polytherapy for small cell lung cancer. Front. Cell Dev. Biol. 9, 778020 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Bui, D. S. et al. Lung function trajectory and biomarkers in the tasmanian longitudinal health study. ERJ Open Res. 7, 00020-2021 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Olvera, N. et al. Circulating biomarkers in young individuals with low peak FEV1. Am. J. Respir. Crit. Care Med. 207, 354–358 (2023).

    Article  PubMed  Google Scholar 

  208. Cazzola, M. et al. An update on outcomes for COPD pharmacological trials: a COPD investigators report - reassessment of the 2008 American thoracic society/European respiratory society statement on outcomes for COPD pharmacological trials. Am. J. Respir. Crit. Care Med. 208, 374–394 (2023).

    Article  PubMed  Google Scholar 

  209. Soler-Cataluña, J. J. et al. Validation of clinical control in COPD as a new tool for optimizing treatment. Int. J. Chron. Obstruct. Pulmon. Dis. 13, 3719–3731 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Soler-Cataluña, J. J. et al. Clinical control criteria to determine disease control in patients with severe COPD: the CLAVE study. Int. J. Chron. Obstruct. Pulmon. Dis. 16, 137–146 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Raoof, S. et al. Lung imaging in COPD part 2: emerging concepts. Chest 164, 339–354 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Çolak, Y., Nordestgaard, B. G., Lange, P., Vestbo, J. & Afzal, S. Supernormal lung function and risk of COPD: a contemporary population-based cohort study. eClinicalMedicine 37, 100974 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Çolak, Y., Nordestgaard, B. G., Vestbo, J., Lange, P. & Afzal, S. Relationship between supernormal lung function and long-term risk of hospitalisations and mortality: a population-based cohort study. Eur. Respir. J. 57, 2004055 (2021).

    Article  PubMed  Google Scholar 

  214. Schiffers, C. et al. Supranormal lung function: prevalence, associated factors and clinical manifestations across the lifespan. Respirology 28, 942–953 (2023).

    Article  PubMed  Google Scholar 

  215. Salvi, S. S. & Barnes, P. J. Chronic obstructive pulmonary disease in non-smokers. Lancet 374, 733–743 (2009).

    Article  PubMed  Google Scholar 

  216. Breyer-Kohansal, R. et al. The LEAD (Lung, Heart, Social, Body) study: objectives, methodology, and external validity of the population-based cohort study. J. Epidemiol. 29, 315–324 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Agusti, A. et al. Time for a change: anticipating the diagnosis and treatment of chronic obstructive pulmonary disease. Eur. Respir. J. 56, 2002104 (2020).

    Article  PubMed  Google Scholar 

  218. Cho, M. H., Hobbs, B. D. & Silverman, E. K. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respir. Med. 10, 485–496 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Ghosh, A. J. et al. Clinical features of genetic resilience in chronic obstructive pulmonary disease. Preprint at medRxiv https://doi.org/10.1101/2023.03.06.23286843 (2023).

  220. Nissen, G. et al. Lung function of preterm children parsed by a polygenic risk score for adult COPD. NEJM Evid. 2, EVIDoa2200279 (2023).

    Article  PubMed  Google Scholar 

  221. Wang, T. et al. Associations of combined phenotypic aging and genetic risk with incidence of chronic respiratory diseases in the UK biobank: a prospective cohort study. Eur. Respir. J. 63, 2301720 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Zhang, J. et al. A polygenic risk score and age of diagnosis of chronic obstructive pulmonary disease. Eur. Respir. J. 60, 2101954 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Casas-Recasens, S. et al. Lung DNA methylation in COPD: relationship with smoking status and airflow limitation severity. Am. J. Respir. Crit. Care Med. 231, 129–134 (2021).

    Article  Google Scholar 

  224. Bui, D. S. et al. Childhood predictors of lung function trajectories and future COPD risk: a prospective cohort study from the first to the sixth decade of life. Lancet Respir. Med. 6, 535–544 (2018).

    Article  PubMed  Google Scholar 

  225. Okyere, D. O. et al. Predictors of lung function trajectories in population-based studies: a systematic review. Respirology 26, 938–959 (2021).

    Article  PubMed  Google Scholar 

  226. Wild, C. P. The exposome: from concept to utility. Int. J. Epidemiol. 41, 24–32 (2012).

    Article  PubMed  Google Scholar 

  227. de Prado-Bert, P. et al. The early-life exposome and epigenetic age acceleration in children. Environ. Int. 155, 106683 (2021).

    Article  PubMed  Google Scholar 

  228. Benincasa, G., DeMeo, D. L., Glass, K., Silverman, E. K. & Napoli, C. Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. Eur. Respir. J. 57, 2003406 (2021).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Higham (University of Manchester, UK) for drawing the original Figures 2 and 3. D.S. is supported by the National Institute of Health Research (NIHR) Manchester Biomedical Research Centre, and R.F. by the Serra Hunter and ICREA Programs, Department de Universitats de la Generalitat de Catalunya. This work was supported by Instituto de Salud Carlos III (PMP21/00090), co-funded by the European Union (NextGenerationEU/Mecanismo para la Recuperación y la Resilencia (MRR)/PRTR).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alvar Agusti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bronchiectasis

Disease characterized by permanent enlargement of parts of the airways of the lung.

Dyspnoea

Shortness of breath.

Goblet cells

A type of epithelial cell in the airways the primary function of which is to secrete mucins onto the internal surface of the respiratory tract.

ILC2s

Group 2 innate lymphoid cells; a subset of innate immune cells that have key roles in barrier immunity, especially at mucosal surfaces such as the lungs, gut and skin.

Mucins

A family of high molecular weight glycosylated proteins secreted by lung epithelial cells.

Neutrophil serine proteases

Enzymes produced by neutrophils that cleave peptide bonds in proteins.

Polygenic risk score

A number that summarizes the estimated effect of many genetic variants on an individual’s risk of a disease.

Syndemic

The co-occurrence of diseases with shared mechanisms and risk factors that can help to explain the clustering of certain morbidities in chronic obstructive pulmonary disease.

Treatable traits

A clinical (phenotype) or biological (endotype) characteristic that contributes to the heterogeneity of chronic airway diseases.

Type 1 inflammation

(TH1-mediated response). A type of immune response characterized by the participation of T helper 1 (TH1) cells, cytotoxic T cells (CD8+), macrophages, natural killer cells and neutrophils. Key participating cytokines are interferon-γ, IL-2 and TNF.

Type 2 inflammation

(TH2-mediated response). A type of immune response characterized by the participation of T helper 2 (TH2) cells, eosinophils, mast cells, basophils and B cells. Key participating cytokines are IL-4, IL-5 and IL-13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agusti, A., Singh, D. & Faner, R. Treatment of chronic obstructive pulmonary disease: current pipeline and new opportunities  . Nat Rev Drug Discov (2025). https://doi.org/10.1038/s41573-025-01290-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41573-025-01290-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research