Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uterine bleeding: how understanding endometrial physiology underpins menstrual health

Abstract

Menstruation is a physiological process that is typically uncomplicated. However, up to one third of women globally will be affected by abnormal uterine bleeding (AUB) at some point in their reproductive years. Menstruation (that is, endometrial shedding) is a fine balance between proliferation, decidualization, inflammation, hypoxia, apoptosis, haemostasis, vasoconstriction and, finally, repair and regeneration. An imbalance in any one of these processes can lead to the abnormal endometrial phenotype of AUB. Poor menstrual health has a negative impact on a person’s physical, mental, social, emotional and financial well-being. On a global scale, iron deficiency and iron deficiency anaemia are closely linked with AUB, and are often under-reported and under-recognized. The International Federation of Gynecology and Obstetrics have produced standardized terminology and a classification system for the causes of AUB. This standardization will facilitate future research endeavours, diagnosis and clinical management. In a field where no new medications have been developed for over 20 years, emerging technologies are paving the way for a deeper understanding of the biology of the endometrium in health and disease, as well as opening up novel diagnostic and management avenues.

Key points

  • Menstruation is a phenomenon of repeated tissue injury and repair that is a fine balance between proliferation, decidualization, inflammation, hypoxia, apoptosis, haemostasis, vasoconstriction and, finally, repair and regeneration.

  • The endometrium is a dynamic, multicellular tissue highly responsive to sex steroids; subtle variances in the endometrial environment and, therefore, functioning, can lead to abnormal uterine bleeding (AUB).

  • AUB is a debilitating symptom that affects up to one third of reproductive-aged women; comprehensive knowledge of menstrual cycle physiology is crucial for understanding and progressing endometrial physiology research.

  • There is a high prevalence of iron deficiency and iron deficiency anaemia in those with AUB, on a global scale, and this is often under-recognized and under-reported.

  • The terminology and definitions for diagnosing causes of AUB are now standardized in the International Federation of Gynecology and Obstetrics Systems 1 and 2, and should be followed for ease of clinical and research synchrony.

  • Treatments for AUB are not specific and a third of patients resort to a hysterectomy for resolution of symptoms, highlighting a clinically unmet need for more targeted and personalized treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FIGO System 2: the PALM-COEIN classification system.
Fig. 2: Menstrual cycle and ovarian cycle physiology with highlighted aspects of the structure of the endometrium.
Fig. 3: Major biosynthetic pathways in steroidogenesis.
Fig. 4: The impact of the presence of uterine fibroids (leiomyoma) or adenomyosis on endometrial bleeding.
Fig. 5: Diagnostic pathway for abnormal uterine bleeding, and iron deficiency and/or iron deficiency anaemia.

Similar content being viewed by others

References

  1. National Collaborating Centre for Women’s and Children’s Health. Heavy menstrual bleeding (Ch. 3). https://www.nice.org.uk/guidance/ng88/evidence/full-guideline-pdf-4782291810 (2007).

  2. Munro, M. G. et al. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int. J. Gynecol. Obstet. 143, 393–408 (2018). The latest guidance related to the classification system for the causes of abnormal uterine bleeding with key updates.

    Article  Google Scholar 

  3. Royal College of Obstetricians and Gynaecologists. National heavy menstrual bleeding audit final Report (Ch. 1). https://www.rcog.org.uk/globalassets/documents/guidelines/research--audit/national_hmb_audit_final_report_july_2014.pdf (2014).

  4. Schoep, M. E., Nieboer, T. E., van der Zanden, M., Braat, D. D. M. & Nap, A. W. The impact of menstrual symptoms on everyday life: a survey among 42,879 women. Am. J. Obstet. Gynecol. 220, 569.e1–569.e7 (2019).

    Article  Google Scholar 

  5. Eaton, S. B. et al. Women’s reproductive cancers in evolutionary context. Q. Rev. Biol. 69, 353–367 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Weaver, J. M., Schofield, T. J. & Papp, L. M. Breastfeeding duration predicts greater maternal sensitivity over the next decade. Dev. Psychol. 54, 220–227 (2018).

    Article  PubMed  Google Scholar 

  7. Short, R. V. The evolution of human reproduction. Proc. R. Soc. Lond. B. Biol. Sci. 195, 3–24 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. Hennegan, J. et al. Menstrual health: a definition for policy, practice, and research. Sex. Reprod. Health Matters 29, 1911618 (2021). A key article defining and discussing menstrual health and its importance.

    PubMed  PubMed Central  Google Scholar 

  9. Bobel, C. et al. The Palgrave Handbook of Critical Menstruation Studies (Springer, 2020).

  10. Munro, M. G., Critchley, H. O., Broder, M. S. & Fraser, I. S., FIGO Working Group on Menstrual Disorders. FIGO classification system (PALM-COEIN) for causes of abnormal uterine bleeding in nongravid women of reproductive age. Int. J. Gynaecol. Obstet. 113, 3–13 (2011).

    Article  PubMed  Google Scholar 

  11. National Institute for Health and Care Excellence. Heavy menstrual bleeding: assessment and management. NICE guideline NG88. https://www.nice.org.uk/guidance/ng88/resources/heavy-menstrual-bleeding-assessment-and-management-pdf-1837701412549 (2018).

  12. Peric, H. & Fraser, I. S. The symptomatology of adenomyosis. Best. Pract. Res. Clin. Obstet. Gynaecol. 20, 547–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Munro, M. G., Critchley, H. & Fraser, I. S. Research and clinical management for women with abnormal uterine bleeding in the reproductive years: more than PALM-COEIN. BJOG 124, 185–189 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Fraser, I. S., Langham, S. & Uhl-Hochgraeber, K. Health-related quality of life and economic burden of abnormal uterine bleeding. Expert Rev. Obstet. Gynecol. 4, 179–189 (2009). A thorough summary on the burden and impact of abnormal uterine bleeding.

    Article  Google Scholar 

  15. Shapley, M., Jordan, K. & Croft, P. R. An epidemiological survey of symptoms of menstrual loss in the community. Br. J. Gen. Pract. 54, 359–363 (2004).

    PubMed  PubMed Central  Google Scholar 

  16. Hallberg, L. & Nilsson, L. Determination of menstrual blood loss. Scand. J. Clin. Lab. Invest. 16, 244–248 (1964).

    Article  CAS  PubMed  Google Scholar 

  17. Bhattacharya, S. et al. Hysterectomy, endometrial ablation and Mirena(R) for heavy menstrual bleeding: a systematic review of clinical effectiveness and cost-effectiveness analysis. Health Technol. Assess. 15, 1–252 (2011).

    Article  Google Scholar 

  18. Royal College of Obstetricians and Gynaecologists. National heavy menstrual bleeding audit: final report (Executive Summary). https://www.rcog.org.uk/globalassets/documents/guidelines/research--audit/national_hmb_audit_final_report_july_2014.pdf (2014).

  19. World Health Organization. The global prevalence of anaemia in 2011. https://apps.who.int/iris/bitstream/handle/10665/177094/9789241564960_eng.pdf;jsessionid=9D31A00D99F33BC96D3367FCA3D5F784?sequence=1 (2015).

  20. Stoltzfus, R. J., Mullany, L. & Black, R. E. in Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors Ch. 3 (eds Ezzati, M., Lopez, A. D., Rodgers, A. & Murray, C. J. L.) 163–209 (WHO, 2004).

  21. Friedman, A. J. et al. Iron deficiency anemia in women across the life span. J. Women’s Health 21, 1282–1289 (2012).

    Article  Google Scholar 

  22. Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 372, 1832–1843 (2015). An in-depth overview on the importance and impact of iron deficiency and iron deficiency anaemia.

    Article  PubMed  Google Scholar 

  23. Munro, M. G., FIGO Committee on Menstrual Disorders. Abnormal uterine bleeding: a well-travelled path to iron deficiency and anemia. Int. J. Gynaecol. Obstet. 150, 275–277 (2020).

    Article  PubMed  Google Scholar 

  24. Percy, L., Mansour, D. & Fraser, I. Iron deficiency and iron deficiency anaemia in women. Best. Pract. Res. Clin. Obstet. Gynaecol. 40, 55–67 (2017).

    Article  PubMed  Google Scholar 

  25. Liu, Z., Doan, Q. V., Blumenthal, P. & Dubois, R. W. A systematic review evaluating health-related quality of life, work impairment, and health-care costs and utilization in abnormal uterine bleeding. Value Health 10, 183–194 (2007).

    Article  PubMed  Google Scholar 

  26. Wang, Y. X. et al. Menstrual cycle regularity and length across the reproductive lifespan and risk of premature mortality: prospective cohort study. BMJ 371, m3464 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coulter, A., Peto, V. & Jenkinson, C. Quality of life and patient satisfaction following treatment for menorrhagia. Fam. Pract. 11, 394–401 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Office for National Statistics. Birth characteristics in England and Wales: 2017. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthcharacteristicsinenglandandwales/2017 (2019).

  29. Fortin, C. N., Hur, C., Radeva, M. & Falcone, T. Effects of myomas and myomectomy on assisted reproductive technology outcomes. J. Gynecol. Obstet. Hum. Reprod. 48, 751–755 (2019).

    Article  PubMed  Google Scholar 

  30. Cardozo, E. R. et al. The estimated annual cost of uterine leiomyomata in the United States. Am. J. Obstet. Gynecol. 206, 211.e1–211.e9 (2012).

    Article  Google Scholar 

  31. Rice, J. P., Kay, H. H. & Mahony, B. S. The clinical significance of uterine leiomyomas in pregnancy. Am. J. Obstet. Gynecol. 160, 1212–1216 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Bofill Rodriguez, M., Lethaby, A., Farquhar, C. & Duffy, J. M. Interventions commonly available during pandemics for heavy menstrual bleeding: an overview of Cochrane Reviews. Cochrane Database Syst. Rev. 7, CD013651 (2020).

    PubMed  Google Scholar 

  33. Royal College of Obstetricians & Gynaecologists, British Society for Gynaecological Endoscopy & British Gynaecological Cancer Society. Joint RCOG, BSGE and BGCS guidance for the management of abnormal uterine bleeding in the evolving Coronavirus (COVID-19) pandemic. https://www.rcog.org.uk/globalassets/documents/guidelines/2020-05-21-joint-rcog-bsge-bgcs-guidance-for-management-of-abnormal-uterine-bleeding-aub-in-the-evolving-coronavirus-covid-19-pandemic-updated-final-180520.pdf (2020).

  34. Jacob, C. M. et al. Building resilient societies after COVID-19: the case for investing in maternal, neonatal, and child health. Lancet Public Health 5, e624–e627 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chodankar, R. & Critchley, H. O. D. Biomarkers in abnormal uterine bleeding. Biol. Reprod. 101, 1155–1166 (2019).

    Article  PubMed  Google Scholar 

  36. Critchley, H. O. D., Maybin, J. A., Armstrong, G. M. & Williams, A. R. W. Physiology of the endometrium and regulation of menstruation. Physiol. Rev. 100, 1149–1179 (2020). An in-depth review on the physiology of the endometrium related to menstruation.

    Article  PubMed  Google Scholar 

  37. Chang, J., Siebert, J. W., Schendel, S. A., Press, B. H. & Longaker, M. T. Scarless wound healing: implications for the aesthetic surgeon. Aesthetic Plast. Surg. 19, 237–241 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Somasundaram, K. & Prathap, K. The effect of exclusion of amniotic fluid on intra-uterine healing of skin wounds in rabbit foetuses. J. Pathol. 107, 127–130 (1972).

    Article  CAS  PubMed  Google Scholar 

  39. Salamonsen, L. A. & Lathbury, L. J. Endometrial leukocytes and menstruation. Hum. Reprod. Update 6, 16–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Jeziorska, M., Salamonsen, L. A. & Woolley, D. E. Mast cell and eosinophil distribution and activation in human endometrium throughout the menstrual cycle. Biol. Reprod. 53, 312–320 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong, G. M. et al. Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model. Sci. Rep. 7, 17416 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Patel, B. et al. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Update 21, 155–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Faculty of Sexual & Reproductive Healthcare. FSRH Clinical guideline: problematic bleeding with hormonal contraception (July 2015). https://www.fsrh.org/standards-and-guidance/documents/ceuguidanceproblematicbleedinghormonalcontraception/ (2015).

  44. Chodankar, R. & Critchley, H. O. Abnormal uterine bleeding (including PALM COEIN classification). Obstet. Gynaecol. Reprod. Med. 29, 98–104 (2019).

    Article  Google Scholar 

  45. Abdel‐Aleem, H., d’Arcangues, C., Vogelsong, K. M., Gaffield, M. L. & Gülmezoglu, A. M. Treatment of vaginal bleeding irregularities induced by progestin only contraceptives. Cochrane Database Syst. Rev. 10, CD003449 (2013).

    Google Scholar 

  46. Kowalik, M. K., Rekawiecki, R. & Kotwica, J. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract. Reprod. Biol. 13, 279–289 (2013).

    Article  PubMed  Google Scholar 

  47. Young, S. L. & Lessey, B. A. Progesterone function in human endometrium: clinical perspectives. Semin. Reprod. Med. 28, 5–16 (2010). A review discussing the importance of progesterone and its role in endometrial function.

    Article  CAS  PubMed  Google Scholar 

  48. Wagenfeld, A., Saunders, P. T., Whitaker, L. & Critchley, H. O. Selective progesterone receptor modulators (SPRMs): progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Expert. Opin. Ther. Targets 20, 1045–1054 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, X. & O’Malley, B. W. Unfolding the action of progesterone receptors. J. Biol. Chem. 278, 39261–39264 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Critchley, H. O. D. & Chodankar, R. R. 90 years of progesterone: selective progesterone receptor modulators in gynaecological therapies. J. Mol. Endocrinol. 65, T15–T33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Williams, A. R., Bergeron, C., Barlow, D. H. & Ferenczy, A. Endometrial morphology after treatment of uterine fibroids with the selective progesterone receptor modulator, ulipristal acetate. Int. J. Gynecol. Pathol. 31, 556–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Chodankar, R. R. et al. The endometrial response to modulation of ligand-progesterone receptor pathways is reversible. Fertil. Steril. 116, 882–895 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Gibson, D. A. & Saunders, P. T. Estrogen dependent signaling in reproductive tissues – a role for estrogen receptors and estrogen related receptors. Mol. Cell Endocrinol. 348, 361–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Critchley, H. O. et al. Estrogen receptor β, but not estrogen receptor α, is present in the vascular endothelium of the human and nonhuman primate endometrium. J. Clin. Endocrinol. Metab. 86, 1370–1378 (2001).

    CAS  PubMed  Google Scholar 

  55. Couse, J. F., Lindzey, J., Grandien, K., Gustafsson, J. A. & Korach, K. S. Tissue distribution and quantitative analysis of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ) messenger ribonucleic acid in the wild-type and ERα-knockout mouse. Endocrinology 138, 4613–4621 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Pettersson, K. & Gustafsson, J. Å. Role of estrogen receptor beta in estrogen action. Annu. Rev. Physiol. 63, 165–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Hewitt, S. C., Winuthayanon, W. & Korach, K. S. What’s new in estrogen receptor action in the female reproductive tract. J. Mol. Endocrinol. 56, R55–R71 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Critchley, H. O. & Saunders, P. T. Hormone receptor dynamics in a receptive human endometrium. Reprod. Sci. 16, 191–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Gibson, D. A., Simitsidellis, I., Collins, F. & Saunders, P. T. K. Endometrial intracrinology: oestrogens, androgens and endometrial disorders. Int. J. Mol. Sci. 19, 3276 (2018). An in-depth and important review of endometrial intracrinology.

    Article  PubMed Central  CAS  Google Scholar 

  60. Labrie, F. et al. The key role of 17 beta-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 62,148–158 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Guttinger, A. & Critchley, H. O. Endometrial effects of intrauterine levonorgestrel. Contraception 75, S93–S98 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Konings, G. et al. Intracrine regulation of estrogen and other sex steroid levels in endometrium and non-gynecological tissues; pathology, physiology, and drug discovery. Front. Pharmacol. 9, 940 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Simitsidellis, I., Saunders, P. T. K. & Gibson, D. A. Androgens and endometrium: new insights and new targets. Mol. Cell Endocrinol. 465, 48–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Huhtinen, K. et al. Intra-tissue steroid profiling indicates differential progesterone and testosterone metabolism in the endometrium and endometriosis lesions. J. Clin. Endocrinol. Metab. 99, E2188–E2197 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. McDonald, S. E., Henderson, T. A., Gomez-Sanchez, C. E., Critchley, H. O. & Mason, J. I. 11β-Hydroxysteroid dehydrogenases in human endometrium. Mol. Cell Endocrinol. 248, 72–78 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Milne, S. A. et al. Leukocyte populations and steroid receptor expression in human first-trimester decidua; regulation by antiprogestin and prostaglandin E analog. J. Clin. Endocrinol. Metab. 90, 4315–4321 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Marshall, E. et al. In silico analysis identifies a novel role for androgens in the regulation of human endometrial apoptosis. J. Clin. Endocrinol. Metab. 96, E1746–E1755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cousins, F. L. et al. Androgens regulate scarless repair of the endometrial “wound” in a mouse model of menstruation. FASEB J. 30, 2802–2811 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Gibson, D. A., Simitsidellis, I., Cousins, F. L., Critchley, H. O. & Saunders, P. T. Intracrine androgens enhance decidualization and modulate expression of human endometrial receptivity genes. Sci. Rep. 6, 19970 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garry, R., Hart, R., Karthigasu, K. A. & Burke, C. A re-appraisal of the morphological changes within the endometrium during menstruation: a hysteroscopic, histological and scanning electron microscopic study. Hum. Reprod. 24, 1393–1401 (2009). Key research highlighting the repair and regeneration processes during menstruation.

    Article  CAS  PubMed  Google Scholar 

  71. Burris, T. P. et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol. Rev. 65, 710–778 (2013).

    Article  PubMed  CAS  Google Scholar 

  72. Henderson, T. A., Saunders, P. T., Moffett-King, A., Groome, N. P. & Critchley, H. O. Steroid receptor expression in uterine natural killer cells. J. Clin. Endocrinol. Metab. 88, 440–449 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Logie, J. J. et al. Glucocorticoid-mediated inhibition of angiogenic changes in human endothelial cells is not caused by reductions in cell proliferation or migration. PLoS ONE 5, e14476 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Edwards, C. R., Benediktsson, R., Lindsay, R. S. & Seckl, J. R. 11β-Hydroxysteroid dehydrogenases: key enzymes in determining tissue-specific glucocorticoid effects. Steroids 61, 263–269 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Rae, M. et al. Cortisol inactivation by 11β-hydroxysteroid dehydrogenase-2 may enhance endometrial angiogenesis via reduced thrombospondin-1 in heavy menstruation. J. Clin. Endocrinol. Metab. 94, 1443–1450 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Warner, P. et al. Low-dose dexamethasone as a treatment for women with heavy menstrual bleeding: protocol for response-adaptive randomised placebo-controlled dose-finding parallel group trial (DexFEM). BMJ Open 5, e006837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Warner, P. et al. Low dose dexamethasone as treatment for women with heavy menstrual bleeding: a response-adaptive randomised placebo-controlled dose-finding parallel group trial (DexFEM). EBioMedicine 69, 103434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gellersen, B. & Brosens, J. J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr. Rev. 35, 851–905 (2014). A highly descriptive and detailed review about the processes surrounding decidualization in the endometrium.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, W. et al. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 26, 1644–1653 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Altmae, S. et al. Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers. Sci. Rep. 7, 10077 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Patel, B. G., Rudnicki, M., Yu, J., Shu, Y. & Taylor, R. N. Progesterone resistance in endometriosis: origins, consequences and interventions. Acta Obstet. Gynecol. Scand. 96, 623–632 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Mehasseb, M. K. et al. Estrogen and progesterone receptor isoform distribution through the menstrual cycle in uteri with and without adenomyosis. Fertil. Steril. 95, 2228–2235.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Whitaker, L. H. et al. Selective progesterone receptor modulator (SPRM) ulipristal acetate (UPA) and its effects on the human endometrium. Hum. Reprod. 32, 531–543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Taylor, H. S., Arici, A., Olive, D. & Igarashi, P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J. Clin. Invest. 101, 1379–1384 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kelly, R. W., King, A. E. & Critchley, H. O. Cytokine control in human endometrium. Reproduction 121, 3–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Evans, J. & Salamonsen, L. A. Decidualized human endometrial stromal cells are sensors of hormone withdrawal in the menstrual inflammatory cascade. Biol. Reprod. 90, 14 (2014).

    Article  PubMed  Google Scholar 

  87. Chase, A. J., Bond, M., Crook, M. F. & Newby, A. C. Role of nuclear factor-κB activation in metalloproteinase-1, -3, and -9 secretion by human macrophages in vitro and rabbit foam cells produced in vivo. Arterioscler. Thromb. Vasc. Biol. 22, 765–771 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Critchley, H. O., Kelly, R. W., Brenner, R. M. & Baird, D. T. The endocrinology of menstruation–a role for the immune system. Clin. Endocrinol. 55, 701–710 (2001).

    Article  CAS  Google Scholar 

  89. Marbaix, E. et al. Menstrual breakdown of human endometrium can be mimicked in vitro and is selectively and reversibly blocked by inhibitors of matrix metalloproteinases. Proc. Natl Acad. Sci. USA 93, 9120–9125 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, Q. et al. A critical period of progesterone withdrawal precedes endometrial breakdown and shedding in mouse menstrual-like model. Hum. Reprod. 28, 1670–1678 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Slayden, O. D. & Brenner, R. M. A critical period of progesterone withdrawal precedes menstruation in macaques. Reprod. Biol. Endocrinol. 4, S6 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Brasted, M., White, C. A., Kennedy, T. G. & Salamonsen, L. A. Mimicking the events of menstruation in the murine uterus. Biol. Reprod. 69, 1273–1280 (2003). Key research describing the mouse model of simulated menses, including decidualization, endometrial shedding and endometrial repair, highlighting how this model can mimic the events of human menstruation.

    Article  CAS  PubMed  Google Scholar 

  93. Nayak, N. R. et al. Progesterone withdrawal up-regulates vascular endothelial growth factor receptor type 2 in the superficial zone stroma of the human and macaque endometrium: potential relevance to menstruation. J. Clin. Endocrinol. Metab. 85, 3442–3452 (2000).

    CAS  PubMed  Google Scholar 

  94. Martínez-Aguilar, R., Kershaw, L. E., Reavey, J. J., Critchley, H. O. & Maybin, J. A. Hypoxia and reproductive health: the presence and role of hypoxia in the endometrium. Reproduction 161, F1–F17 (2021).

    Article  PubMed  Google Scholar 

  95. Maybin, J. A., Critchley, H. O. & Jabbour, H. N. Inflammatory pathways in endometrial disorders. Mol. Cell Endocrinol. 335, 42–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Maybin, J. & Critchley, H. Repair and regeneration of the human endometrium. Expert Rev. Obstet. Gynecol. 4, 283–298 (2009).

    Article  Google Scholar 

  97. Maybin, J. A. & Critchley, H. O. Menstrual physiology: implications for endometrial pathology and beyond. Hum. Reprod. Update 21, 748–761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mints, M. et al. Wall discontinuities and increased expression of vascular endothelial growth factor-A and vascular endothelial growth factor receptors 1 and 2 in endometrial blood vessels of women with menorrhagia. Fertil. Steril. 88, 691–697 (2007).

    Article  PubMed  Google Scholar 

  99. Abberton, K. M., Taylor, N. H., Healy, D. L. & Rogers, P. A. Vascular smooth muscle cell proliferation in arterioles of the human endometrium. Hum. Reprod. 14, 1072–1079 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Abberton, K. M., Healy, D. & Rogers, P. A. Smooth muscle alpha actin and myosin heavy chain expression in the vascular smooth muscle cells surrounding human endometrial arterioles. Hum. Reprod. 14, 3095–3100 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Lu, Q. et al. Transforming growth factor (TGF) β and endometrial vascular maturation. Front. Cell Dev. Biol. 9, 640065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Maybin, J. A., Boswell, L., Young, V. J., Duncan, W. C. & Critchley, H. O. D. Reduced transforming growth factor-β activity in the endometrium of women with heavy menstrual bleeding. J. Clin. Endocrinol. Metab. 102, 1299–1308 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Markee, J. E. Menstruation in intraocular endometrial transplants in the rhesus monkey Part I. Observations on normal menstrual cycles. Contrib. Embryol. 28, 223–308 (1940).

    Google Scholar 

  104. Fan, X. et al. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. FASEB J. 22, 3571–3580 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maybin, J. A. et al. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation. Nat. Commun. 9, 295 (2018). Key research highlighting the importance of hypoxia and the role of HIF1α in the endometrium.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Cousins, F. L., Murray, A. A., Scanlon, J. P. & Saunders, P. T. Hypoxyprobe reveals dynamic spatial and temporal changes in hypoxia in a mouse model of endometrial breakdown and repair. BMC Res. Notes 9, 30 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Semenza, G. L. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 88, 1474–1480 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Schodel, J. et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207–e217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Critchley, H. O. et al. Hypoxia-inducible factor-1α expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology 147, 744–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Green, D. Coagulation cascade. Hemodial. Int. 10, S2–S4 (2006).

    Article  PubMed  Google Scholar 

  111. Baker, D. J., Grimes, E. A. & Hopwood, A. J. D-dimer assays for the identification of menstrual blood. Forensic Sci. Int. 212, 210–214 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Shankar, M., Lee, C. A., Sabin, C. A., Economides, D. L. & Kadir, R. A. von Willebrand disease in women with menorrhagia: a systematic review. BJOG 111, 734–740 (2004).

    Article  PubMed  Google Scholar 

  113. Sandberg, T., Eriksson, P., Gustavsson, B. & Casslen, B. Differential regulation of the plasminogen activator inhibitor-1 (PAI-1) gene expression by growth factors and progesterone in human endometrial stromal cells. Mol. Hum. Reprod. 3, 781–787 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Gleeson, N., Devitt, M., Sheppard, B. L. & Bonnar, J. Endometrial fibrinolytic enzymes in women with normal menstruation and dysfunctional uterine bleeding. Br. J. Obstet. Gynaecol. 100, 768–771 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Nordengren, J. et al. Differential localization and expression of urokinase plasminogen activator (uPA), its receptor (uPAR), and its inhibitor (PAI-1) mRNA and protein in endometrial tissue during the menstrual cycle. Mol. Hum. Reprod. 10, 655–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Bryant-Smith, A. C., Lethaby, A., Farquhar, C. & Hickey, M. Antifibrinolytics for heavy menstrual bleeding. Cochrane Database Syst. Rev. 4, CD000249 (2018).

    PubMed  Google Scholar 

  117. Ludwig, H. & Spornitz, U. M. Microarchitecture of the human endometrium by scanning electron microscopy: menstrual desquamation and remodeling. Ann. N. Y. Acad. Sci. 622, 28–46 (1991).

    Article  CAS  PubMed  Google Scholar 

  118. Ghosh, A. et al. In vivo cell fate tracing provides no evidence for mesenchymal to epithelial transition in adult fallopian tube and uterus. Cell Rep. 31, 107631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chan, R. W. & Gargett, C. E. Identification of label-retaining cells in mouse endometrium. Stem Cell 24, 1529–1538 (2006).

    Article  CAS  Google Scholar 

  120. Taylor, H. S. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292, 81–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Gargett, C. E., Schwab, K. E. & Deane, J. A. Endometrial stem/progenitor cells: the first 10 years. Hum. Reprod. Update 22, 137–163 (2016).

    CAS  PubMed  Google Scholar 

  122. Chan, R. W., Schwab, K. E. & Gargett, C. E. Clonogenicity of human endometrial epithelial and stromal cells. Biol. Reprod. 70, 1738–1750 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Tempest, N., Baker, A. M., Wright, N. A. & Hapangama, D. K. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche? Hum. Reprod. 33, 1052–1062 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tempest, N. et al. Histological 3D reconstruction and in vivo lineage tracing of the human endometrium. J. Pathol. 251, 440–451 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Ong, Y. R. et al. Bone marrow stem cells do not contribute to endometrial cell lineages in chimeric mouse models. Stem Cell 36, 91–102 (2018).

    Article  CAS  Google Scholar 

  126. Deane, J. A., Ong, Y., Cousins, F. L. & Gargett, C. E. Bone marrow-derived endometrial cells: transdifferentiation or misidentification? Hum. Reprod. Update 25, 272–274 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Santamaria, X., Mas, A., Cervelló, I., Taylor, H. & Simon, C. Uterine stem cells: from basic research to advanced cell therapies. Hum. Reprod. Update 24, 673–693 (2018). A review covering the involvement of stem cells in endometrial physiology as well as the uses of stem cell therapy in relation to uterine disease.

    Article  CAS  PubMed  Google Scholar 

  128. Arrowsmith, S., Robinson, H., Noble, K. & Wray, S. What do we know about what happens to myometrial function as women age? J. Muscle Res. Cell Motil. 33, 209–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Aguilar, H. N. & Mitchell, B. F. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum. Reprod. Update 16, 725–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Islam, M. S., Akhtar, M. M. & Segars, J. H. Vitamin D deficiency and uterine fibroids: an opportunity for treatment or prevention? Fertil. Steril. 115, 1175–1176 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Bulun S. E. Uterine fibroids. N. Engl. J. Med. 369, 1344–1355 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Vannuccini, S. et al. Pathogenesis of adenomyosis: an update on molecular mechanisms. Reprod. Biomed. Online 35, 592–601 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Benagiano, G., Habiba, M. & Brosens, I. The pathophysiology of uterine adenomyosis: an update. Fertil. Steril. 98, 572–579 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Leyendecker, G., Wildt, L. & Mall, G. The pathophysiology of endometriosis and adenomyosis: tissue injury and repair. Arch. Gynecol. Obstet. 280, 529–538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Guo, S. W. The pathogenesis of adenomyosis vis-à-vis endometriosis. J. Clin. Med. 9, 485 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  136. Liu, X., Shen, M., Qi, Q., Zhang, H. & Guo, S. W. Corroborating evidence for platelet-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis. Hum. Reprod. 31, 734–749 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Guo, S. W., Mao, X., Ma, Q. & Liu, X. Dysmenorrhea and its severity are associated with increased uterine contractility and overexpression of oxytocin receptor (OTR) in women with symptomatic adenomyosis. Fertil. Steril. 99, 231–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Critchley, H. O. D. et al. Menstruation: science and society. Am. J. Obstet. Gynecol. 223, 624–664 (2020). Provides a comprehensive summary of endometrial physiology as well as the methods used to investigate the endometrium.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Woolcock, J. G., Critchley, H. O., Munro, M. G., Broder, M. S. & Fraser, I. S. Review of the confusion in current and historical terminology and definitions for disturbances of menstrual bleeding. Fertil. Steril. 90, 2269–2280 (2008).

    Article  PubMed  Google Scholar 

  140. Clue. Talking about periods: an international investigation findings. https://helloclue.com/articles/culture/talking-about-periods-an-international-investigation-findings (2016).

  141. Clue. Top euphemisms for “period” by language. helloclue.com https://helloclue.com/articles/culture/top-euphemisms-for-period-by-language (2016).

  142. Haththotuwa, R. et al. Management of abnormal uterine bleeding in low- and high-resource settings: consideration of cultural issues. Semin. Reprod. Med. 29, 446–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Van den Bosch, T. et al. Terms, definitions and measurements to describe sonographic features of myometrium and uterine masses: a consensus opinion from the Morphological Uterus Sonographic Assessment (MUSA) group. Ultrasound Obstet. Gynecol. 46, 284–298 (2015).

    Article  PubMed  Google Scholar 

  144. Van den Bosch, T. et al. Sonographic classification and reporting system for diagnosing adenomyosis. Ultrasound Obstet. Gynecol. 53, 576–582 (2019).

    Article  PubMed  Google Scholar 

  145. Committee on Practice Bulletins–Gynecology. Practice bulletin no. 128: diagnosis of abnormal uterine bleeding in reproductive-aged women. Obstet. Gynecol. 120, 197–206 (2012).

    Article  Google Scholar 

  146. Royal College of Obstetricians and Gynaecologists. Advice for Heavy Menstrual Bleeding (HMB) Services and Commissioners. Chapter 1. https://www.rcog.org.uk/globalassets/documents/guidelines/research--audit/advice-for-hmb-services-booklet.pdf (2014)

  147. Jain, V. & Wotring, V. E. Medically induced amenorrhea in female astronauts. NPJ Microgravity 2, 16008 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ferrero, S. et al. What is the desired menstrual frequency of women without menstruation-related symptoms? Contraception 73, 537–541 (2006).

    Article  PubMed  Google Scholar 

  149. Thomas, S. L. & Ellertson, C. Nuisance or natural and healthy: should monthly menstruation be optional for women? Lancet 355, 922–924 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Chen, B. A. et al. Bleeding changes after levonorgestrel 52-mg intrauterine system insertion for contraception in women with self-reported heavy menstrual bleeding. Am. J. Obstet. Gynecol. 222, S888.e1–S888.e6 (2020).

    Article  CAS  Google Scholar 

  151. Royal College of Obstetricians and Gynaecologists. National Heavy Menstrual Bleeding Audit: Final Report (Ch. 4). https://www.rcog.org.uk/globalassets/documents/guidelines/research--audit/national_hmb_audit_final_report_july_2014.pdf (2014).

  152. Ikomi, A. & Pepra, E. F. Efficacy of the levonorgestrel intrauterine system in treating menorrhagia: actualities and ambiguities. J. Fam. Plann. Reprod. Health Care 28, 99–100 (2002).

    Article  PubMed  Google Scholar 

  153. Li, Q. et al. The efficacy of medical treatment for adenomyosis after adenomyomectomy. J. Obstet. Gynaecol. Res. 46, 2092–2099 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Mikos, T., Lioupis, M., Anthoulakis, C. & Grimbizis, G. F. The outcome of fertility-sparing and nonfertility-sparing surgery for the treatment of adenomyosis. a systematic review and meta-analysis. J. Minim. Invasive Gynecol. 27, 309–331.e3 (2020).

    Article  PubMed  Google Scholar 

  155. Radosa, M. P. et al. Long-term risk of fibroid recurrence after laparoscopic myomectomy. Eur. J. Obstet. Gynecol. Reprod. Biol. 180, 35–39 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. American College of Obstetricians Gynecologists. ACOG practice bulletin. Alternatives to hysterectomy in the management of leiomyomas. Obstet. Gynecol. 112, 387–400 (2008).

    Article  Google Scholar 

  157. Laughlin-Tommaso, S. K. et al. Uterine fibroids and the risk of cardiovascular disease in the coronary artery risk development in Young Adult Women’s Study. J. Womens Health 28, 46–52 (2019).

    Article  Google Scholar 

  158. Laughlin-Tommaso, S. K. et al. Cardiovascular and metabolic morbidity after hysterectomy with ovarian conservation: a cohort study. Menopause 25, 483–492 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Batista, M. C. et al. Effects of aging on menstrual cycle hormones and endometrial maturation. Fertil. Steril. 64, 492–499 (1995).

    Article  CAS  PubMed  Google Scholar 

  160. Noci, I. et al. I. Aging of the human endometrium: a basic morphological and immunohistochemical study. Eur. J. Obstet. Gynecol. Reprod. Biol. 63, 181–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  161. Woods, L. et al. Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat. Commun. 8, 352 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Woods, L. et al. Epigenetic changes occur at decidualisation genes as a function of reproductive ageing in mice. Development 147, dev185629 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Salim, S., Won, H., Nesbitt-Hawes, E., Campbell, N. & Abbott, J. Diagnosis and management of endometrial polyps: a critical review of the literature. J. Minim. Invasive Gynecol. 18, 569–581 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Abbott, J. A. Adenomyosis and abnormal uterine bleeding (AUB-A)–pathogenesis, diagnosis, and management. Best. Pract. Res. Clin. Obstet. Gynaecol. 40, 68–81 (2017).

    Article  PubMed  Google Scholar 

  165. Pavone, D., Clemenza, S., Sorbi, F., Fambrini, M. & Petraglia, F. Epidemiology and risk factors of uterine fibroids. Best. Pract. Res. Clin. Obstet. Gynaecol. 46, 3–11 (2018).

    Article  PubMed  Google Scholar 

  166. Lurie, S., Piper, I., Woliovitch, I. & Glezerman, M. Age-related prevalence of sonographicaly confirmed uterine myomas. J. Obstet. Gynaecol. 25, 42–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Selo-Ojeme, D. et al. The incidence of uterine leiomyoma and other pelvic ultrasonographic findings in 2,034 consecutive women in a north London hospital. J. Obstet. Gynaecol. 28, 421–423 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Upson, K., Harmon, Q. E., Laughlin-Tommaso, S. K., Umbach, D. M. & Baird, D. D. Soy-based infant formula feeding and heavy menstrual bleeding among young African American women. Epidemiology 27, 716–725 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Stewart, E. A., Cookson, C. L., Gandolfo, R. A. & Schulze-Rath, R. Epidemiology of uterine fibroids: a systematic review. BJOG 124, 1501–1512 (2017). A detailed review of the key risk factors related to uterine fibroids, highlighting the importance of race in the epidemiology of fibroids.

    Article  CAS  PubMed  Google Scholar 

  170. Jukic, A. M. Z., Upson, K., Harmon, Q. E. & Baird, D. D. Increasing serum 25-hydroxyvitamin D is associated with reduced odds of long menstrual cycles in a cross-sectional study of African American women. Fertil. Steril. 106, 172–179.e2 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Parazzini, F. et al. Risk factors for adenomyosis. Hum. Reprod. 12, 1275–1279 (1997).

    Article  CAS  PubMed  Google Scholar 

  172. Brodin, P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 27, 28–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Teuwen, L. A., Geldhof, V., Pasut, A. & Carmeliet, P. COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 20, 389–391 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chadchan, S. B., Popli, P., Maurya, V. K. & Kommagani, R. The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization. Biol. Reprod. 104, 336–343 (2021).

    Article  PubMed  Google Scholar 

  175. Reis, F. M. et al. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil. Steril. 95, 176–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Thong, E. P., Codner, E., Laven, J. S. E. & Teede, H. Diabetes: a metabolic and reproductive disorder in women. Lancet Diabetes Endocrinol. 8, 134–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Barbieri, R. L., Makris, A. & Ryan, K. J. Effects of insulin on steroidogenesis in cultured porcine ovarian theca. Fertil. Steril. 40, 237–241 (1983).

    Article  CAS  PubMed  Google Scholar 

  178. Hartmann, K. E. et al. Primary Care Management of Abnormal Uterine Bleeding (Agency for Healthcare Research and Quality, 2013).

  179. Vannuccini, S., Fondelli, F., Clemenza, S., Galanti, G. & Petraglia, F. Dysmenorrhea and heavy menstrual bleeding in elite female athletes: quality of life and perceived stress. Reprod. Sci. 27, 888–894 (2020).

    Article  PubMed  Google Scholar 

  180. Bruinvels, G., Burden, R., Brown, N., Richards, T. & Pedlar, C. The prevalence and impact of heavy menstrual bleeding (menorrhagia) in elite and non-elite athletes. PLoS ONE 11, e0149881 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Pettigrew, R. & Hamilton-Fairley, D. Obesity and female reproductive function. Br. Med. Bull. 53, 341–358 (1997).

    Article  CAS  PubMed  Google Scholar 

  182. Reavey, J. J., Duncan, W. C., Brito-Mutunayagam, S., Reynolds, R. M. & Critchley, H. O. D. in Obesity and Gynecology 2nd edn Ch. 19 (eds Mahmoud, T., Arulkumaran, S. & Chervenak, F.) 171–177 (Elsevier, 2020).

  183. Seif, M. W., Diamond, K. & Nickkho-Amiry, M. Obesity and menstrual disorders. Best. Pract. Res. Clin. Obstet. Gynaecol. 29, 516–527 (2015).

    Article  PubMed  Google Scholar 

  184. Royal College of Obstetricians and Gynaecologists/British Society for Gynaecological Endoscopy. Management of endometrial hyperplasia. Green-top guideline no. 67. https://www.rcog.org.uk/globalassets/documents/guidelines/green-top-guidelines/gtg_67_endometrial_hyperplasia.pdf (2016).

  185. Stoegerer-Hecher, E., Kirchengast, S., Huber, J. C. & Hartmann, B. Amenorrhea and BMI as independent determinants of patient satisfaction in LNG-IUD users: cross-sectional study in a Central European district. Gynecol. Endocrinol. 28, 119–124 (2012).

    Article  PubMed  Google Scholar 

  186. Klein, D. A., Paradise, S. L. & Reeder, R. M. Amenorrhea: a systematic approach to diagnosis and management. Am. Fam. Phys. 100, 39–48 (2019).

    Google Scholar 

  187. Köpp, W. et al. Low leptin levels predict amenorrhea in underweight and eating disordered females. Mol. Psychiatry 2, 335–340 (1997).

    Article  PubMed  Google Scholar 

  188. Torstveit, M. & Sundgot-Borgen, J. Participation in leanness sports but not training volume is associated with menstrual dysfunction: a national survey of 1276 elite athletes and controls. Br. J. Sports Med. 39, 141–147 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Baird, D. D., Dunson, D. B., Hill, M. C., Cousins, D. & Schectman, J. M. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am. J. Obstet. Gynecol. 188, 100–107 (2003).

    Article  PubMed  Google Scholar 

  190. Yu, O. et al. Adenomyosis incidence, prevalence and treatment: United States population-based study 2006-2015. Am. J. Obstet. Gynecol. 223, 94.e1–94.e10 (2020).

    Article  Google Scholar 

  191. Marsh, E. E. et al. Racial differences in fibroid prevalence and ultrasound findings in asymptomatic young women (18–30 years old): a pilot study. Fertil. Steril. 99, 1951–1957 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Gordley, L. B., Lemasters, G., Simpson, S. R. & Yiin, J. H. Menstrual disorders and occupational, stress, and racial factors among military personnel. J. Occup. Environ. Med. 42, 871–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Blauer, M., Heinonen, P. K., Martikainen, P. M., Tomas, E. & Ylikomi, T. A novel organotypic culture model for normal human endometrium: regulation of epithelial cell proliferation by estradiol and medroxyprogesterone acetate. Hum. Reprod. 20, 864–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Turco, M. Y. et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19, 568–577 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Boretto, M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144, 1775–1786 (2017).

    CAS  PubMed  Google Scholar 

  196. Frank, M. L. et al. Importance of transvaginal elastography in the diagnosis of uterine fibroids and adenomyosis. Ultraschall Med. 37, 373–378 (2016).

    CAS  PubMed  Google Scholar 

  197. Warren, L. A. et al. Analysis of menstrual effluent: diagnostic potential for endometriosis. Mol. Med. 24, 1 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Thornton, J. Free period products in Scotland. Lancet 396, 1793 (2020).

    Article  PubMed  Google Scholar 

  200. New Zealand Government, Ministry of Education. Access to free period products. https://www.education.govt.nz/our-work/overall-strategies-and-policies/wellbeing-in-education/access-to-free-period-products/ (2021).

  201. Clark, T. J. & Stevenson, H. Endometrial polyps and abnormal uterine bleeding (AUB-P): what is the relationship, how are they diagnosed and how are they treated? Best. Pract. Res. Clin. Obstet. Gynaecol. 40, 89–104 (2017).

    Article  PubMed  Google Scholar 

  202. Upson, K. & Missmer, S. A. Epidemiology of adenomyosis. Semin. Reprod. Med. 38, 89–107 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chapron, C. et al. Relationship between the magnetic resonance imaging appearance of adenomyosis and endometriosis phenotypes. Hum. Reprod. 32, 1393–1401 (2017).

    Article  PubMed  Google Scholar 

  204. Pinzauti, S. et al. Transvaginal sonographic features of diffuse adenomyosis in 18–30-year-old nulligravid women without endometriosis: association with symptoms. Ultrasound Obstet. Gynecol. 46, 730–736 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Critchley, H. O. & Maybin, J. A. Molecular and cellular causes of abnormal uterine bleeding of endometrial origin. Semin. Reprod. Med. 29, 400–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Simoni, M. & Taylor, H. S. Therapeutic strategies involving uterine stem cells in reproductive medicine. Curr. Opin. Obstet. Gynecol. 30, 209–216 (2018).

    Article  PubMed  Google Scholar 

  208. Campo, H. et al. Microphysiological modeling of the human endometrium. Tissue Eng. A 26, 759–768 (2020).

    Article  Google Scholar 

  209. van der Molen, R. G. et al. Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood. Hum. Reprod. 29, 303–314 (2014).

    Article  PubMed  CAS  Google Scholar 

  210. Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 53, 1698–1711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Jondal, D. E. et al. Uterine fibroids: correlations between MRI appearance and stiffness via magnetic resonance elastography. Abdom. Radiol. 43, 1456–1463 (2018).

    Article  Google Scholar 

  212. Liu, X., Ding, D., Ren, Y. & Guo, S. W. Transvaginal elastosonography as an imaging technique for diagnosing adenomyosis. Reprod. Sci. 25, 498–514 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of MRC Centre Grants G1002033 and MR/N022556/1, and MRC Research Grants: G0000066, G0500047, G0600048, MR/J003611/1 and MRC/NIHR 12/206/52 (H.O.D.C.); Wellcome Trust 209589/Z/17/Z, 100646/Z/12/Z, Wellbeing of Women RG1820 and Academy of Medical Sciences AMS-SGCL13 (J.A.M.); and Wellbeing of Women (RTF902) (V.J.). The authors acknowledge M. Munro (UCLA, Los Angeles, USA), I. Mason (University of Edinburgh) and A. Williams (University of Edinburgh) for their valuable contributions during preparation of the manuscript figures.

Author information

Authors and Affiliations

Authors

Contributions

V.J., H.O.D.C., R.R.C. and J.A.M. researched data for article, contributed substantially to discussion of content, wrote the manuscript and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hilary O. D. Critchley.

Ethics declarations

Competing interests

H.O.D.C. has received clinical research support for laboratory consumables and staff from Bayer AG, and provides consultancy advice (but with no personal remuneration) to Bayer AG, PregLem SA, Gedeon Richter, Vifor Pharma UK Ltd, AbbVie Inc. and Myovant Sciences GmbH. H.O.D.C. receives royalties from UpToDate for an article on abnormal uterine bleeding. V.J. receives salary and research consumables support from Wellbeing of Women (WoW). R.R.C. has been supported as a clinical research fellow by Bayer AG. J.A.M. receives salary and research consumables support from The Wellcome Trust.

Additional information

Peer review information

Nature Reviews Endocrinology thanks C. Gargett, who co-reviewed with F. Cousins; M. Hickey; and L. Salamonsen for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Amenorrhoea

Absence or cessation of menstruation.

Menstrual health

A state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity, in relation to the menstrual cycle.

Polyp

A growth or mass protruding from a mucous membrane.

Adenomyosis

A benign invasion of the myometrium by the endometrium.

Leiomyoma

A usually benign tumour arising from smooth muscle cells of the uterus; <1% of leiomyomas are malignant.

Coagulopathy

A disorder of blood coagulation.

Ovulatory dysfunction

Abnormal, irregular or absent ovulation.

Iatrogenic

Resulting from the activity of a health-care provider or institution.

Health-related quality of life score

An individual’s or group’s perceived physical or mental health over time.

Period poverty

Being unable to access products needed for menstruation, and/or having poor knowledge about menstruation, often due to financial constraints.

Progesterone receptor modulator-associated endometrial change

Histological endometrial changes, which are benign and reversible, found after selective progesterone receptor modulator use.

Fibrinolysis

The dissolution of fibrin by enzymatic action.

Mesenchymal to epithelial transition

The reverse of epithelial-to-mesenchymal transition, whereby a mesenchymal cell undergoes biochemical changes to enable it to assume the phenotype of an epithelial cell.

Epithelial to mesenchymal transition

A biological process whereby a polarized epithelial cell, which normally interacts with the basement membrane via its basal surface, undergoes multiple biochemical changes that enable it to assume the phenotype of a mesenchymal cell.

Secondary endometrial disorder

A disorder in the phenotype of the endometrium as a result of the presence of a structural cause of abnormal uterine bleeding in the myometrium; for example, fibroids or adenomyosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, V., Chodankar, R.R., Maybin, J.A. et al. Uterine bleeding: how understanding endometrial physiology underpins menstrual health. Nat Rev Endocrinol 18, 290–308 (2022). https://doi.org/10.1038/s41574-021-00629-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-021-00629-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing