Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The role of regulated necrosis in endocrine diseases

Abstract

The death of endocrine cells is involved in type 1 diabetes mellitus, autoimmunity, adrenopause and hypogonadotropism. Insights from research on basic cell death have revealed that most pathophysiologically important cell death is necrotic in nature, whereas regular metabolism is maintained by apoptosis programmes. Necrosis is defined as cell death by plasma membrane rupture, which allows the release of damage-associated molecular patterns that trigger an immune response referred to as necroinflammation. Regulated necrosis comes in different forms, such as necroptosis, pyroptosis and ferroptosis. In this Perspective, with a focus on the endocrine environment, we introduce these cell death pathways and discuss the specific consequences of regulated necrosis. Given that clinical trials of necrostatins for the treatment of autoimmune conditions have already been initiated, we highlight the therapeutic potential of such novel therapeutic approaches that, in our opinion, should be tested in endocrine disorders in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regulated cell death pathways at a glance.
Fig. 2: Synchronized regulated necrosis.
Fig. 3: DAMPs and DIRE and the consequences of cell death.

Similar content being viewed by others

References

  1. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sarhan, M., Land, W. G., Tonnus, W., Hugo, C. P. & Linkermann, A. Origin and Consequences of Necroinflammation. Physiol. Rev. 98, 727–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Yatim, N. et al. RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8+ T cells. Science 350, 328–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Vanden Berghe, T. et al. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am. J. Respir. Crit. Care Med. 189, 282–291 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Tonnus, W. et al. The clinical relevance of necroinflammation-highlighting the importance of acute kidney injury and the adrenal glands. Cell Death Differ. 26, 68–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Tonnus, W. & Linkermann, A. “Death is my Heir” – ferroptosis connects cancer pharmacogenomics and ischemia-reperfusion injury. Cell Chem. Biol. 23, 202–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Zhao, Y. et al. Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia 58, 140–148 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Belavgeni, A. et al. Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proc. Natl Acad. Sci. USA 116, 22269–22274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagata, S. Apoptosis and autoimmune diseases. Ann. NY Acad. Sci. 1209, 10–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Segawa, K. & Nagata, S. An apoptotic ‘eat me’ signal: phosphatidylserine exposure. Trends Cell Biol. 25, 639–650 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Zargarian, S. et al. Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLoS Biol. 15, e2002711 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Krammer, P. H., Arnold, R. & Lavrik, I. N. Life and death in peripheral T cells. Nat. Rev. Immunol. 7, 532–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ofengeim, D. & Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 14, 727–736 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Lafont, E. et al. TBK1 and IKKepsilon prevent TNF-induced cell death by RIPK1 phosphorylation. Nat. Cell Biol. 20, 1389–1399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., Litwack, G. & Alnemri, E. S. Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc. Natl Acad. Sci. USA 93, 14486–14491 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newton, K. et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature 575, 679–682 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Dondelinger, Y., Darding, M., Bertrand, M. J. & Walczak, H. Poly-ubiquitination in TNFR1-mediated necroptosis. Cell Mol. Life Sci. 73, 2165–2176 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peltzer, N., Darding, M. & Walczak, H. Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol. 26, 445–461 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Walczak, H. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol. Rev. 244, 9–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Acehan, D. et al. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Pop, C., Timmer, J., Sperandio, S. & Salvesen, G. S. The apoptosome activates caspase-9 by dimerization. Mol. Cell 22, 269–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Viral modulation of programmed necrosis. Curr. Opin. Virol. 3, 296–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Mocarski, E. S., Upton, J. W. & Kaiser, W. J. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat. Rev. Immunol. 12, 79–88 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mompean, M. et al. The structure of the necrosome RIPK1-RIPK3 Core, a human hetero-amyloid signaling complex. Cell 173, 1244–1253.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaiser, W. J., Upton, J. W. & Mocarski, E. S. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427–6434 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 10, 916–922 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lin, J. et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Newton, K. et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Kaiser, W. J. & Offermann, M. K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol. 174, 4942–4952 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kaiser, W. J. et al. Toll-like Receptor 3-mediated necrosis via TRIF, RIP3 and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Gong, Y.-N. et al. ESCRT-III Acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 169, 286–300.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoon, S., Kovalenko, A., Bogdanov, K. & Wallach, D. MLKL, the protein that mediates necroptosis, also regulates endosomal trafficking and extracellular vesicle generation. Immunity 47, 51–65.e7 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Nogusa, S. et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza a virus. Cell Host Microbe 20, 13–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karki, R. et al. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184, 149–168.e17 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura, H. et al. Serum levels of receptor-interacting protein kinase-3 in patients with COVID-19. Crit. Care 24, 484 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hollstein, T. et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nat. Metab. 2, 1021–1024 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Vanlangenakker, N. et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ. 18, 656–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Feoktistova, M. et al. cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peltzer, N. et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappaB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16, 618–627 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Hrdinka, M. et al. CYLD limits Lys63- and Met1-linked ubiquitin at receptor complexes to regulate innate immune signaling. Cell Rep. 14, 2846–2858 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moquin, D. M., McQuade, T. & Chan, F. K. CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis. PloS ONE 8, e76841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Heger, K. et al. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 559, 120–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Damgaard, R. B. et al. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 166, 1215–1230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Keusekotten, K. et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153, 1312–1326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, D. et al. TBK1 suppresses RIPK1-driven apoptosis and inflammation during development and in aging. Cell 174, 1477–1491.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dondelinger, Y. et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 20, 1381–1392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dondelinger, Y. et al. NF-kappaB-independent role of IKKalpha/IKKbeta in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death TNF signaling. Mol. Cell 60, 63–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Annibaldi, A. et al. Ubiquitin-mediated regulation of RIPK1 kinase activity Independent of IKK and MK2. Mol. Cell 69, 566–580.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mihaly, S. R., Ninomiya-Tsuji, J. & Morioka, S. TAK1 control of cell death. Cell Death Differ. 21, 1667–1676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. de Vasconcelos, N. M., Van, O. N. & Lamkanfi, M. Inflammasomes as polyvalent cell death platforms. Cell Mol. Life Sci. 73, 2335–2347 (2016).

    Article  PubMed  CAS  Google Scholar 

  78. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fritsch, M. et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575, 683–687 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Philip, N. H. et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-kappaB and MAPK signaling. Proc. Natl Acad. Sci. USA 111, 7385–7390 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Rogers, C. et al. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 10, 1689 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24, 507–514.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tonnus, W. et al. The pathological features of regulated necrosis. J. Pathol. 247, 697–707 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  CAS  Google Scholar 

  93. Mandal, P. et al. Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic shock. Immunity 49, 42–55.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Riegman, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Katikaneni, A. et al. Lipid peroxidation regulates long-range wound detection through 5-lipoxygenase in zebrafish. Nat. Cell Biol. 22, 1049–1055 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Davidson, A. J. & Wood, W. Igniting the spread of ferroptotic cell death. Nat. Cell Biol. 22, 1027–1029 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Yoo, S. E. et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic. Biol. Med. 52, 1820–1827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Brown, C. W. et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell 51, 575–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Wang, W. et al. Tissue-specific ablation of ACSL4 results in disturbed steroidogenesis. Endocrinology 160, 2517–2528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Arlt, W. et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet 363, 2128–2135 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Soula, M. et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat. Chem. Biol. 16, 1351–1360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yan, B. et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell 81, 355–369.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Shimada, K. et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gaschler, M. M. et al. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol. 14, 507–515 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yi, J., Minikes, A. M. & Jiang, X. Aiming at cancer in vivo: ferroptosis-inducer delivered by nanoparticles. Cell Chem. Biol. 26, 621–622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, Y. et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem. Biol. 26, 623–633.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Muendlein, H. I. et al. cFLIPL protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science 367, 1379–1384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Malireddi, R. K. S. et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J. Exp. Med. 217, jem.20191644 (2020).

    Article  CAS  Google Scholar 

  126. Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36, 489–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Green, D. R., Oguin, T. H. & Martinez, J. The clearance of dying cells: table for two. Cell Death. Differ. 23, 915–926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Oboki, K. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl Acad. Sci. USA 107, 18581–18586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhu, K. et al. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death Dis. 9, 500 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Južnić, L. et al. SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut 70, 485–498 (2021).

    Article  PubMed  CAS  Google Scholar 

  135. Wang, R. et al. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580, 386–390 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Hildebrand, J. M. et al. A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction. Nat. Commun. 11, 3150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brough, D. & Rothwell, N. J. Caspase-1-dependent processing of pro-interleukin-1beta is cytosolic and precedes cell death. J. Cell Sci. 120, 772–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Bergsbaken, T., Fink, S. L., den Hartigh, A. B., Loomis, W. P. & Cookson, B. T. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J. Immunol. 187, 2748–2754 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Vanden Berghe, T. et al. An inactivating caspase-11 passenger mutation muddles sepsis research. Am. J. Respir. Crit. Care Med. 188, 120–121 (2013).

    Article  PubMed  Google Scholar 

  140. Case, C. L. et al. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc. Natl Acad. Sci. USA 110, 1851–1856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Broz, P. et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mier, J. W. et al. Dissimilarities between purified human interleukin-1 and recombinant human interleukin-2 in the induction of fever, brain prostaglandin, and acute-phase protein synthesis. J. Biol. Response Mod. 4, 35–45 (1985).

    CAS  PubMed  Google Scholar 

  143. Li, W. et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Invest. 129, 2293–2304 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Allam, R. et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 23, 1375–1388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nakazawa, D. et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J. Am. Soc. Nephrol. 28, 1753–1768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Degterev, A. & Linkermann, A. Generation of small molecules to interfere with regulated necrosis. Cell Mol. Life Sci. 73, 2251–2267 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. von Massenhausen, A. et al. Phenytoin inhibits necroptosis. Cell Death Dis. 9, 359 (2018).

    Article  CAS  Google Scholar 

  148. Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Llabani, E. et al. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nat. Chem. 11, 521–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Degterev, A., Maki, J. L. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20, 366 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481–495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pierotti, C. L. et al. Potent inhibition of Necroptosis by simultaneously targeting multiple effectors of the pathway. ACS Chem. Biol. 15, 2702–2713 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Del Re, D. P., Amgalan, D., Linkermann, A., Liu, Q. & Kitsis, R. N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 99, 1765–1817 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao, M., Monian, P., Quadri, N., Ramasamy, R. & Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Alim, I. et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177, 1262–1279.e25 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Kenny, E. M. et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit. Care Med. 47, 410–418 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Adedoyin, O. et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am. J. Physiol. Ren. Physiol. 314, F702–F714 (2018).

    Article  CAS  Google Scholar 

  163. Deng, F., Sharma, I., Dai, Y., Yang, M. & Kanwar, Y. S. Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J. Clin. Invest. 129, 5033–5049 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Martin-Sanchez, D. et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J. Am. Soc. Nephrol. 28, 218–229 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Stoppe, C. et al. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci. Transl Med. 10, eaan4886 (2018).

    Article  PubMed  CAS  Google Scholar 

  166. Schumann-Bischoff, A. et al. Distinct morphological features of acute tubular injury in renal allografts correlate with clinical outcome. Am. J. Physiol. Ren. Physiol. 315, F701–F710 (2018).

    Article  CAS  Google Scholar 

  167. Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Devisscher, L. et al. Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy. J. Med. Chem. 61, 10126–10140 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Yagoda, N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Yatim, N., Cullen, S. & Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 17, 262–275 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Orozco, S. L. et al. RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity. Cell Rep. 28, 2275–2287.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Blander, J. M. Regulation of the cell biology of antigen cross-presentation. Annu. Rev. Immunol. 36, 717–753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Snyder, A. G. et al. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 4, eaaw2004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Van Hoecke, L. et al. Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nat. Commun. 9, 3417 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Chervonsky, A. V. et al. The role of Fas in autoimmune diabetes. Cell 89, 17–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  176. Kang, S. M. et al. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat. Med. 3, 738–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  177. Kar, S., Kambis, T. N. & Mishra, P. K. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 316, H1237–H1252 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bruni, A., Bornstein, S., Linkermann, A. & Shapiro, A. M. J. Regulated cell death seen through the lens of islet transplantation. Cell Transplant. 27, 890–901 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bruni, A. et al. Ferroptosis-inducing agents compromise in vitro human islet viability and function. Cell Death Dis. 9, 595 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Land, W. G., Agostinis, P., Gasser, S., Garg, A. D. & Linkermann, A. Transplantation and damage-associated molecular patterns (DAMPs). Am. J. Transplant. 16, 3338–3361 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Bornstein, S. R. Predisposing factors for adrenal insufficiency. N. Engl. J. Med. 360, 2328–2339 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Husebye, E. S., Pearce, S. H., Krone, N. P. & Kämpe, O. Adrenal insufficiency. Lancet 397, 613–629 (2021).

    Article  CAS  PubMed  Google Scholar 

  183. Merke, D. P. et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N. Engl. J. Med. 343, 1362–1368 (2000).

    Article  CAS  PubMed  Google Scholar 

  184. Hata, Y., Chiba, T., Ohtani, M., Ishizawa, S. & Nishida, N. An autopsy case of pneumococcal Waterhouse-Friderichsen syndrome with possible functional asplenia/hyposplenia. Int. J. Clin. Exp. Pathol. 8, 7518–7525 (2015).

    PubMed  PubMed Central  Google Scholar 

  185. Kanczkowski, W. et al. Role of the endothelial-derived endogenous anti-inflammatory factor Del-1 in inflammation-mediated adrenal gland dysfunction. Endocrinology 154, 1181–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Datta, R., Waheed, A., Shah, G. N. & Sly, W. S. Signal sequence mutation in autosomal dominant form of hypoparathyroidism induces apoptosis that is corrected by a chemical chaperone. Proc. Natl Acad. Sci. USA 104, 19989–19994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Vladykovskaya, E. et al. Lipid peroxidation product 4-hydroxy-trans-2-nonenal causes endothelial activation by inducing endoplasmic reticulum stress. J. Biol. Chem. 287, 11398–11409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Marx, K. et al. Cell death induced by 131 I in a differentiated thyroid carcinoma cell line in vitro: necrosis or apoptosis? Nucl. Med. Commun. 27, 353–358 (2006).

    Article  PubMed  Google Scholar 

  190. Liu, J. et al. Excessive iodine promotes pyroptosis of thyroid follicular epithelial cells in Hashimoto’s thyroiditis through the ROS-NF-kappaB-NLRP3 pathway. Front. Endocrinol. 10, 778 (2019).

    Article  CAS  Google Scholar 

  191. Kodama, T. et al. Transient thyrotoxicosis associated with infarction of a large thyroid adenoma. Endocrinol. Jpn 34, 779–784 (1987).

    Article  CAS  PubMed  Google Scholar 

  192. Li, H. et al. TNF-alpha is upregulated in subacute thyroiditis and stimulates expression of miR-155-5p in thyroid follicle cells. Discov. Med. 26, 67–77 (2018).

    PubMed  Google Scholar 

  193. Salemi, S. et al. Isolated autosomal dominant growth hormone deficiency: stimulating mutant GH-1 gene expression drives GH-1 splice-site selection, cell proliferation, and apoptosis. Endocrinology 148, 45–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  194. Ariyasu, D., Yoshida, H., Yamada, M. & Hasegawa, Y. Endoplasmic reticulum stress and apoptosis contribute to the pathogenesis of dominantly inherited isolated GH deficiency due to GH1 gene splice site mutations. Endocrinology 154, 3228–3239 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Chesnokova, V. et al. Growth hormone is permissive for neoplastic colon growth. Proc. Natl Acad. Sci. USA 113, E3250–E3259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yan, Y. et al. Aortic cell apoptosis in rat primary aldosteronism model. J. Huazhong Univ. Sci. Technolog. Med. Sci. 30, 385–390 (2010).

    Article  PubMed  Google Scholar 

  197. Yang, Y. et al. Primary aldosteronism: KCNJ5 mutations and adrenocortical cell growth. Hypertension 74, 809–816 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Duan, T. et al. Role of peroxiredoxin 2 in H2O2induced oxidative stress of primary Leydig cells. Mol. Med. Rep. 13, 4807–4813 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Luo, Y. et al. Hypersensitivity of primordial germ cells to compromised replication-associated DNA repair involves ATM-p53-p21 signaling. PLoS Genet. 10, e1004471 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Kastenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tarangelo, A. et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep. 22, 569–575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Moon, S. H. et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell 176, 564–580.e19 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Brissot, P. et al. Haemochromatosis. Nat. Rev. Dis. Primers 4, 18016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Nelson, J. E., Brunt, E. M. & Kowdley, K. V. Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations. Hepatology 56, 1730–1740 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Qi, J., Kim, J. W., Zhou, Z., Lim, C. W. & Kim, B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am. J. Pathol. 190, 68–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Tsurusaki, S. et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 10, 449 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Wachenfeld, C. et al. Discerning malignancy in adrenocortical tumors: are molecular markers useful? Eur. J. Endocrinol. 145, 335–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  208. Reincke, M. et al. p53 mutations in human adrenocortical neoplasms: immunohistochemical and molecular studies. J. Clin. Endocrinol. Metab. 78, 790–794 (1994).

    CAS  PubMed  Google Scholar 

  209. Saeger, W. et al. High diagnostic accuracy of adrenal core biopsy: results of the German and Austrian adrenal network multicenter trial in 220 consecutive patients. Hum. Pathol. 34, 180–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Giordano, T. J. et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin. Cancer Res. 15, 668–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Zheng, S. et al. Comprehensive pan-genomic characterization of adrenocortical carcinoma. Cancer Cell 30, 363 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. de Cubas, A. A. et al. DNA methylation profiling in pheochromocytoma and paraganglioma reveals diagnostic and prognostic markers. Clin. Cancer Res. 21, 3020–3030 (2015).

    Article  PubMed  CAS  Google Scholar 

  213. Khosla, S. et al. Loss of heterozygosity suggests multiple genetic alterations in pheochromocytomas and medullary thyroid carcinomas. J. Clin. Invest. 87, 1691–1699 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Fankhauser, M. et al. Synergistic highly potent targeted drug combinations in different pheochromocytoma models including human tumor cultures. Endocrinology 160, 2600–2617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Velasquez, G. et al. The “ring sign” of necrotic pheochromocytoma. Radiology 131, 69–71 (1979).

    Article  CAS  PubMed  Google Scholar 

  216. Short, I. A. & Padfield, P. L. Malignant phaeochromocytoma with severe constipation and myocardial necrosis. Br. Med. J. 2, 793–794 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Delaney, J. P. & Paritzky, A. Z. Necrosis of a pheochromocytoma with shock. N. Engl. J. Med. 280, 1394–1395 (1969).

    Article  CAS  PubMed  Google Scholar 

  218. Nyman, D. & Wahlberg, P. Necrotic phaeochromocytoma with gastric haemorrhage, shock, and uncommonly high catecholamine excretion. Acta Med. Scand. 187, 381–383 (1970).

    Article  CAS  PubMed  Google Scholar 

  219. Carpenter, A. A. & Kunin, A. S. Pheochromocytoma with acute tubular necrosis. Report of a case. N. Engl. J. Med. 265, 986–988 (1961).

    Article  CAS  PubMed  Google Scholar 

  220. Liu, C. L. et al. Targeting the pentose phosphate pathway increases reactive oxygen species and induces apoptosis in thyroid cancer cells. Mol. Cell. Endocrinol. 499, 110595 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Iannetti, A. et al. The neutrophil gelatinase-associated lipocalin (NGAL), a NF-κB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc. Natl Acad. Sci. USA 105, 14058–14063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Riegman, M., Bradbury, M. S. & Overholtzer, M. Population dynamics in cell death: mechanisms of propagation. Trends Cancer 5, 558–568 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Vanden Berghe, T. et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61, 117–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  224. Howard, S. C., Jones, D. P. & Pui, C. H. The tumor lysis syndrome. N. Engl. J. Med. 364, 1844–1854 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.L. is supported by a Heisenberg-Professorship granted by the German Research Foundation (DFG), project number 324141047. Work in the Linkermann Lab and the Bornstein Lab is funded by Medical Clinic 3, University Hospital Carl Gustav Carus Dresden, Germany, and supported by the SFB-TRR 205, SFB-TRR 127 and the international research training group (IRTG) 2251. This work was further supported by the transCampus to S.R.B. and A.L.. N.P.K. was supported by the DFG, project KR3363/3-1. F.B. is supported by the Hochschulmedizin Zürich through the Flagship project Immuno-TarGET. We would like to thank all members of the Linkermann Lab for the ongoing discussions. We cordially thank R. Drtina for her assistance with preparing the first draft of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

W.T., A.B. and A.L. researched data for the article, contributed to the discussion of the content, wrote the article, and reviewed and/or edited the article before submission. F.B., G.E., M.F., M.K., N.P.K., M.R. and S.R.B. researched data for the article, contributed to the discussion of the content, and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Andreas Linkermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks J. Yuan and N. Chattipakorn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonnus, W., Belavgeni, A., Beuschlein, F. et al. The role of regulated necrosis in endocrine diseases. Nat Rev Endocrinol 17, 497–510 (2021). https://doi.org/10.1038/s41574-021-00499-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-021-00499-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing