Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of neuroimmune mechanisms in neurodegeneration

Abstract

Effective treatments for age-related chronic neurodegenerative diseases such as Alzheimer’s disease remain limited, in part because the molecular drivers of cognitive decline are still not fully understood. Human genetic studies, together with detailed analysis of disease pathology, indicate that the immune system has an important influence on disease progression. Research to date has focused largely on microglia — specialized innate immune cells that reside within the central nervous system (CNS) — as functional studies combined with deep transcriptional profiling have improved our understanding of this innate immune cell type in neurodegeneration and have identified several potential therapeutic targets. Increasing evidence now shows that microglia coordinate diverse CNS and peripheral cell populations to shape disease outcomes. In this Review, we discuss these neuroimmune interactions, which reveal a more intricate framework for how the central and peripheral immune systems may influence neurodegeneration. These insights could redirect future drug discovery efforts towards immune targets that complement existing therapies aimed at core pathological features. We also outline how this knowledge suggests new therapeutic strategies and highlight a critical need for disease-specific neuroimmune biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CNS-resident, vascular and peripheral immune cell types express AD risk factors.
Fig. 2: Cellular interactions of AD genetic risk factors define disease-relevant pathways.
Fig. 3: Immune cells at brain barriers coordinate surveillance and signalling.
Fig. 4: Mechanism of action for anti-amyloid antibodies and impact on microglia.
Fig. 5: Therapeutic rationale of combination dosing of anti-amyloid and microglia-targeting mAbs.

Similar content being viewed by others

References

  1. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022). The authors perform one of the largest AD GWAS to date, highlighting immune relevance for the disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019). This study maps promoter–enhancer interactomes in human brain cell types, linking noncoding AD risk variants to specific neuroimmune and glial regulatory programmes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gerhard, A. et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21, 404–412 (2006).

    Article  PubMed  CAS  Google Scholar 

  6. D’Erchia, A. M. et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS. Sci. Rep. 7, 10046 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Malpetti, M. et al. Microglial activation in the frontal cortex predicts cognitive decline in frontotemporal dementia. Brain 146, 3221–3231 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023). This paper demonstrates that microglia-driven T cell infiltration into the brain parenchyma can directly promote neurodegeneration in tauopathy, cementing microglia–T cell crosstalk and adaptive immunity as a central pathogenic axis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gate, D. et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 577, 399–404 (2020). By revealing clonally expanded, antigen-experienced CD8+ T cells patrolling CSF in AD, this study identifies an antigen-specific adaptive immune response in the CNS as an active and targetable component of neurodegeneration.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. De Schepper, S. et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat. Neurosci. 26, 406–415 (2023). This work shows how perivascular cells instruct SPP1+ microglial phagocytic states and synaptic engulfment, mechanistically linking vascular niches to microglial neurotoxicity in AD models.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22, 1021–1035 (2019). This single-cell atlas defines transcriptionally distinct brain macrophage populations by ontogeny and niche, setting the stage for dissecting microglia versus border-associated macrophage functions in disease.

    Article  PubMed  Google Scholar 

  13. Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article  PubMed  CAS  Google Scholar 

  14. Rustenhoven, J. & Kipnis, J. Brain borders at the central stage of neuroimmunology. Nature 612, 417–429 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article  PubMed  CAS  Google Scholar 

  17. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This work identifies functional meningeal lymphatic vessels, which informed an updated view of CNS immune privilege and opened the modern era of brain border immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Silvin, A. et al. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 55, 1448–1465.e6 (2022).

    Article  PubMed  CAS  Google Scholar 

  19. Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022). This single-cell atlas of the human brain vasculature characterizes endothelial, mural, stromal and immune cell transcriptomes, revealing blood–brain barrier changes and implicating the human brain vasculature in AD pathogenesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Da Mesquita, S. et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593, 255–260 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rustenhoven, J. et al. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. J. Exp. Med. https://doi.org/10.1084/jem.20221929 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lawrence, A. R. et al. Microglia maintain structural integrity during fetal brain morphogenesis. Cell 187, 962–980.e19 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cossart, R. & Garel, S. Step by step: cells with multiple functions in cortical circuit assembly. Nat. Rev. Neurosci. 23, 395–410 (2022).

    Article  PubMed  CAS  Google Scholar 

  25. Lawson, L. J., Perry, V. H., Dri, P. & Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151–170 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Stogsdill, J. A. et al. Pyramidal neuron subtype diversity governs microglia states in the neocortex. Nature 608, 750–756 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. De Biase, L. M. et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95, 341–356.e6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. Badimon, A. et al. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423 (2020). This paper elegantly demonstrates the functional link between microglia and neuronal activity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cserep, C. et al. Microglial control of neuronal development via somatic purinergic junctions. Cell Rep. 40, 111369 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596–1609 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Liu, Y. U. et al. Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat. Neurosci. 22, 1771–1781 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Stowell, R. D. et al. Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nat. Neurosci. 22, 1782–1792 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vainchtein, I. D. et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359, 1269–1273 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sokolova, D. et al. Astrocyte-derived MFG-E8 facilitates microglial synapse elimination in Alzheimer’s disease mouse models. Preprint at bioRxiv https://doi.org/10.1101/2024.08.31.606944 (2024).

  38. Rueda-Carrasco, J. et al. Microglia-synapse engulfment via PtdSer-TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 42, e113246 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. McNamara, N. B. et al. Microglia regulate central nervous system myelin growth and integrity. Nature 613, 120–129 (2023).

    Article  PubMed  CAS  Google Scholar 

  42. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  PubMed  CAS  Google Scholar 

  43. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Paolicelli, R. C. et al. Microglia states and nomenclature: a field at its crossroads. Neuron 110, 3458–3483 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sun, N. et al. Human microglial state dynamics in Alzheimer’s disease progression. Cell 186, 4386–4403.e29 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854.e9 (2020).

    Article  PubMed  CAS  Google Scholar 

  47. van Lengerich, B. et al. A TREM2-activating antibody with a blood-brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat. Neurosci. 26, 416–429 (2023). This study shows that a BBB transport vehicle-enabled TREM2 agonist enhances CNS exposure and boosts microglial metabolism and function in AD models, exemplifying a translational strategy to pharmacologically tune genetically implicated microglial pathways.

    PubMed  PubMed Central  Google Scholar 

  48. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  PubMed  CAS  Google Scholar 

  49. Guneykaya, D. et al. Transcriptional and translational differences of microglia from male and female brains. Cell Rep. 24, 2773–2783.e6 (2018).

    Article  PubMed  CAS  Google Scholar 

  50. Qiu, Y. et al. Definition of the contribution of an osteopontin-producing CD11c+ microglial subset to Alzheimer’s disease. Proc. Natl Acad. Sci. USA 120, e2218915120 (2023). This work defines the contribution of an osteopontin-producing CD11c+ microglial subset to AD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Weerakkody, T. N. et al. Loss of PILRA promotes microglial immunometabolism to reduce amyloid pathology in cell and mouse models of Alzheimer’s disease. Sci. Transl. Med. 17, eadw7428 (2025). This work identifies functional effects of loss of PILRA in microglia and demonstrates antibody-mediated inhibition as a potential therapeutic approach for AD.

    Article  PubMed  Google Scholar 

  52. Schlepckow, K. et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO Mol. Med. 12, e11227 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Feiten, A. F. et al. TREM2 expression level is critical for microglial state, metabolic capacity and efficacy of TREM2 agonism. Preprint at bioRxiv https://doi.org/10.1101/2024.07.18.604115 (2024).

  54. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015). This analysis demonstrates that drug targets supported by human genetic evidence have a significantly higher rate of success in clinical development.

    Article  PubMed  CAS  Google Scholar 

  55. Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6, 243ra286 (2014).

    Article  Google Scholar 

  56. Morenas-Rodriguez, E. et al. Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer’s disease: a longitudinal observational study. Lancet Neurol. 21, 329–341 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Cheng, Q. et al. TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer’s disease variant Trem2R47H on murine myeloid cell function. J. Biol. Chem. 293, 12620–12633 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Alector announces results from AL002 INVOKE-2 Phase 2 Trial in individuals with early Alzheimer’s disease and provides business update. Alector https://investors.alector.com/news-releases/news-release-details/alector-announces-results-al002-invoke-2-phase-2-trial (2024).

  59. Jack, C. R. Jr. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lee, S. et al. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep. 42, 112196 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Andreone, B. J. et al. Alzheimer’s-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat. Neurosci. 23, 927–938 (2020).

    Article  PubMed  CAS  Google Scholar 

  62. Marschallinger, J. et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23, 194–208 (2020). In this work, the authors demonstrate that lipid droplet-accumulating microglia are functionally defective, which provides insights into specific microglial activities that could contribute to disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Guillot-Sestier, M.-V. et al. Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer’s disease. Commun. Biol. 4, 711 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim, S. et al. Gender differences in risk factors for transition from mild cognitive impairment to Alzheimer’s disease: a CREDOS study. Compr. Psychiatry 62, 114–122 (2015).

    Article  PubMed  Google Scholar 

  65. Hu, Y. et al. Dual roles of hexokinase 2 in shaping microglial function by gating glycolytic flux and mitochondrial activity. Nat. Metab. 4, 1756–1774 (2022).

    Article  PubMed  CAS  Google Scholar 

  66. Minhas, P. S. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122–128 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Xiang, X. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 13, eabe5640 (2021).

    Article  PubMed  CAS  Google Scholar 

  68. Baik, S. H. et al. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab. 30, 493–507.e6 (2019).

    Article  PubMed  CAS  Google Scholar 

  69. Litvinchuk, A. et al. Amelioration of tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron 112, 384–403.e8 (2024).

    Article  PubMed  CAS  Google Scholar 

  70. Fessler, M. B. The challenges and promise of targeting the liver X receptors for treatment of inflammatory disease. Pharmacol. Ther. 181, 1–12 (2018).

    Article  PubMed  CAS  Google Scholar 

  71. Holstege, H. et al. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat. Genet. 54, 1786–1794 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Noveir, S. D. et al. Effect of the ABCA1 agonist CS-6253 on amyloid-β and lipoprotein metabolism in cynomolgus monkeys. Alzheimers Res. Ther. 14, 87 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Choi, H. Y., Choi, S., Iatan, I., Ruel, I. & Genest, J. Biomedical advances in ABCA1 transporter: from bench to bedside. Biomedicines https://doi.org/10.3390/biomedicines11020561 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yang, D. et al. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct. Target. Ther. 6, 7 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Lin, L. L. et al. GPR34 knockdown relieves cognitive deficits and suppresses neuroinflammation in Alzheimer’s disease via the ERK/NF-κB signal. Neuroscience 528, 129–139 (2023).

    Article  PubMed  CAS  Google Scholar 

  76. Raju, K. et al. GPR34 regulates microglia state and loss-of-function rescues TREM2 metabolic dysfunction. Preprint at bioRxiv https://doi.org/10.1101/2025.03.28.646038 (2025).

  77. Rathore, N. et al. Paired immunoglobulin-like type 2 receptor alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease. PLoS Genet. 14, e1007427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lopatko Lindman, K. et al. PILRA polymorphism modifies the effect of APOE4 and GM17 on Alzheimer’s disease risk. Sci. Rep. 12, 13264 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lu, Q. et al. PILRα and PILRβ have a siglec fold and provide the basis of binding to sialic acid. Proc. Natl Acad. Sci. USA 111, 8221–8226 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Selkoe, D. J. Alzheimer’s disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  PubMed  CAS  Google Scholar 

  81. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016). This study demonstrates that complement-tagged synapses are eliminated by microglia early in AD models, providing a mechanistic link between the classical complement cascade, immune signalling and pathological synapse loss.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dunkelberger, J. R. & Song, W. C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    Article  PubMed  CAS  Google Scholar 

  83. Dejanovic, B. et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nat. Aging 2, 837–850 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Wu, T. et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep. 28, 2111–2123.e6 (2019).

    Article  PubMed  CAS  Google Scholar 

  85. Dejanovic, B. et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron 100, 1322–1336.e7 (2018).

    Article  PubMed  CAS  Google Scholar 

  86. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This foundational work shows that the classical complement cascade instructs microglial synapse elimination in development, establishing a paradigm for immune sculpting of neural circuits that underpins later disease studies.

    Article  PubMed  CAS  Google Scholar 

  88. Asavapanumas, N., Tradtrantip, L. & Verkman, A. S. Targeting the complement system in neuromyelitis optica spectrum disorder. Expert Opin. Biol. Ther. 21, 1073–1086 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Desai, D. & Dugel, P. U. Complement cascade inhibition in geographic atrophy: a review. Eye 36, 294–302 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lansita, J. A. et al. Nonclinical development of ANX005: a humanized anti-C1q antibody for treatment of autoimmune and neurodegenerative diseases. Int. J. Toxicol. 36, 449–462 (2017).

    Article  PubMed  CAS  Google Scholar 

  91. Daskoulidou, N. et al. Complement receptor 1 is expressed on brain cells and in the human brain. Glia 71, 1522–1535 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zelek, W. M., Bevan, R. J. & Morgan, B. P. Targeting terminal pathway reduces brain complement activation, amyloid load and synapse loss, and improves cognition in a mouse model of dementia. Brain Behav. Immun. 118, 355–363 (2024).

    Article  PubMed  CAS  Google Scholar 

  93. Filipello, F. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48, 979–991.e8 (2018).

    Article  PubMed  CAS  Google Scholar 

  94. Li, T. et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 39, e104136 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Scott-Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Gunner, G. et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat. Neurosci. 22, 1075–1088 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Zhou, J. et al. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci. Transl. Med. 15, eadf0141 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015). By revealing that TREM2 is a lipid-sensing receptor required to sustain microglial responses in AD models, this paper mechanistically connects a major genetic risk factor to disease-relevant microglial function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Erturk, A., Wang, Y. & Sheng, M. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J. Neurosci. 34, 1672–1688 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bader Lange, M. L. et al. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol. Dis. 29, 456–464 (2008).

    Article  PubMed  CAS  Google Scholar 

  101. Chang, M. C. et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13, 1090–1097 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Carpanini, S. M. et al. Terminal complement pathway activation drives synaptic loss in Alzheimer’s disease models. Acta Neuropathol. Commun. 10, 99 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rua, R. & McGavern, D. B. Advances in meningeal immunity. Trends Mol. Med. 24, 542–559 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus-cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood-brain barrier in health and disease: important unanswered questions. J. Exp. Med. https://doi.org/10.1084/jem.20190062 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aav0492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Merlini, A. et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 25, 887–899 (2022).

    Article  PubMed  CAS  Google Scholar 

  108. Xu, H. et al. The choroid plexus synergizes with immune cells during neuroinflammation. Cell 187, 4946–4963.e17 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Daneman, R. The blood-brain barrier in health and disease. Ann. Neurol. 72, 648–672 (2012).

    Article  PubMed  CAS  Google Scholar 

  111. Chow, B. W. & Gu, C. The molecular constituents of the blood-brain barrier. Trends Neurosci. 38, 598–608 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Jellinger, K. A. Pathology and pathogenesis of vascular cognitive impairment — a critical update. Front. Aging Neurosci. 5, 17 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jellinger, K. A. & Attems, J. Prevalence of dementia disorders in the oldest-old: an autopsy study. Acta Neuropathol. 119, 421–433 (2010).

    Article  PubMed  Google Scholar 

  115. Kuo, P. Y. et al. Differences in lobar microbleed topography in cerebral amyloid angiopathy and hypertensive arteriopathy. Sci. Rep. 14, 3774 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Kiani Shabestari, S. et al. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer’s disease mice. Cell Rep. 39, 110961 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Fujita, M. et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain. Nat. Genet. https://doi.org/10.1038/s41588-024-01685-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shade, L. M. P. et al. GWAS of multiple neuropathology endophenotypes identifies new risk loci and provides insights into the genetic risk of dementia. Nat. Genet. 56, 2407–2421 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tayler, H., Miners, J. S., Guzel, O., MacLachlan, R. & Love, S. Mediators of cerebral hypoperfusion and blood-brain barrier leakiness in Alzheimer’s disease, vascular dementia and mixed dementia. Brain Pathol. 31, e12935 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Storck, S. E. et al. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J. Clin. Invest. 126, 123–136 (2016).

    Article  PubMed  Google Scholar 

  121. Zhao, Z. et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Uekawa, K. et al. Border-associated macrophages promote cerebral amyloid angiopathy and cognitive impairment through vascular oxidative stress. Mol. Neurodegen. 18, 73 (2023).

    Article  CAS  Google Scholar 

  124. Anfray, A. et al. A cell-autonomous role of border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury. Nat. Neurosci. 27, 2138–2151 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hawkes, C. A. & McLaurin, J. Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA 106, 1261–1266 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Solopova, E. et al. Fatal iatrogenic cerebral β-amyloid-related arteritis in a woman treated with lecanemab for Alzheimer’s disease. Nat. Commun. 14, 8220 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Schonhoff, A. M. et al. Border-associated macrophages mediate the neuroinflammatory response in an alpha-synuclein model of Parkinson disease. Nat. Commun. 14, 3754 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Carare, R. O. et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 34, 131–144 (2008).

    Article  PubMed  CAS  Google Scholar 

  129. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science https://doi.org/10.1126/science.abf9277 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science https://doi.org/10.1126/science.abf7844 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e27 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lehtinen, M. K. et al. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J. Neurosci. 33, 17553–17559 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Damkier, H. H., Brown, P. D. & Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93, 1847–1892 (2013).

    Article  PubMed  CAS  Google Scholar 

  135. Laman, J. D. & Weller, R. O. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol. 8, 840–856 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  PubMed  CAS  Google Scholar 

  137. Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Goldmann, J. et al. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J. Leukoc. Biol. 80, 797–801 (2006).

    Article  PubMed  CAS  Google Scholar 

  139. Fitzpatrick, Z. et al. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature https://doi.org/10.1038/s41586-024-07202-9 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Proulx, S. T. & Engelhardt, B. Central nervous system zoning: how brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J. Intern. Med. 292, 47–67 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Smith, A. J., Yao, X., Dix, J. A., Jin, B. J. & Verkman, A. S. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife https://doi.org/10.7554/eLife.27679 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Morris, A. W. et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 131, 725–736 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Szentistvanyi, I., Patlak, C. S., Ellis, R. A. & Cserr, H. F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835–F844 (1984).

    PubMed  CAS  Google Scholar 

  147. Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Abbott, N. J., Pizzo, M. E., Preston, J. E., Janigro, D. & Thorne, R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 135, 387–407 (2018).

    Article  PubMed  CAS  Google Scholar 

  149. Hawkes, C. A. et al. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol. 121, 431–443 (2011).

    Article  PubMed  Google Scholar 

  150. Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Antila, S. et al. Sustained meningeal lymphatic vessel atrophy or expansion does not alter Alzheimer’s disease-related amyloid pathology. Nat. Cardiovasc. Res. https://doi.org/10.1038/s44161-024-00445-9 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Merlini, M. et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 101, 1099–1108.e6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Senatorov, V. V. Jr. et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaw8283 (2019).

    Article  PubMed  Google Scholar 

  154. Martin, M. et al. Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science 375, eabm4459 (2022).

    Article  PubMed  CAS  Google Scholar 

  155. Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Bryant, A. et al. Endothelial cells are heterogeneous in different brain regions and are dramatically altered in Alzheimer’s disease. J. Neurosci. 43, 4541–4557 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sun, N. et al. Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease. Nat. Neurosci. 26, 970–982 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Zhao, L. et al. Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain. Nat. Commun. 11, 4413 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Yang, A. C. et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Bien-Ly, N. et al. Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron 88, 289–297 (2015).

    Article  PubMed  CAS  Google Scholar 

  161. Pizzo, M. E. et al. Transferrin receptor-targeted anti-amyloid antibody enhances brain delivery and mitigates ARIA. Science 389, eads3204 (2025).

    Article  PubMed  CAS  Google Scholar 

  162. Grimm, H. P. et al. Delivery of the Brainshuttle amyloid-beta antibody fusion trontinemab to non-human primate brain and projected efficacious dose regimens in humans. MAbs 15, 2261509 (2023). This work describes an anti-amyloid antibody engineered to cross the BBB through engagement of Transferrin receptor, which results in improved plaque clearance.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aay1359 (2020).

    Article  PubMed  Google Scholar 

  164. Chew, K. S. et al. CD98hc is a target for brain delivery of biotherapeutics. Nat. Commun. 14, 5053 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Piehl, N. et al. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment. Cell 185, 5028–5039.e13 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Ramakrishnan, A. et al. Epigenetic dysregulation in Alzheimer’s disease peripheral immunity. Neuron https://doi.org/10.1016/j.neuron.2024.01.013 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Krogsgaard, M. & Davis, M. M. How T cells ‘see’ antigen. Nat. Immunol. 6, 239–245 (2005).

    Article  PubMed  CAS  Google Scholar 

  168. Smith-Garvin, J. E., Koretzky, G. A. & Jordan, M. S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Marchetti, L. & Engelhardt, B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc. Biol. 2, H1–H18 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Schlager, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article  PubMed  Google Scholar 

  171. Carrithers, M. D., Visintin, I., Kang, S. J. & Janeway, C. A. Jr. Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123, 1092–1101 (2000).

    Article  PubMed  Google Scholar 

  172. Reboldi, A. et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    Article  PubMed  CAS  Google Scholar 

  173. Comi, C., Fleetwood, T. & Dianzani, U. The role of T cell apoptosis in nervous system autoimmunity. Autoimmun. Rev. 12, 150–156 (2012).

    Article  PubMed  CAS  Google Scholar 

  174. Pappalardo, J. L. et al. Transcriptomic and clonal characterization of T cells in the human central nervous system. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abb8786 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e4 (2020). This study defines a functional link between T cells and microglial development, with measurable effects on brain development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Ribeiro, M. et al. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aay5199 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Filiano, A. J. et al. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Brynskikh, A., Warren, T., Zhu, J. & Kipnis, J. Adaptive immunity affects learning behavior in mice. Brain Behav. Immun. 22, 861–869 (2008).

    Article  PubMed  CAS  Google Scholar 

  181. Mousa, A. & Bakhiet, M. Role of cytokine signaling during nervous system development. Int. J. Mol. Sci. 14, 13931–13957 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Kaya, T. et al. CD8+ T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Togo, T. et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J. Neuroimmunol. 124, 83–92 (2002).

    Article  PubMed  CAS  Google Scholar 

  184. Merlini, M., Kirabali, T., Kulic, L., Nitsch, R. M. & Ferretti, M. T. Extravascular CD3+ T cells in brains of Alzheimer disease patients correlate with tau but not with amyloid pathology: an immunohistochemical study. Neurodegener. Dis. 18, 49–56 (2018).

    Article  PubMed  CAS  Google Scholar 

  185. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Williams, G. P. et al. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson’s disease. Brain 144, 2047–2059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Marsh, S. E. et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc. Natl Acad. Sci. USA 113, E1316–E1325 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Perlmutter, L. S., Scott, S. A., Barron, E. & Chui, H. C. MHC class II-positive microglia in human brain: association with Alzheimer lesions. J. Neurosci. Res. 33, 549–558 (1992).

    Article  PubMed  CAS  Google Scholar 

  189. Faridar, A. et al. Restoring regulatory T-cell dysfunction in Alzheimer’s disease through ex vivo expansion. Brain Commun. 2, fcaa112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Marin-Rodero, M. et al. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci. Immunol. 10, eadu2910 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Dansokho, C. et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139, 1237–1251 (2016).

    Article  PubMed  Google Scholar 

  192. Baek, H. et al. Neuroprotective effects of CD4+CD25+Foxp3+regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget 7, 69347–69357 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Baruch, K. et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat. Commun. 6, 7967 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Su, W. et al. CXCR6 orchestrates brain CD8+ T cell residency and limits mouse Alzheimer’s disease pathology. Nat. Immunol. 24, 1735–1747 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Jorfi, M. et al. Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model. Nat. Neurosci. 26, 1489–1504 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Wu, C. T. et al. A change of PD-1/PD-L1 expression on peripheral T cell subsets correlates with the different stages of Alzheimer’s disease. Cell Biosci. 12, 162 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Thonhoff, J. R. et al. Combined regulatory T-lymphocyte and IL-2 treatment is safe, tolerable, and biologically active for 1 year in persons with amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000200019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. van der Lee, S. J. et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 138, 237–250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Diks, A. M. et al. Carriers of the p.P522R variant in PLCγ2 have a slightly more responsive immune system. Mol. Neurodegener. 18, 25 (2023). This study demonstrates a protective PLCG2 variant affected peripheral immune cell function, suggesting a connection between activity of the peripheral immune system and reduced AD risk.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Takalo, M. et al. The Alzheimer’s disease-associated protective Plcγ2-P522R variant promotes immune functions. Mol. Neurodegener. 15, 52 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Tsai, A. P. et al. Genetic variants of phospholipase C-γ2 alter the phenotype and function of microglia and confer differential risk for Alzheimer’s disease. Immunity 56, 2121–2136.e6 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Magno, L., Bunney, T. D., Mead, E., Svensson, F. & Bictash, M. N. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol. Neurodegener. 16, 22 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Olufunmilayo, E. O. & Holsinger, R. M. D. INPP5D/SHIP1: expression, regulation and roles in Alzheimer’s disease pathophysiology. Genes https://doi.org/10.3390/genes14101845 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Chou, V. et al. INPP5D regulates inflammasome activation in human microglia. Nat. Commun. 14, 7552 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Pedicone, C. et al. Pan-SHIP1/2 inhibitors promote microglia effector functions essential for CNS homeostasis. J. Cell Sci. https://doi.org/10.1242/jcs.238030 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Pedicone, C. et al. Discovery of a novel SHIP1 agonist that promotes degradation of lipid-laden phagocytic cargo by microglia. iScience 25, 104170 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Govindarajulu, M. et al. Role of cGAS-Sting signaling in Alzheimer’s disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24098151 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Hong, Z., Mei, J., Guo, H., Zhu, J. & Wang, C. Intervention of cGAS–STING signaling in sterile inflammatory diseases. J. Mol. Cell Biol. https://doi.org/10.1093/jmcb/mjac005 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Zhu, Z. et al. Development of VHL-recruiting STING PROTACs that suppress innate immunity. Cell Mol. Life Sci. 80, 149 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Sala Frigerio, C. et al. The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep. 27, 1293–1306.e6 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42, 985–990 (2010).

  215. Fox, R. J. et al. Tolebrutinib in nonrelapsing secondary progressive multiple sclerosis. N. Engl. J. Med. 392, 1883–1892 (2025).

    Article  PubMed  CAS  Google Scholar 

  216. Tolebrutinib designated breakthrough therapy by the FDA for non-relapsing secondary progressive multiple sclerosis. Sanofi https://www.sanofi.com/en/media-room/press-releases/2024/2024-12-13-06-00-00-2996609 (2024).

  217. Yshii, L. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat. Immunol. 23, 878–891 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Doglio, M. et al. Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in systemic lupus erythematosus. Nat. Commun. 15, 2542 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Ossenkoppele, R., van der Kant, R. & Hansson, O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 21, 726–734 (2022).

    Article  PubMed  CAS  Google Scholar 

  220. Salvado, G. et al. Disease staging of Alzheimer’s disease using a CSF-based biomarker model. Nat. Aging https://doi.org/10.1038/s43587-024-00599-y (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Johnson, E. C. B. et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 26, 769–780 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Chai, Y. L. et al. Plasma osteopontin as a biomarker of Alzheimer’s disease and vascular cognitive impairment. Sci. Rep. 11, 4010 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Long, H. et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer’s disease. Alzheimers Res. Ther. 16, 235 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Pesamaa, I. et al. A microglial activity state biomarker panel differentiates FTD-granulin and Alzheimer’s disease patients from controls. Mol. Neurodegener. 18, 70 (2023). This work identifies candidate microglial biomarkers that could hold potential for monitoring the state of this key disease-relevant cell type in accessible patient biofluids.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Shojaei, M. et al. PET imaging of microglia in Alzheimer’s disease using copper-64 labeled TREM2 antibodies. Theranostics 14, 6319–6336 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Phongpreecha, T. et al. Single-cell peripheral immunoprofiling of Alzheimer’s and Parkinson’s diseases. Sci. Adv. https://doi.org/10.1126/sciadv.abd5575 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Salloway, S. et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 79, 13–21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Cadiz, M. P. et al. Aducanumab anti-amyloid immunotherapy induces sustained microglial and immune alterations. J. Exp. Med. https://doi.org/10.1084/jem.20231363 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. https://doi.org/10.1084/jem.20200785 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Larson, K. C. et al. VGL101: an immunotherapy that enhances microglial survival for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) (P9-9.013). Neurology 102, 2490 (2024).

    Article  Google Scholar 

  231. Kumar, R. et al. A phase 2 open-label study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of intravenous ANX005 in patients with, or at risk of, manifest Huntington’s disease (HD) (S32.009). Neurology 100, 3366 (2023).

    Article  Google Scholar 

  232. Kantor, A. B., Akassoglou, K. & Stavenhagen, J. B. Fibrin-targeting immunotherapy for dementia. J. Prev. Alzheimers Dis. 10, 647–660 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Hincelin-Mery, A. et al. Safety, pharmacokinetics, and target engagement of a brain penetrant RIPK1 inhibitor, SAR443820 (DNL788), in healthy adult participants. Clin. Transl. Sci. 17, e13690 (2024).

    Article  PubMed  CAS  Google Scholar 

  234. Harrison, D. et al. Discovery of clinical candidate NT-0796, a brain-penetrant and highly potent NLRP3 inflammasome inhibitor for neuroinflammatory disorders. J. Med. Chem. 66, 14897–14911 (2023).

    Article  PubMed  CAS  Google Scholar 

  235. Tengesdal, I. W., Banks, M., Dinarello, C. A. & Marchetti, C. Screening NLRP3 drug candidates in clinical development: lessons from existing and emerging technologies. Front. Immunol. 15, 1422249 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Wells, R. C. et al. Dual targeting of transferrin receptor and CD98hc enhances brain exposure of large molecules. Cell Rep. 44, 116038 (2025).

    Article  PubMed  CAS  Google Scholar 

  237. An, S. et al. A brain-shuttled antibody targeting alpha synuclein aggregates for the treatment of synucleinopathies. npj Parkinsons Dis. 11, 254 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. V. Andrews for contributing expertise in interpreting and characterizing human genetics data. The authors also thank colleagues, especially C. Koth, for the extraordinary feedback on this manuscript during conceptualization and writing phases. S.H. is supported by the UK Dementia Research Institute (UKDRI-1011) through UK DRI Ltd, principally funded by the UK Medical Research Council, Chan Zuckerberg Initiative Neurodegeneration Challenge Network, BrightFocus Foundation (A2021032S), Alzheimer’s Association, Alzheimer’s Society UK and the Anonymous Foundation. A.C.Y. is supported by the Cure Alzheimer’s Fund, BrightFocus Foundation, Alzheimer’s Association and NIH Director’s Early Independence Award (1DP5OD033381).

Author information

Authors and Affiliations

Authors

Contributions

K.M.M. researched data for the article and contributed substantially to the discussion of the content. All authors wrote and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kathryn M. Monroe.

Ethics declarations

Competing interests

K.M.M. and J.W.L. are full-time employees and shareholders of Denali Therapeutics Inc. S.H. has been a paid consultant for Eisai Ltd, Novo Nordisk and Alnylam; receives research funding from AstraZeneca and Eisai Ltd; and collaborates with Ionis Ltd.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Andrew Mendiola and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aicardi–Goutières syndrome

A genetic leukodystrophy in which the immune system damages the myelin sheaths that protect neurons in the brain and spinal cord; symptoms include neurological defects such as developmental regression, seizures, microcephaly and poor feeding behaviour.

Amyloid mouse model

A mouse strain that develops amyloid plaque deposition in the brain, a hallmark pathology of the Alzheimer’s disease (AD), driven by genetic modification of amyloid precursor protein (APP) with one or more mutations found in human disease.

Amyloid-related imaging abnormalities

(ARIA). Defined using MRI and caused by disruption of blood vessels in the brain with amyloid deposition; the risk of ARIA is increased with some anti-amyloid antibody therapies.

Astrocyte end-feet

Processes that extend from astrocytes that ensheathe blood vessels and provide structural integrity to the vasculature in the brain.

Cerebral amyloid angiopathy

(CAA). A type of cerebrovascular disease characterized by amyloid deposition with cerebral blood vessels that can lead to cognitive impairment, microbleeds and other neurological symptoms.

Glia limitans

The outermost barrier of the CNS parenchyma, formed by astrocyte end-feet and a basement membrane that ensheathes the brain surface and lines perivascular spaces wherein it functions as a secondary checkpoint behind the endothelial blood–brain barrier.

Neuromyelitis optica spectrum disorder

An autoimmune disease in which optic nerve and spinal cord are damaged by autoantibodies; symptoms include vision loss, pain, numbness, weakness and paralysis that can worsen over time.

Pericytes

Cells that wrap around blood vessel walls and contribute to blood–brain barrier integrity and regulate blood flow.

Synaptic engulfment

The selective removal of synapses that mediate neuronal signalling; this process is mediated by microglia via the complement pathway during normal development of the CNS and during disease.

Tauopathy mouse model

A mouse strain that recapitulates tau pathology that occurs in neurodegenerative diseases including frontotemporal dementia (FTD) and AD; tangles of tau protein form in neurons and interfere with their health and function.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monroe, K.M., Hong, S., Lewcock, J.W. et al. Therapeutic targeting of neuroimmune mechanisms in neurodegeneration. Nat Rev Drug Discov (2026). https://doi.org/10.1038/s41573-025-01370-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41573-025-01370-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research