Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management challenges and therapeutic advances in congenital adrenal hyperplasia

Abstract

Treatment for congenital adrenal hyperplasia (CAH) was introduced in the 1950s following the discovery of the structure and function of adrenocortical hormones. Although major advances in molecular biology have delineated steroidogenic mechanisms and the genetics of CAH, management and treatment of this condition continue to present challenges. Management is complicated by a combination of comorbidities that arise from disease-related hormonal derangements and treatment-related adverse effects. The clinical outcomes of CAH can include life-threatening adrenal crises, altered growth and early puberty, and adverse effects on metabolic, cardiovascular, bone and reproductive health. Standard-of-care glucocorticoid formulations fall short of replicating the circadian rhythm of cortisol and controlling efficient adrenocorticotrophic hormone-driven adrenal androgen production. Adrenal-derived 11-oxygenated androgens have emerged as potential new biomarkers for CAH, as traditional biomarkers are subject to variability and are not adrenal-specific, contributing to management challenges. Multiple alternative treatment approaches are being developed with the aim of tailoring therapy for improved patient outcomes. This Review focuses on challenges and advances in the management and treatment of CAH due to 21-hydroxylase deficiency, the most common type of CAH. Furthermore, we examine new therapeutic developments, including treatments designed to replace cortisol in a physiological manner and adjunct agents intended to control excess androgens and thereby enable reductions in glucocorticoid doses.

Key points

  • Challenges in the management of congenital adrenal hyperplasia (CAH) arise from multiple hormonal imbalances, the intrinsic tendency of the CAH-affected adrenal gland to overproduce androgens and limited treatment options, which often necessitate glucocorticoid excess.

  • The relationship between glucocorticoid and mineralocorticoid actions should be considered in the management of replacement therapies in CAH.

  • Patients are at risk of life-threatening adrenal crises with hypoglycaemia, most often triggered by infectious illnesses and exacerbated by adrenaline deficiency.

  • Traditional biomarkers vary with glucocorticoid dose or time of day and are not adrenal-specific, reflecting the need for new biomarkers; for example, the biologically active 11-oxygenated androgens, which are elevated in CAH.

  • Circadian glucocorticoid replacement and adjunct non-glucocorticoid therapies promise to enable glucocorticoid dose reduction; furthermore, the development of personalized gene and cellular therapies is under way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hormonal alterations in classic CAH.
Fig. 2: Adrenal hyperplasia with extensive adrenocortical reticularis.
Fig. 3: Cortisol and synthetic glucocorticoid profiles over 24 hours.
Fig. 4: Chemical structures of current oral glucocorticoid and mineralocorticoid preparations used in the management of classic congenital adrenal hyperplasia.
Fig. 5: Novel therapeutic approaches in classic CAH.

Similar content being viewed by others

References

  1. Claahsen-van der Grinten, H. L. et al. Congenital adrenal hyperplasia-current insights in pathophysiology, diagnostics, and management. Endocr. Rev. 43, 91–159 (2022).

    Article  PubMed  Google Scholar 

  2. White, P. C. Neonatal screening for congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 5, 490–498 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Chiou, S. H., Hu, M. C. & Chung, B. C. A missense mutation at Ile172–Asn or Arg356–Trp causes steroid 21-hydroxylase deficiency. J. Biol. Chem. 265, 3549–3552 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Hu, M. C. & Chung, B. C. Expression of human 21-hydroxylase (P450c21) in bacterial and mammalian cells: a system to characterize normal and mutant enzymes. Mol. Endocrinol. 4, 893–898 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Tusie-Luna, M. T., Traktman, P. & White, P. C. Determination of functional effects of mutations in the steroid 21-hydroxylase gene (CYP21) using recombinant vaccinia virus. J. Biol. Chem. 265, 20916–20922 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Hannah-Shmouni, F. et al. Revisiting the prevalence of nonclassic congenital adrenal hyperplasia in US Ashkenazi Jews and Caucasians. Genet. Med. 19, 1276–1279 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ezquieta, B., Ruano, M. L., Dulín, E., Arnao, D. R. & Rodríguez, A. Prevalence of frequent recessive diseases in the Spanish population through DNA analyses on samples from the neonatal screening. Med. Clin. 125, 493–495 (2005).

    Article  Google Scholar 

  8. Phedonos, A. A. et al. High carrier frequency of 21-hydroxylase deficiency in Cyprus. Clin. Genet. 84, 585–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Baumgartner-Parzer, S. M., Nowotny, P., Heinze, G., Waldhäusl, W. & Vierhapper, H. Carrier frequency of congenital adrenal hyperplasia (21-hydroxylase deficiency) in a middle European population. J. Clin. Endocrinol. Metab. 90, 775–778 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Delle Piane, L., Rinaudo, P. F. & Miller, W. L. 150 Years of congenital adrenal hyperplasia: translation and commentary of De Crecchio’s classic paper from 1865. Endocrinology 156, 1210–1217 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Wilkins, L., Lewis, R. A., Klein, R. & Rosemberg, E. The suppression of androgen secretion by cortisone in a case of congenital adrenal hyperplasia. Bull. Johns. Hopkins Hosp. 86, 249–252 (1950).

    CAS  PubMed  Google Scholar 

  12. Miller, W. L. The hypothalamic-pituitary-adrenal axis: a brief history. Horm. Res. Paediatr. 89, 212–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Van Wyk, J. J. et al. The use of adrenalectomy as a treatment for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 81, 3180–3190 (1996).

    PubMed  Google Scholar 

  14. Merke, D. P. et al. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 85, 1114–1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Kamrath, C., Wettstaedt, L., Boettcher, C., Hartmann, M. F. & Wudy, S. A. Androgen excess is due to elevated 11-oxygenated androgens in treated children with congenital adrenal hyperplasia. J. Steroid Biochem. Mol. Biol. 178, 221–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Merke, D. P. et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N. Engl. J. Med. 343, 1362–1368 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Charmandari, E. et al. Adrenomedullary function may predict phenotype and genotype in classic 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 87, 3031–3037 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Arvat, E. et al. Interaction between glucagon and human corticotropin-releasing hormone or vasopressin on ACTH and cortisol secretion in humans. Eur. J. Endocrinol. 143, 99–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Merke, D. P. & Auchus, R. J. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 383, 1248–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Turcu, A. F. et al. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur. J. Endocrinol. 174, 601–609 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kolli, V. et al. Morphologic and molecular characterization of adrenals and adrenal rest affected by congenital adrenal hyperplasia. Front. Endocrinol. 12, 1150 (2021).

    Article  Google Scholar 

  22. Arlt, W. et al. Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J. Clin. Endocrinol. Metab. 95, 5110–5121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Finkielstain, G. P. et al. Clinical characteristics of a cohort of 244 patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 97, 4429–4438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Speiser, P. W. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 103, 4043–4088 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Melin, J. et al. Pharmacokinetic/pharmacodynamic evaluation of hydrocortisone therapy in pediatric patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 105, e1729–e1740 (2020).

    Article  Google Scholar 

  26. Bacila, I. et al. International practice of corticosteroid replacement therapy in congenital adrenal hyperplasia: data from the I-CAH registry. Eur. J. Endocrinol. 184, 553–563 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Ng, S. M., Stepien, K. M. & Krishan, A. Glucocorticoid replacement regimens for treating congenital adrenal hyperplasia. Cochrane Database Syst. Rev. 3, CD012517 (2020).

    PubMed  Google Scholar 

  28. Bonfig, W., Bechtold, S., Schmidt, H., Knorr, D. & Schwarz, H. P. Reduced final height outcome in congenital adrenal hyperplasia under prednisone treatment: deceleration of growth velocity during puberty. J. Clin. Endocrinol. Metab. 92, 1635–1639 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Merke, D. P., Cho, D., Anton Calis, K., Keil, M. F. & Chrousos, G. P. Hydrocortisone suspension and hydrocortisone tablets are not bioequivalent in the treatment of children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86, 441–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Barillas, J. E., Eichner, D., Van Wagoner, R. & Speiser, P. W. Iatrogenic cushing syndrome in a child with congenital adrenal hyperplasia: erroneous compounding of hydrocortisone. J. Clin. Endocrinol. Metab. 103, 7–11 (2018).

    Article  PubMed  Google Scholar 

  31. Gudeman, J., Jozwiakowski, M., Chollet, J. & Randell, M. Potential risks of pharmacy compounding. Drugs R D 13, 1–8 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guharoy, R., Noviasky, J., Haydar, Z., Fakih, M. G. & Hartman, C. Compounding pharmacy conundrum. Chest 143, 896–900 (2013).

    Article  PubMed  Google Scholar 

  33. Neumann, U. et al. Quality of compounded hydrocortisone capsules used in the treatment of children. Eur. J. Endocrinol. 177, 239–242 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Neumann, U. et al. Absorption and tolerability of taste-masked hydrocortisone granules in neonates, infants and children under 6 years of age with adrenal insufficiency. Clin. Endocrinol. 88, 21–29 (2018).

    Article  CAS  Google Scholar 

  35. Neumann, U. et al. A prospective study of children aged 0–8 years with CAH and adrenal insufficiency treated with hydrocortisone granules. J. Clin. Endocrinol. Metab. 106, e1433–e1440 (2021).

    Article  PubMed  Google Scholar 

  36. Frisch, H. et al. Salt wasting in simple virilizing congenital adrenal hyperplasia. J. Pediatr. Endocrinol. Metab. 14, 1649–1655 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Nimkarn, S., Lin-Su, K., Berglind, N., Wilson, R. C. & New, M. I. Aldosterone-to-renin ratio as a marker for disease severity in 21-hydroxylase deficiency congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 92, 137–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Muthusamy, K. et al. Clinical review: adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J. Clin. Endocrinol. Metab. 95, 4161–4172 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Wilkins, L. in The Diagnosis and Treatment of Endocrine Disorders in Childhood and Adolescence Ch. 15, 368-381 (Charles C. Thomas, 1965).

  40. Pofi, R. et al. Plasma renin measurements are unrelated to mineralocorticoid replacement dose in patients with primary adrenal insufficiency. J. Clin. Endocrinol. Metab. 105, 314–326 (2020).

    Article  Google Scholar 

  41. Bonfig, W. et al. Sodium chloride supplementation is not routinely performed in the majority of german and austrian infants with classic salt-wasting congenital adrenal hyperplasia and has no effect on linear growth and hydrocortisone or fludrocortisone dose. Horm. Res. Paediatr. 89, 7–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Bonfig, W. & Schwarz, H. P. Blood pressure, fludrocortisone dose and plasma renin activity in children with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency followed from birth to 4 years of age. Clin. Endocrinol. 81, 871–875 (2014).

    Article  CAS  Google Scholar 

  43. Bonfig, W. et al. Blood pressure in a large cohort of children and adolescents with classic adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency. Am. J. Hypertens. 29, 266–272 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Torky, A. et al. Cardiovascular disease risk factors and metabolic morbidity in a longitudinal study of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 106, e5247–e5257 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. Thorn, G. W., Renold, A. E., Morse, W. I., Goldfien, A. & Reddy, W. J. Highly potent adrenal cortical steroids: structure and biologic activity. Ann. Intern. Med. 43, 979–1000 (1955).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, D. et al. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 9, 30 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mooij, C. F. et al. Influence of 17-hydroxyprogesterone, progesterone and sex steroids on mineralocorticoid receptor transactivation in congenital adrenal hyperplasia. Horm. Res. Paediatr. 83, 414–421 (2015).

    Article  CAS  Google Scholar 

  48. Debono, M. et al. Hormonal circadian rhythms in patients with congenital adrenal hyperplasia: identifying optimal monitoring times and novel disease biomarkers. Eur. J. Endocrinol. 173, 727–737 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Storbeck, K. H. et al. Steroid metabolome analysis in disorders of adrenal steroid biosynthesis and metabolism. Endocr. Rev. 40, 1605–1625 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Turcu, A. F., Rege, J., Auchus, R. J. & Rainey, W. E. 11-Oxygenated androgens in health and disease. Nat. Rev. Endocrinol. 16, 284–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Turcu, A. F. et al. 11-Oxygenated androgens are biomarkers of adrenal volume and testicular adrenal rest tumors in 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 102, 2701–2710 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jha, S. et al. 11-Oxygenated androgens useful in the setting of discrepant conventional biomarkers in 21-hydroxylase deficiency. J. Endocr. Soc. 5, bvaa192 (2021).

    Article  PubMed  CAS  Google Scholar 

  53. Pretorius, E. et al. 11-ketotestosterone and 11-ketodihydrotestosterone in castration resistant prostate cancer: potent androgens which can no longer be ignored. PLoS One 11, e0159867 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rege, J. et al. 11-Ketotestosterone is the dominant circulating bioactive androgen during normal and premature adrenarche. J. Clin. Endocrinol. Metab. 103, 4589–4598 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. Engels, M. et al. Glucocorticoid activity of adrenal steroid precursors in untreated patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 104, 5065–5072 (2019).

    Article  PubMed  Google Scholar 

  56. Pijnenburg-Kleizen, K. J. et al. Adrenal steroid metabolites accumulating in congenital adrenal hyperplasia lead to transactivation of the glucocorticoid receptor. Endocrinology 156, 3504–3510 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Ali, S. R. et al. Real-world estimates of adrenal insufficiency-related adverse events in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 106, e192–e203 (2021).

    Article  PubMed  Google Scholar 

  58. El-Maouche, D. et al. Longitudinal assessment of illnesses, stress dosing, and illness sequelae in patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 103, 2336–2345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Falhammar, H. et al. Increased mortality in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 99, E2715–E2721 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Jenkins-Jones, S. et al. Poor compliance and increased mortality, depression and healthcare costs in patients with congenital adrenal hyperplasia. Eur. J. Endocrinol. 178, 309–320 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Rushworth, R. L., Torpy, D. J., Stratakis, C. A. & Falhammar, H. Adrenal crises in children: perspectives and research directions. Horm. Res. Paediatr. 89, 341–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Reisch, N. et al. Frequency and causes of adrenal crises over lifetime in patients with 21-hydroxylase deficiency. Eur. J. Endocrinol. 167, 35–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Hahner, S. et al. High incidence of adrenal crisis in educated patients with chronic adrenal insufficiency: a prospective study. J. Clin. Endocrinol. Metab. 100, 407–416 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Hahner, S. et al. Epidemiology of adrenal crisis in chronic adrenal insufficiency: the need for new prevention strategies. Eur. J. Endocrinol. 162, 597–602 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Smans, L. C., Van der Valk, E. S., Hermus, A. R. & Zelissen, P. M. Incidence of adrenal crisis in patients with adrenal insufficiency. Clin. Endocrinol. 84, 17–22 (2016).

    Article  CAS  Google Scholar 

  66. Odenwald, B. et al. Children with classic congenital adrenal hyperplasia experience salt loss and hypoglycemia: evaluation of adrenal crises during the first 6 years of life. Eur. J. Endocrinol. 174, 177–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Rushworth, R. L., Torpy, D. J. & Falhammar, H. Adrenal crisis. N. Engl. J. Med. 381, 852–861 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Weber, J. et al. Low adrenomedullary function predicts acute illness in infants with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 107, e264–e271 (2022).

    Article  PubMed  Google Scholar 

  69. Donaldson, M. D. et al. Presentation, acute illness, and learning difficulties in salt wasting 21-hydroxylase deficiency. Arch. Dis. Child. 70, 214–218 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abe, Y. et al. Manifestations and characteristics of congenital adrenal hyperplasia-associated encephalopathy. Brain Dev. 38, 638–647 (2016).

    Article  PubMed  Google Scholar 

  71. Tresoldi, A. S. et al. Increased infection risk in addison’s disease and congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 105, 418–429 (2020).

    Article  Google Scholar 

  72. Arlt, W., Baldeweg, S. E., Pearce, S. H. S. & Simpson, H. L. Endocrinology in the time of COVID-19: management of adrenal insufficiency. Eur. J. Endocrinol. https://doi.org/10.1530/eje-20-0361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hahner, S. & Allolio, B. Therapeutic management of adrenal insufficiency. Best. Pract. Res. Clin. Endocrinol. Metab. 23, 167–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Repping-Wuts, H. J., Stikkelbroeck, N. M., Noordzij, A., Kerstens, M. & Hermus, A. R. A glucocorticoid education group meeting: an effective strategy for improving self-management to prevent adrenal crisis. Eur. J. Endocrinol. 169, 17–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Nilsson, O., Marino, R., De Luca, F., Phillip, M. & Baron, J. Endocrine regulation of the growth plate. Horm. Res. 64, 157–165 (2005).

    CAS  PubMed  Google Scholar 

  76. Charmandari, E., Hindmarsh, P. C., Johnston, A. & Brook, C. G. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: alterations in cortisol pharmacokinetics at puberty. J. Clin. Endocrinol. Metab. 86, 2701–2708 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Merke, D. P. & Poppas, D. P. Management of adolescents with congenital adrenal hyperplasia. Lancet Diabetes Endocrinol. 1, 341–352 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stikkelbroeck, N. M. M. L., Van’T Hof-Grootenboer, B. A. E., Hermus, A. R. M. M., Otten, B. J. & Van’T Hof, M. A. Growth inhibition by glucocorticoid treatment in salt wasting 21-hydroxylase deficiency: in early infancy and (pre)puberty. J. Clin. Endocrinol. Metab. 88, 3525–3530 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Quintos, J. B., Vogiatzi, M. G., Harbison, M. D. & New, M. I. Growth hormone therapy alone or in combination with gonadotropin-releasing hormone analog therapy to improve the height deficit in children with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86, 1511–1517 (2001).

    CAS  PubMed  Google Scholar 

  80. Lin-Su, K., Harbison, M. D., Lekarev, O., Vogiatzi, M. G. & New, M. I. Final adult height in children with congenital adrenal hyperplasia treated with growth hormone. J. Clin. Endocrinol. Metab. 96, 1710–1717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Subbarayan, A., Dattani, M. T., Peters, C. J. & Hindmarsh, P. C. Cardiovascular risk factors in children and adolescents with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Clin. Endocrinol. 80, 471–477 (2014).

    Article  CAS  Google Scholar 

  82. Tamhane, S. et al. Cardiovascular and metabolic outcomes in congenital adrenal hyperplasia: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 103, 4097–4103 (2018).

    Article  PubMed  Google Scholar 

  83. Falhammar, H. et al. Increased cardiovascular and metabolic morbidity in patients with 21-hydroxylase deficiency: a Swedish population-based national cohort study. J. Clin. Endocrinol. Metab. 100, 3520–3528 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Hirschberg, A. L. et al. Reproductive and perinatal outcomes in women with congenital adrenal hyperplasia: a population-based cohort study. J. Clin. Endocrinol. Metab. 106, e957–e965 (2021).

    Article  PubMed  Google Scholar 

  85. Mallappa, A. et al. Alterations in hydrocortisone pharmacokinetics in a patient with congenital adrenal hyperplasia following bariatric surgery. J. Endocr. Soc. 1, 994–1001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mah, P. M. et al. Weight-related dosing, timing and monitoring hydrocortisone replacement therapy in patients with adrenal insufficiency. Clin. Endocrinol. 61, 367–375 (2004).

    Article  CAS  Google Scholar 

  87. Ahmed, A. et al. A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease. PLoS One 7, e29531 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holt, H. B. et al. Cortisol clearance and associations with insulin sensitivity, body fat and fatty liver in middle-aged men. Diabetologia 50, 1024–1032 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Buckley, L. & Humphrey, M. B. Glucocorticoid-induced osteoporosis. N. Engl. J. Med. 379, 2547–2556 (2018).

    Article  PubMed  Google Scholar 

  90. Rangaswamaiah, S., Gangathimmaiah, V., Nordenstrom, A. & Falhammar, H. Bone mineral density in adults with congenital adrenal hyperplasia: a systematic review and meta-analysis. Front. Endocrinol. 11, 493 (2020).

    Article  Google Scholar 

  91. Falhammar, H. et al. Increased prevalence of fractures in congenital adrenal hyperplasia: a Swedish population-based national cohort study. J. Clin. Endocrinol. Metab. 107, e475–e486 (2022).

    Article  PubMed  Google Scholar 

  92. Mallappa, A. & Merke, D. P. in Management of Adrenal Masses in Children and Adults 207–224 (Springer, 2017).

  93. Nermoen, I. & Falhammar, H. Prevalence and characteristics of adrenal tumors and myelolipomas in congenital adrenal hyperplasia: a systematic review and meta-analysis. Endocr. Pract. 26, 1351–1365 (2020).

    Article  PubMed  Google Scholar 

  94. El-Maouche, D. et al. Adrenal morphology and associated comorbidities in congenital adrenal hyperplasia. Clin. Endocrinol. 91, 247–255 (2019).

    Article  CAS  Google Scholar 

  95. Reisch, N. et al. Total adrenal volume but not testicular adrenal rest tumor volume is associated with hormonal control in patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 95, 2065–2072 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Bouvattier, C. et al. Clinical outcome, hormonal status, gonadotrope axis, and testicular function in 219 adult men born with classic 21-hydroxylase deficiency. a French national survey. J. Clin. Endocrinol. Metab. 100, 2303–2313 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Mendes-Dos-Santos, C. T. et al. Prevalence of testicular adrenal rest tumor and factors associated with its development in congenital adrenal hyperplasia. Horm. Res. Paediatr. 90, 161–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Engels, M. et al. Testicular adrenal rest tumors: current insights on prevalence, characteristics, origin, and treatment. Endocr. Rev. 40, 973–987 (2019).

    Article  PubMed  Google Scholar 

  99. Smeets, E. E. et al. Molecular characterization of testicular adrenal rest tumors in congenital adrenal hyperplasia: lesions with both adrenocortical and Leydig cell features. J. Clin. Endocrinol. Metab. 100, E524–E530 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Tanaka, M., Enatsu, N., Chiba, K. & Fujisawa, M. Two cases of reversible male infertility due to congenital adrenal hyperplasia combined with testicular adrenal rest tumor. Reprod. Med. Biol. 17, 93–97 (2018).

    Article  PubMed  Google Scholar 

  101. Stikkelbroeck, N. M. et al. Prevalence of ovarian adrenal rest tumours and polycystic ovaries in females with congenital adrenal hyperplasia: results of ultrasonography and MR imaging. Eur. Radiol. 14, 1802–1806 (2004).

    Article  PubMed  Google Scholar 

  102. Claahsen-van der Grinten, H. L., Stikkelbroeck, N., Falhammar, H. & Reisch, N. Management of endocrine disease: gonadal dysfunction in congenital adrenal hyperplasia. Eur. J. Endocrinol. 184, R85–R97 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Falhammar, H. et al. Reduced frequency of biological and increased frequency of adopted children in males with 21-hydroxylase deficiency: a Swedish population-based national cohort study. J. Clin. Endocrinol. Metab. 102, 4191–4199 (2017).

    Article  PubMed  Google Scholar 

  104. Johannsson, G. et al. Improving glucocorticoid replacement therapy using a novel modified-release hydrocortisone tablet: a pharmacokinetic study. Eur. J. Endocrinol. 161, 119–130 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Johannsson, G. et al. Improved cortisol exposure-time profile and outcome in patients with adrenal insufficiency: a prospective randomized trial of a novel hydrocortisone dual-release formulation. J. Clin. Endocrinol. Metab. 97, 473–481 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Newell-Price, J. et al. Modified-release hydrocortisone for circadian therapy: a proof-of-principle study in dexamethasone-suppressed normal volunteers. Clin. Endocrinol. 68, 130–135 (2008).

    Article  CAS  Google Scholar 

  107. Whitaker, M. et al. An oral multiparticulate, modified-release, hydrocortisone replacement therapy that provides physiological cortisol exposure. Clin. Endocrinol. 80, 554–561 (2014).

    Article  CAS  Google Scholar 

  108. Verma, S. et al. A pharmacokinetic and pharmacodynamic study of delayed- and extended-release hydrocortisone (Chronocort) vs. conventional hydrocortisone (Cortef) in the treatment of congenital adrenal hyperplasia. Clin. Endocrinol. 72, 441–447 (2010).

    Article  CAS  Google Scholar 

  109. Mallappa, A. et al. A phase 2 study of Chronocort, a modified-release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 100, 1137–1145 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Jones, C. M. et al. Modified-release and conventional glucocorticoids and diurnal androgen excretion in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 102, 1797–1806 (2017).

    PubMed  Google Scholar 

  111. Merke, D. P. et al. Modified-release hydrocortisone in congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 106, e2063–e2077 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Debono, M. et al. Modified-release hydrocortisone to provide circadian cortisol profiles. J. Clin. Endocrinol. Metab. 94, 1548–1554 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nella, A. A. et al. A phase 2 study of continuous subcutaneous hydrocortisone infusion in adults with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 101, 4690–4698 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mallappa, A. et al. Long-term use of continuous subcutaneous hydrocortisone infusion therapy in patients with congenital adrenal hyperplasia. Clin. Endocrinol. 89, 399–407 (2018).

    Article  CAS  Google Scholar 

  115. Turcu, A. F. et al. 24-Hour profiles of 11-oxygenated C(19) steroids and Δ(5)-steroid sulfates during oral and continuous subcutaneous glucocorticoids in 21-hydroxylase deficiency. Front. Endocrinol. 12, 751191 (2021).

    Article  Google Scholar 

  116. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Nixon, M. et al. ABCC1 confers tissue-specific sensitivity to cortisol versus corticosterone: a rationale for safer glucocorticoid replacement therapy. Sci. Transl. Med. 8, 352ra109 (2016).

    Article  PubMed  CAS  Google Scholar 

  118. Kyle, C. et al. Comparison of acute effects of corticosterone versus cortisol (hydrocortisone) infusion in adults with congenital adrenal hyperplasia. Endocr. Abstr. https://doi.org/10.1530/endoabs.59.OC2.2 (2018).

    Article  Google Scholar 

  119. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00001521 (1995).

  120. De Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Auchus, R. J. et al. Abiraterone acetate to lower androgens in women with classic 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 99, 2763–2770 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wright, C., O’Day, P., Alyamani, M., Sharifi, N. & Auchus, R. J. Abiraterone acetate treatment lowers 11-oxygenated androgens. Eur. J. Endocrinol. 182, 413–421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02574910 (2021).

  124. El-Maouche, D. et al. A phase 2, multicenter study of nevanimibe for the treatment of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 105, 2771–2778 (2020).

    Article  PubMed Central  Google Scholar 

  125. Lapensee, C. R. et al. ATR-101, a selective and potent inhibitor of acyl-CoA acyltransferase 1, induces apoptosis in H295R adrenocortical cells and in the adrenal cortex of dogs. Endocrinology 157, 1775–1788 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Turcu, A. F. et al. Single-dose study of a corticotropin-releasing factor receptor-1 antagonist in women with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 101, 1174–1180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Auchus, R. J. et al. Crinecerfont lowers elevated hormone markers in adults with 21-hydroxylase deficiency congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 107, 801–812 (2021).

    Article  PubMed Central  Google Scholar 

  128. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04490915 (2021).

  129. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04806451 (2021).

  130. Sarafoglou, K. et al. Tildacerfont in adults with classic congenital adrenal hyperplasia: results from two phase 2 studies. J. Clin. Endocrinol. Metab. 106, e4666–e4679 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04457336 (2021).

  132. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04544410 (2021).

  133. Spruce Biosciences. Pediatric Classic CAH, Pipeline https://sprucebiosciences.com/pipeline/indications/pediatric-classic-cah/ (2021).

  134. Feldhaus, A. L. et al. ALD1613, a novel long-acting monoclonal antibody to control ACTH-driven pharmacology. Endocrinology https://doi.org/10.1210/en.2016-1455 (2016).

    Article  Google Scholar 

  135. Gehrand, A. L., Phillips, J., Malott, K. & Raff, H. A long-acting neutralizing monoclonal ACTH antibody blocks corticosterone and adrenal gene responses in neonatal rats. Endocrinology 160, 1719–1730 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Kusnetzow, A. et al. SAT-364 nonpeptide orally-bioavailable ACTH antagonists: suppression of ACTH-induced corticosterone secretion and adrenal hypertrophy in rats. J. Endocr. Soc. https://doi.org/10.1210/js.2019-SAT-364 (2019).

    Article  PubMed Central  Google Scholar 

  137. Kusnetzow, A. K. et al. MON-176 Discovery and Identification of Late Stage Selective Nonpeptide ACTH Antagonists for the Treatment of Cushing’s Disease, Ectopic ACTH secreting tumors, and congenital adrenal hyperplasia. J. Endocr. Soc. https://doi.org/10.1210/jendso/bvaa046.690 (2020).

    Article  PubMed Central  Google Scholar 

  138. Markison, S. et al. OR19-03 effects of nonpeptide orally bioavailable ACTH antagonists on adrenal gland size and function in rats. J. Endocr. Soc. https://doi.org/10.1210/jendso/bvaa046.699 (2020).

    Article  PubMed Central  Google Scholar 

  139. Crinetics. Crinetics Pharmaceuticals Lead ACTH Antagonist for Congenital Adrenal Hyperplasia and Cushing’s Disease (Crn04894) Advances into Phase 1 Study https://crinetics.com/lead-acth-antagonist-crn04894-enters-phase1-study/ (2021).

  140. Goldenberg, A. J. et al. Effect of a melanocortin type 2 receptor (MC2R) antagonist on the corticosterone response to hypoxia and ACTH stimulation in the neonatal rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R128–R133 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sanders, K., Mol, J. A., Kooistra, H. S. & Galac, S. Melanocortin 2 receptor antagonists in canine pituitary-dependent hypercortisolism: in vitro studies. Vet. Res. Commun. 42, 283–288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dagalakis, U., Mallappa, A., Elman, M., Quezado, M. & Merke, D. P. Positive fertility outcomes in a female with classic congenital adrenal hyperplasia following bilateral adrenalectomy. Int. J. Pediatr. Endocrinol. 2016, 10 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Van Wyk, J. J. & Ritzen, E. M. The role of bilateral adrenalectomy in the treatment of congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 88, 2993–2998 (2003).

    Article  PubMed  CAS  Google Scholar 

  144. Ogilvie, C. M., Rumsby, G., Kurzawinski, T. & Conway, G. S. Outcome of bilateral adrenalectomy in congenital adrenal hyperplasia: one unit’s experience. Eur. J. Endocrinol. 154, 405–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. MacKay, D., Nordenstrom, A. & Falhammar, H. Bilateral adrenalectomy in congenital adrenal hyperplasia: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 103, 1767–1778 (2018).

    Article  PubMed  Google Scholar 

  146. Crocker, M. K. et al. Use of PET/CT with cosyntropin stimulation to identify and localize adrenal rest tissue following adrenalectomy in a woman with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 97, E2084–E2089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Burman, P., Falhammar, H., Waldenström, E., Sundin, A. & Bitzén, U. 11C-Metomidate PET/CT detected multiple ectopic adrenal rest tumors in a woman with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 106, e675–e679 (2021).

    Article  PubMed  Google Scholar 

  148. Tiosano, D. et al. Ovarian adrenal rest tumor in a congenital adrenal hyperplasia patient with adrenocorticotropin hypersecretion following adrenalectomy. Horm. Res. Paediatr. 74, 223–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Waszut, U., Szyszka, P. & Dworakowska, D. Understanding mitotane mode of action. J. Physiol. Pharmacol. 68, 13–26 (2017).

    CAS  PubMed  Google Scholar 

  150. Kiseljak-Vassiliades, K. et al. American Association of Clinical Endocrinology disease state clinical review on the evaluation and management of adrenocortical carcinoma in an adult: a practical approach. Endocr. Pract. 26, 1366–1383 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tritos, N. A. & Biller, B. M. K. Medical therapy for Cushing’s syndrome in the twenty-first century. Endocrinol. Metab. Clin. North. Am. 47, 427–440 (2018).

    Article  PubMed  Google Scholar 

  152. Bry-Gauillard, H., Cartes, A. & Young, J. Mitotane for 21-hydroxylase deficiency in an infertile man. N. Engl. J. Med. 371, 2042–2044 (2014).

    Article  PubMed  Google Scholar 

  153. Bachelot, A. et al. Effects of mitotane on testicular adrenal rest tumors in congenital adrenal hyperplasia due to 21-hydroxylase deficiency: a retrospective series of five patients. Eur. J. Endocrinol. 184, 365–371 (2021).

    Article  PubMed  Google Scholar 

  154. U.S. Food and Drug Administration LYSODREN® (mitotane) Tablets https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/016885s023lbl.pdf (2017).

  155. Tritos, N. A. & Biller, B. M. K. Medical management of Cushing’s disease. J. Neurooncol. 117, 407–414 (2014).

    Article  PubMed  Google Scholar 

  156. Ruiz-Babot, G. et al. Modeling congenital adrenal hyperplasia and testing interventions for adrenal insufficiency using donor-specific reprogrammed cells. Cell Rep. 22, 1236–1249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bornstein, S. R. et al. New horizons: novel adrenal regenerative therapies. J. Clin. Endocrinol. Metabol. https://doi.org/10.1210/clinem/dgaa438 (2020).

    Article  Google Scholar 

  158. Balyura, M. et al. Transplantation of bovine adrenocortical cells encapsulated in alginate. Proc. Natl Acad. Sci. USA 112, 2527–2532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tajima, T. et al. Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochromeP450 21-hydroxylase into the adrenal gland of21-hydroxylase-deficient mice. Gene Ther. 6, 1898–1903 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Perdomini, M., Dos Santos, C., Goumeaux, C., Blouin, V. & Bougneres, P. An AAVrh10-CAG-CYP21-HA vector allows persistent correction of 21-hydroxylase deficiency in a Cyp21(-/-) mouse model. Gene Ther. 24, 275–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Markmann, S. et al. Biology of the adrenal gland cortex obviates effective use of adeno-associated virus vectors to treat hereditary adrenal disorders. Hum. Gene Ther. 29, 403–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Naiki, Y. et al. Extra-adrenal induction of Cyp21a1 ameliorates systemic steroid metabolism in a mouse model of congenital adrenal hyperplasia. Endocr. J. 63, 897–904 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Eclov, R. J. et al. OR25-01 Durable CYP21A2 gene therapy in non-human primates for treatment of congenital adrenal hyperplasia. J. Endocr. Soc. https://doi.org/10.1210/jendso/bvaa046.899 (2020).

    Article  PubMed Central  Google Scholar 

  164. Merke, D. P. et al. Design of a phase 1/2 open-label, dose-escalation study of the safety and efficacy of gene therapy in adults with classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency through administration of an adeno-associated virus (AAV) serotype 5-based recombinant vector encoding the human CYP21A2 Gene. J. Endocr. Soc. 5, A82–A82 (2021).

    Article  Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04783181 (2020).

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Deborah P. Merke.

Ethics declarations

Competing interests

D.P.M. received research funds from Diurnal Limited through the National Institutes of Health Cooperative Research and Development Agreement. During the writing of this manuscript, A.M. took up employment at AstraZeneca and is currently employed there.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Antonio Balsamo, who co-reviewed the manuscript with Rita Ortolano, Anna Nordenström and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallappa, A., Merke, D.P. Management challenges and therapeutic advances in congenital adrenal hyperplasia. Nat Rev Endocrinol 18, 337–352 (2022). https://doi.org/10.1038/s41574-022-00655-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-022-00655-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing