Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits

Abstract

Obesity is a multifactorial and complex disease that often manifests in early childhood with a lifelong burden. Polygenic and monogenic obesity are driven by the interaction between genetic predisposition and environmental factors. Polygenic variants are frequent and confer small effect sizes. Rare monogenic obesity syndromes are caused by defined pathogenic variants in single genes with large effect sizes. Most of these genes are involved in the central nervous regulation of body weight; for example, genes of the leptin–melanocortin pathway. Clinically, patients with monogenic obesity present with impaired satiety, hyperphagia and pronounced food-seeking behaviour in early childhood, which leads to severe early-onset obesity. With the advent of novel pharmacological treatment options emerging for monogenic obesity syndromes that target the central melanocortin pathway, genetic testing is recommended for patients with rapid weight gain in infancy and additional clinical suggestive features. Likewise, patients with obesity associated with hypothalamic damage or other forms of syndromic obesity involving energy regulatory circuits could benefit from these novel pharmacological treatment options. Early identification of patients affected by syndromic obesity will lead to appropriate treatment, thereby preventing the development of obesity sequelae, avoiding failure of conservative treatment approaches and alleviating stigmatization of patients and their families.

Key points

  • Obesity is a complex, multifactorial disease that can be classified into common polygenic obesity and rare obesity syndromes, including monogenic obesity.

  • Most monogenic obesity traits result from pathogenic variants in single genes converging in the leptin–melanocortin pathway.

  • Targeting central pathways of energy expenditure with, for example, MC4R agonists provides new and promising treatment options for patients with monogenic obesity.

  • Polygenic obesity results from an interplay among numerous genetic and environmental factors.

  • Polygenic risk scores and massively parallel sequencing approaches will help the early identification of obesity predisposition.

  • New precision medicine approaches based on genetic obesity traits might help tackle the obesity pandemic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Central nervous system regulation of body weight via the leptin–melanocortin pathway.

Similar content being viewed by others

References

  1. World Health Organization. Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  2. Moreno, L. A. Early severe obesity in children. Nat. Rev. Endocrinol. 14, 194–196 (2018).

    PubMed  Google Scholar 

  3. Geserick, M. et al. Acceleration of BMI in early childhood and risk of sustained obesity. N. Engl. J. Med. 379, 1303–1312 (2018). This study adresses the question of whether there is a critical age window for the manifestation of childhood obesity.

    PubMed  Google Scholar 

  4. Landgraf, K. et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes 64, 1249–1261 (2015).

    CAS  PubMed  Google Scholar 

  5. Twig, G. et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N. Engl. J. Med. 374, 2430–2440 (2016).

    PubMed  Google Scholar 

  6. Fastenau, J. et al. A call to action to inform patient-centred approaches to obesity management: development of a disease-illness model. Clin. Obes. 9, e12309 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Frühbeck, G. et al. The ABCD of obesity: an EASO position statement on a diagnostic term with clinical and scientific implications. Obes. Facts 12, 131–136 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Vogel, M. et al. Age- and weight group-specific weight gain patterns in children and adolescents during the 15 years before and during the COVID-19 pandemic. Int. J. Obes. 46, 144–152 (2021).

    Google Scholar 

  9. Nogueira-de-Almeida, C. A. et al. COVID-19 and obesity in childhood and adolescence: a clinical review. J. Pediatr. 96, 546–558 (2020).

    Google Scholar 

  10. The Lancet Public Health. Childhood obesity beyond COVID-19. Lancet Public. Heal. 6, e534 (2021). A large study analysing the obesity and COVID-19 pandemics in childhood.

    CAS  Google Scholar 

  11. Hill, B. et al. Weight stigma and obesity‐related policies: a systematic review of the state of the literature. Obes. Rev. 22, e13333 (2021).

    PubMed  Google Scholar 

  12. Hilbert, A. Weight stigma reduction and genetic determinism. PLoS ONE 11, e0162993 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Stunkard, A. J., Foch, T. T. & Hrubec, Z. A twin study of human obesity. JAMA 256, 51–54 (1986). A seminal study depicting heritability estimates for BMI.

    CAS  PubMed  Google Scholar 

  14. Silventoinen, K. & Konttinen, H. Obesity and eating behavior from the perspective of twin and genetic research. Neurosci. Biobehav. Rev. 109, 150–165 (2020).

    CAS  PubMed  Google Scholar 

  15. Maes, H. H., Neale, M. C. & Eaves, L. J. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351 (1997).

    CAS  PubMed  Google Scholar 

  16. Vlietinck, R. et al. Genetic and environmental variation in the birth weight of twins. Behav. Genet. 19, 151–161 (1989).

    CAS  PubMed  Google Scholar 

  17. Hebebrand, J. Obesity. in Lewis’s Child and Adolescent Psychiatry (eds. Martin, A., Bloch, M. H. & Volkmar, F. R.) 602–614 (Lippincott Williams & Wilkins, 2007).

  18. Plomin, R., DeFries, J., McClear, G. & Rutter, M. Behavioral Genetics (Freeman, 1997).

  19. Kleiser, C., Schaffrath Rosario, A., Mensink, G. B. M., Prinz-Langenohl, R. & Kurth, B.-M. Potential determinants of obesity among children and adolescents in Germany: results from the cross-sectional KiGGS study. BMC Public. Health 9, 46 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Hebebrand, J. et al. Epidemic obesity: are genetic factors involved via increased rates of assortative mating? Int. J. Obes. Relat. Metab. Disord. 24, 345–353 (2000).

    CAS  PubMed  Google Scholar 

  21. Magnusson, P. K. E. & Rasmussen, F. Familial resemblance of body mass index and familial risk of high and low body mass index. A study of young men in Sweden. Int. J. Obes. Relat. Metab. Disord. 26, 1225–1231 (2002).

    CAS  PubMed  Google Scholar 

  22. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hebebrand, J., Volckmar, A.-L., Knoll, N. & Hinney, A. Chipping away the ‘missing heritability’: GIANT steps forward in the molecular elucidation of obesity – but still lots to go. Obes. Facts 3, 294–303 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Styne, D. M. et al. Pediatric obesity-assessment, treatment, and prevention: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 102, 709–757 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).

    CAS  PubMed  Google Scholar 

  26. Khera, A. V. et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell 177, 587–596.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaur, Y., de Souza, R. J., Gibson, W. T. & Meyre, D. A systematic review of genetic syndromes with obesity. Obes. Rev. 18, 603–634 (2017).

    CAS  PubMed  Google Scholar 

  28. Poitou, C., Mosbah, H. & Clément, K. Mechanisms in endocrinology update on treatments for patients with genetic obesity. Eur. J. Endocrinol. 163, R149–R166 (2020).

    Google Scholar 

  29. Yeo, G. S. H. et al. The melanocortin pathway and energy homeostasis: from discovery to obesity therapy. Mol. Metab. 48, 101206 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kleinendorst, L. et al. Identifying underlying medical causes of pediatric obesity: results of a systematic diagnostic approach in a pediatric obesity center. PLoS ONE 15, e0244508 (2020).

    PubMed  PubMed Central  Google Scholar 

  31. Farooqi, I. S. & O’Rahilly, S. Mutations in ligands and receptors of the leptin-melanocortin pathway that lead to obesity. Nat. Clin. Pract. Endocrinol. Metab. 4, 569–577 (2008).

    CAS  PubMed  Google Scholar 

  32. Saeed, S. et al. Genetic causes of severe childhood obesity: a remarkably high prevalence in an inbred population of Pakistan. Diabetes 69, 1424–1438 (2020).

    PubMed  Google Scholar 

  33. Wade, K. H. et al. Loss-of-function mutations in the melanocortin 4 receptor in a UK birth cohort. Nat. Med. 27, 1088–1096 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ling, C. & Rönn, T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 29, 1028–1044 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rohde, K. et al. Genetics and epigenetics in obesity. Metabolism 92, 37–50 (2019).

    CAS  PubMed  Google Scholar 

  36. Qiao, Y. et al. Birth weight and childhood obesity: a 12-country study. Int. J. Obes. Suppl. 5, S74–S79 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ibáñez, L., Ong, K., Dunger, D. B. & de Zegher, F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J. Clin. Endocrinol. Metab. 91, 2153–2158 (2006).

    PubMed  Google Scholar 

  38. He, Q. & Karlberg, J. BMI in childhood and its association with height gain, timing of puberty, and final height. Pediatr. Res. 49, 244–251 (2001).

    CAS  PubMed  Google Scholar 

  39. Denzer, C. et al. Pubertal development in obese children and adolescents. Int. J. Obes. 31, 1509–1519 (2007).

    CAS  Google Scholar 

  40. de Groot, C. J. et al. Determinants of advanced bone age in childhood obesity. Horm. Res. Paediatr. 87, 254–263 (2017).

    PubMed  Google Scholar 

  41. Kempf, E. et al. Dynamic alterations in linear growth and endocrine parameters in children with obesity and height reference values. eClinicalMedicine 37, 100977 (2021).

    PubMed  PubMed Central  Google Scholar 

  42. Kohlsdorf, K. et al. Early childhood BMI trajectories in monogenic obesity due to leptin, leptin receptor, and melanocortin 4 receptor deficiency. Int. J. Obes. 42, 1602–1609 (2018).

    CAS  Google Scholar 

  43. Strobel, A., Issad, T., Camoin, L., Ozata, M. & Strosberg, A. D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet. 18, 213–215 (1998).

    CAS  PubMed  Google Scholar 

  44. Farooqi, I. S. et al. Clinical and molecular genetic spectrum of congenital deficiency of the Leptin receptor. N. Engl. J. Med. 356, 237–247 (2007). A comprehensive description of genetic variants in LEPR and the relevance for obesity.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. von Schnurbein, J. et al. Leptin substitution results in the induction of menstrual cycles in an adolescent with leptin deficiency and hypogonadotropic hypogonadism. Horm. Res. Paediatr. 77, 127–133 (2012).

    Google Scholar 

  46. Beghini, M. et al. Serum IGF1 and linear growth in children with congenital leptin deficiency before and after leptin substitution. Int. J. Obes. 45, 1448–1456 (2021).

    CAS  Google Scholar 

  47. Farooqi, I. S. & O’Rahilly, S. 20 years of leptin: human disorders of leptin action. J. Endocrinol. 223, T63–T70 (2014).

    CAS  PubMed  Google Scholar 

  48. Farooqi, I. S. Monogenic human obesity syndromes. Handb. Clin. Neurol. 181, 301–310 (2021).

    PubMed  Google Scholar 

  49. Heymsfield, S. B. et al. Hyperphagia: Current Concepts and Future Directions. Proceedings of the 2nd International Conference on Hyperphagia. Obesity 22, S1–S17 (2014).

    PubMed  Google Scholar 

  50. Gibbons, C., Hopkins, M., Beaulieu, K., Oustric, P. & Blundell, J. E. Issues in measuring and interpreting human appetite (satiety/satiation) and its contribution to obesity. Curr. Obes. Rep. 8, 77–87 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Melchior, C. et al. Clinical and functional relevance of melanocortin-4 receptor variants in obese German children. Horm. Res. Paediatr. 78, 237–246 (2012).

    CAS  PubMed  Google Scholar 

  52. Hinney, A., Volckmar, A.-L. & Knoll, N. Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog. Mol. Biol. Transl. Sci. 114, 147–191 (2013).

    CAS  PubMed  Google Scholar 

  53. Creemers, J. W. M. et al. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Diabetes 61, 383–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stijnen, P., Ramos-Molina, B., O’Rahilly, S. & Creemers, J. W. M. PCSK1 mutations and human endocrinopathies: from obesity to gastrointestinal disorders. Endocr. Rev. 37, 347–371 (2016).

    CAS  PubMed  Google Scholar 

  55. Stijnen, P. et al. Endoplasmic reticulum-associated degradation of the mouse PC1/3-N222D hypomorph and human PCSK1 mutations contributes to obesity. Int. J. Obes. 40, 973–981 (2016).

    CAS  Google Scholar 

  56. Löffler, D. et al. Functional and clinical relevance of novel and known PCSK1 variants for childhood obesity and glucose metabolism. Mol. Metab. 6, 295–305 (2017).

    PubMed  Google Scholar 

  57. Mantzoros, C. S. et al. Leptin in human physiology and pathophysiology. Am. J. Physiol. - Endocrinol. Metab. 301, E567–E584 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Park, H.-K. & Ahima, R. S. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 64, 24–34 (2015).

    CAS  PubMed  Google Scholar 

  59. Wauman, J., Zabeau, L. & Tavernier, J. The leptin receptor complex: heavier than expected? Front. Endocrinol. 8, 30 (2017).

    Google Scholar 

  60. Antunes, H., Santos, C. & Carvalho, S. Serum leptin levels in overweight children and adolescents. Br. J. Nutr. 101, 1262–1266 (2008).

    PubMed  Google Scholar 

  61. Pan, W. W. & Myers, M. G. Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 19, 95–105 (2018).

    CAS  PubMed  Google Scholar 

  62. Funcke, J.-B. et al. Monogenic forms of childhood obesity due to mutations in the leptin gene. Mol. Cell. Pediatr. 1, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Montague, C. T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997). The first description of leptin deficiency in humans.

    CAS  PubMed  Google Scholar 

  64. Wabitsch, M. et al. Biologically inactive leptin and early-onset extreme obesity. N. Engl. J. Med. 372, 48–54 (2015). The first description of biologically inactive variants in the leptin gene.

    PubMed  Google Scholar 

  65. Wabitsch, M. et al. Severe early-onset obesity due to bioinactive leptin caused by a p.N103K mutation in the leptin gene. J. Clin. Endocrinol. Metab. 100, 3227–3230 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999). A comprehensive description of leptin treatment in severe obesity due to leptin deficiency.

    CAS  PubMed  Google Scholar 

  67. Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fischer-Posovszky, P. et al. A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J. Clin. Endocrinol. Metab. 95, 2836–2840 (2010).

    CAS  PubMed  Google Scholar 

  69. Gruber, T. et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 33, 1155–1170.e10 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Von Schnurbein, J. et al. Leptin is not essential for obesity-associated hypertension. Obes. Facts 12, 460–475 (2019).

    Google Scholar 

  71. Kim, M. S. et al. The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. J. Clin. Invest. 105, 1005–1011 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nillni, E. A. et al. Leptin regulates prothyrotropin-releasing hormone biosynthesis: evidence for direct and indirect pathways. J. Biol. Chem. 275, 36124–36133 (2000).

    CAS  PubMed  Google Scholar 

  73. Paz-Filho, G., Delibasi, T., Erol, H. K., Wong, M.-L. & Licinio, J. Congenital leptin deficiency and thyroid function. Thyroid. Res. 2, 11 (2009).

    PubMed  PubMed Central  Google Scholar 

  74. Wabitsch, M. et al. Measurement of immunofunctional leptin to detect and monitor patients with functional leptin deficiency. Eur. J. Endocrinol. 176, 315–322 (2017).

    CAS  PubMed  Google Scholar 

  75. Stanik, J. et al. Concordance of bioactive vs. total immunoreactive serum leptin levels in children with severe early onset obesity. PLoS ONE 12, e0178107 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Clément, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998). Detection of the first patients with LEPR deficiency.

    PubMed  Google Scholar 

  77. Kleinendorst, L. et al. Leptin receptor deficiency: a systematic literature review and prevalence estimation based on population genetics. Eur. J. Endocrinol. 182, 47–56 (2019).

    Google Scholar 

  78. Nunziata, A. et al. Functional and phenotypic characteristics of human leptin receptor mutations. J. Endocr. Soc. 3, 27–41 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Voigtmann, F. et al. Identification of a novel leptin receptor (LEPR) variant and proof of functional relevance directing treatment decisions in patients with morbid obesity. Metabolism 116, 154438 (2021).

    CAS  PubMed  Google Scholar 

  80. Li, Z., Zhou, Y., Carter-Su, C., Myers, M. G. & Rui, L. SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms. Mol. Endocrinol. 21, 2270–2281 (2007).

    CAS  PubMed  Google Scholar 

  81. Bochukova, E. G. et al. Large, rare chromosomal deletions associated with severe early-onset obesity. Nature 463, 666–670 (2010).

    CAS  PubMed  Google Scholar 

  82. Doche, M. E. et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J. Clin. Invest. 122, 4732–4736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Volckmar, A.-L. et al. Mutation screen in the GWAS derived obesity gene SH2B1 including functional analyses of detected variants. BMC Med. Genomics 5, 65 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rui, L. SH2B1 regulation of energy balance, body weight, and glucose metabolism. World J. Diabetes 5, 511 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. Argente, J. et al. Efficacy and safety results of a phase 2 trial of setmelanotide in obesity due to SH2B1 variants and 16p11.2 deletion syndrome [abstract]. ESPE Abstr. 94, FC2.1 (2021).

    Google Scholar 

  86. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    CAS  PubMed  Google Scholar 

  87. Graves, L. E., Khouri, J. M., Kristidis, P. & Verge, C. F. Proopiomelanocortin deficiency diagnosed in infancy in two boys and a review of the known cases. J. Paediatr. Child Health 57, 484–490 (2021).

    PubMed  Google Scholar 

  88. Kühnen, P. et al. Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab. 24, 502–509 (2016).

    PubMed  Google Scholar 

  89. Candler, T., Kühnen, P., Prentice, A. M. & Silver, M. Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front. Neuroendocrinol. 54, 100773 (2019).

    CAS  PubMed  Google Scholar 

  90. O’Rahilly, S. et al. Impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N. Engl. J. Med. 333, 1386–1391 (1995).

    PubMed  Google Scholar 

  91. Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16, 303–306 (1997).

    CAS  PubMed  Google Scholar 

  92. Jackson, R. S. et al. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J. Clin. Invest. 112, 1550–1560 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Farooqi, I. S. et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J. Clin. Endocrinol. Metab. 92, 3369–3373 (2007).

    CAS  PubMed  Google Scholar 

  94. Pépin, L. et al. A newcase of PCSK1 pathogenic variant with congenital proprotein convertase 1/3 deficiency and literature review. J. Clin. Endocrinol. Metab. 104, 985–993 (2019).

    PubMed  Google Scholar 

  95. Benzinou, M. et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat. Genet. 40, 943–945 (2008).

    CAS  PubMed  Google Scholar 

  96. Yeo, G. S. H. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    CAS  PubMed  Google Scholar 

  97. Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114 (1998). This study and the study by Yeo et al. (1998) are the first studies delineating the effect of MC4R mutations on obesity.

    CAS  PubMed  Google Scholar 

  98. Farooqi, I. S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    CAS  PubMed  Google Scholar 

  99. Kühnen, P., Krude, H. & Biebermann, H. Melanocortin-4 receptor signalling: importance for weight regulation and obesity treatment. Trends Mol. Med. 25, 136–148 (2019).

    PubMed  Google Scholar 

  100. Clément, K. et al. MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat. Med. 24, 551–555 (2018).

    PubMed  Google Scholar 

  101. Dempfle, A. et al. Large quantitative effect of melanocortin-4 receptor gene mutations on body mass index. J. Med. Genet. 41, 795–800 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Geller, F. et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am. J. Hum. Genet. 74, 572–581 (2004). First study describing a robust polygenic effect of BMI.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lotta, L. A. et al. Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell 177, 597–607.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Paisdzior, S. et al. Differential signaling profiles of MC4R mutations with three different ligands. Int. J. Mol. Sci. 21, 1224 (2020).

    CAS  PubMed Central  Google Scholar 

  105. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug. Discov. 17, 243–260 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Akbari, P. et al. Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity. Science 373, eabf8683 (2021).

    CAS  PubMed  Google Scholar 

  107. Mendes de Oliveira, E. et al. Obesity-associated GNAS mutations and the melanocortin pathway. N. Engl. J. Med. 385, 1581–1592 (2021).

    CAS  PubMed  Google Scholar 

  108. Ji, L., Wu, H. T., Qin, X. Y. & Lan, R. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr. Connect. 6, R18–R38 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Alsters, S. I. M. et al. Truncating homozygous mutation of carboxypeptidase E (CPE) in a morbidly obese female with type 2 diabetes mellitus, intellectual disability and hypogonadotrophic hypogonadism. PLoS ONE 10, e0131417 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Bosch, E. et al. BDV syndrome: an emerging syndrome with profound obesity and neurodevelopmental delay resembling Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 106, 3413–3427 (2021).

    PubMed  Google Scholar 

  111. York, B. & O’Malley, B. W. Steroid receptor coactivator (SRC) family: masters of systems biology. J. Biol. Chem. 285, 38743–38750 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang, Y. et al. Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis. Nat. Commun. 10, 1718 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Reinehr, T. et al. Lifestyle intervention in obese children with variations in the melanocortin 4 receptor gene. Obesity 17, 382–389 (2009).

    CAS  PubMed  Google Scholar 

  114. Hainerová, I. et al. Melanocortin 4 receptor mutations in obese Czech children: studies of prevalence, phenotype development, weight reduction response, and functional analysis. J. Clin. Endocrinol. Metab. 92, 3689–3696 (2007).

    PubMed  Google Scholar 

  115. Trier, C. et al. Obesity treatment effect in Danish children and adolescents carrying melanocortin-4 receptor mutations. Int. J. Obes. 45, 66–76 (2021).

    CAS  Google Scholar 

  116. Vos, N. et al. Bariatric surgery for monogenic non-syndromic and syndromic obesity disorders. Curr. Diab. Rep. 20, 44 (2020).

    PubMed  PubMed Central  Google Scholar 

  117. Poitou, C. et al. Long-term outcomes of bariatric surgery in patients with bi-allelic mutations in the POMC, LEPR, and MC4R genes. Surg. Obes. Relat. Dis. 17, 1449–1456 (2021).

    PubMed  Google Scholar 

  118. Cooiman, M. I. et al. Long-term weight outcome after bariatric surgery in patients with melanocortin-4 receptor gene variants: a case–control study of 105 patients. Obes. Surg. 32, 837–844 (2022).

    PubMed  Google Scholar 

  119. Kleinendorst, L., van Haelst, M. M. & van den Akker, E. L. T. Young girl with severe early-onset obesity and hyperphagia. BMJ Case Rep. 2017, bcr2017221067 (2017).

    PubMed Central  Google Scholar 

  120. Zorn, S., von Schnurbein, J., Kohlsdorf, K., Denzer, C. & Wabitsch, M. Diagnostic and therapeutic odyssey of two patients with compound heterozygous leptin receptor deficiency. Mol. Cell. Pediatr. 7, 15 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 254–266 (2017).

    CAS  PubMed  Google Scholar 

  122. Cardel, M. I., Jastreboff, A. M. & Kelly, A. S. Treatment of adolescent obesity in 2020. JAMA 322, 1707–1708 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Viner, R. M., Hsia, Y., Tomsic, T. & Wong, I. C. K. Efficacy and safety of anti-obesity drugs in children and adolescents: systematic review and meta-analysis. Obes. Rev. 11, 593–602 (2009).

    PubMed  Google Scholar 

  124. Sherafat-Kazemzadeh, R., Yanovski, S. Z. & Yanovski, J. A. Pharmacotherapy for childhood obesity: present and future prospects. Int. J. Obes. 37, 1–15 (2013).

    CAS  Google Scholar 

  125. Peirson, L. et al. Treatment of overweight and obesity in children and youth: a systematic review and meta-analysis. CMAJ Open 3, E35–E46 (2015).

    PubMed  PubMed Central  Google Scholar 

  126. von Schnurbein, J. et al. Rapid improvement of hepatic steatosis after initiation of leptin substitution in a leptin-deficient girl. Horm. Res. Paediatr. 79, 310–317 (2013).

    Google Scholar 

  127. Farr, O. M., Gavrieli, A. & Mantzoros, C. S. Leptin applications in 2015: what have we learned about leptin and obesity? Curr. Opin. Endocrinol. Diabetes Obes. 22, 353–359 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    CAS  PubMed  Google Scholar 

  129. Tsoukas, M. A., Farr, O. M. & Mantzoros, C. S. Leptin in congenital and HIV-associated lipodystrophy. Metabolism 64, 47–59 (2015).

    CAS  PubMed  Google Scholar 

  130. Milos, G. et al. Short-term metreleptin treatment of patients with anorexia nervosa: rapid on-set of beneficial cognitive, emotional, and behavioral effects. Transl. Psychiatry 10, 303 (2020). The first clinical use of metreleptin in the treatment of patients with the eating disorder anorexia nervosa.

    PubMed  PubMed Central  Google Scholar 

  131. Antel, J. et al. Rapid amelioration of anorexia nervosa in a male adolescent during metreleptin treatment including recovery from hypogonadotropic hypogonadism. Eur. Child. Adolesc. Psychiatry https://doi.org/10.1007/s00787-021-01778-7 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. de Candia, P. et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218, e20191593 (2021).

    PubMed  PubMed Central  Google Scholar 

  133. Kühnen, P. et al. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Engl. J. Med. 375, 240–246 (2016). The first report on the weight-lowering effects of the MC4R agonist setmelanotide in patients with POMC deficiency.

    PubMed  Google Scholar 

  134. Greenfield, J. R. et al. Modulation of blood pressure by central melanocortinergic pathways. N. Engl. J. Med. 360, 44–52 (2009).

    CAS  PubMed  Google Scholar 

  135. Kanti, V. et al. A melanocortin-4 receptor agonist induces skin and hair pigmentation in patients with monogenic mutations in the leptin-melanocortin pathway. Ski. Pharmacol. Physiol. 34, 307–316 (2021).

    CAS  Google Scholar 

  136. Tagliabue, E. et al. MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: a pooled analysis from the M-SKIP project. Cancer Manag. Res. 10, 1143–1154 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Collet, T. H. et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (setmelanotide) in MC4R deficiency. Mol. Metab. 6, 1321–1329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Clément, K. et al. Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 8, 960–970 (2020).

    PubMed  Google Scholar 

  139. Markham, A. Setmelanotide: first approval. Drugs 81, 397–403 (2021).

    CAS  PubMed  Google Scholar 

  140. Haws, R. et al. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in Bardet-Biedl syndrome. Diabetes Obes. Metab. 22, 2133–2140 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Argente, J. et al. Phase 3 trial of setmelanotide in participants with Bardet-Biedl syndrome: placebo-controlled results [abstract]. ESPE Abstr. 94, FC2.2 (2021).

    Google Scholar 

  142. Ryan, D. H. Setmelanotide: what does it mean for clinical care of patients with obesity? Lancet Diabetes Endocrinol. 8, 933–935 (2020).

    CAS  PubMed  Google Scholar 

  143. Akinci, B. et al. The complicated clinical course in a case of atypical lipodystrophy after development of neutralizing antibody to metreleptin: treatment with setmelanotide. Endocrinol. Diabetes Metab. Case Rep. 2020, 19–0139 (2020).

    PubMed Central  Google Scholar 

  144. Kamermans, A. et al. Setmelanotide, a novel, selective melanocortin receptor-4 agonist exerts anti-inflammatory actions in astrocytes and promotes an anti-inflammatory macrophage phenotype. Front. Immunol. 10, 2312 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kelly, A. S. et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N. Engl. J. Med. 382, 2117–2128 (2020).

    CAS  PubMed  Google Scholar 

  146. Iepsen, E. W. et al. Patients with obesity caused by melanocortin-4 receptor mutations can be treated with a glucagon-like peptide-1 receptor agonist. Cell Metab. 28, 23–32.e3 (2018).

    CAS  PubMed  Google Scholar 

  147. Iepsen, E. W. et al. GLP-1 receptor agonist treatment in morbid obesity and type 2 diabetes due to pathogenic homozygous melanocortin-4 receptor mutation: a case report. Cell Rep. Med. 1, 100006 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Welling, M. S. et al. Effects of glucagon-like peptide-1 analogue treatment in genetic obesity: a case series. Clin. Obes. 11, e12481 (2021).

    PubMed  PubMed Central  Google Scholar 

  149. Müller, T. D., Clemmensen, C., Finan, B., DiMarchi, R. D. & Tschöp, M. H. Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol. Rev. 70, 712–746 (2018).

    PubMed  Google Scholar 

  150. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    CAS  PubMed  Google Scholar 

  151. Clemmensen, C. et al. Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nat. Rev. Endocrinol. 15, 90–104 (2019).

    PubMed  Google Scholar 

  152. Frías, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 385, 503–515 (2021).

    PubMed  Google Scholar 

  153. Rosenstock, J. et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 398, 143–155 (2021).

    CAS  PubMed  Google Scholar 

  154. Ludvik, B. et al. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): a randomised, open-label, parallel-group, phase 3 trial. Lancet 398, 583–598 (2021).

    CAS  PubMed  Google Scholar 

  155. Del Prato, S. et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 398, 1811–1824 (2021).

    PubMed  Google Scholar 

  156. Dahl, D. et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes. JAMA 327, 534–545 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2206038 (2022).

    Article  PubMed  Google Scholar 

  158. Brandt, S. J., Götz, A., Tschöp, M. H. & Müller, T. D. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides 100, 190–201 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Müller, T. D., Blüher, M., Tschöp, M. H. & DiMarchi, R. D. Anti-obesity drug discovery: advances and challenges. Nat. Rev. Drug Discov. 21, 201–223 (2022). Comprehensive review of the state of the art in anti-obesity drug discovery.

    PubMed  Google Scholar 

  160. Angelidi, A. M., Belanger, M. J., Kokkinos, A., Koliaki, C. C. & Mantzoros, C. S. Novel noninvasive approaches to the treatment of obesity: from pharmacotherapy to gene therapy. Endocr. Rev. 43, 507–557 (2022).

    PubMed  Google Scholar 

  161. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  162. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  163. Yamanaka, S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    CAS  PubMed  Google Scholar 

  164. Rajamani, U. et al. Super-obese patient-derived iPSC hypothalamic neurons exhibit obesogenic signatures and hormone responses. Cell Stem Cell 22, 698–712.e9 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Uddin, F., Rudin, C. M. & Sen, T. CRISPR gene therapy: applications, limitations, and implications for the future. Front. Oncol. 10, 1387 (2020).

    PubMed  PubMed Central  Google Scholar 

  166. Zhu, L. et al. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system. J. Genet. Genomics 48, 134–146 (2021).

    PubMed  Google Scholar 

  167. Keller, E. et al. Auxological computer based network for early detection of disorders of growth and weight attainment. J. Pediatr. Endocrinol. Metab. 15, 149–156 (2002).

    PubMed  Google Scholar 

  168. Ayers, K. L. et al. Melanocortin 4 receptor pathway dysfunction in obesity: patient stratification aimed at MC4R agonist treatment. J. Clin. Endocrinol. Metab. 103, 2601–2612 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Dayton, K. & Miller, J. Finding treatable genetic obesity: strategies for success. Curr. Opin. Pediatr. 30, 526–531 (2018).

    PubMed  Google Scholar 

  170. Brennan, L. & de Roos, B. Nutrigenomics: lessons learned and future perspectives. Am. J. Clin. Nutr. 113, 503–516 (2021).

    PubMed  Google Scholar 

  171. Bouchard, C. Exercise genomics — a paradigm shift is needed: a commentary. Br. J. Sports Med. 49, 1492–1496 (2015).

    PubMed  Google Scholar 

  172. Riveros-McKay, F. et al. Genetic architecture of human thinness compared to severe obesity. PLoS Genet. 15, e1007603 (2019).

    PubMed  PubMed Central  Google Scholar 

  173. Hinney, A. et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE 2, e1361 (2007).

    PubMed  PubMed Central  Google Scholar 

  174. Orthofer, M. et al. Identification of ALK in thinness. Cell 181, 1246–1262.e22 (2020).

    CAS  PubMed  Google Scholar 

  175. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Zheng, Y. et al. PTBP2 - a gene with relevance for both anorexia nervosa and body weight regulation. Transl. Psychiatry. 12, 241 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hinney, A. et al. Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Mol. Psychiatry 22, 192–201 (2017).

    CAS  PubMed  Google Scholar 

  178. Hinney, A. & Hebebrand, J. Polygenic obesity in humans. Obes. Facts 1, 35–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Felix, J. F. et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet. 25, 389–403 (2016).

    CAS  PubMed  Google Scholar 

  180. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 28, 166–174 (2019).

    CAS  PubMed  Google Scholar 

  182. Loos, R. J. F. & Yeo, G. S. H. The bigger picture of FTO – the first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 10, 51–61 (2014).

    CAS  PubMed  Google Scholar 

  183. Zeggini, E., Gloyn, A. L., Barton, A. C. & Wain, L. V. Translational genomics and precision medicine: moving from the lab to the clinic. Science 365, 1409–1413 (2019).

    CAS  PubMed  Google Scholar 

  184. Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).

    CAS  PubMed  Google Scholar 

  185. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Wang, J.-Y., Chen, L.-J. & Qiang, P. The potential role of N6-methyladenosine (m6A) demethylase fat mass and obesity-associated gene (FTO) in human cancers. Onco. Targets Ther. 13, 12845–12856 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Lan, N. et al. FTO – a common genetic basis for obesity and cancer. Front. Genet. 11, 559138 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Annapoorna, P. K. et al. FTO: an emerging molecular player in neuropsychiatric diseases. Neuroscience 418, 15–24 (2019).

    CAS  PubMed  Google Scholar 

  189. Landgraf, K. et al. The obesity-susceptibility gene TMEM18 promotes adipogenesis through activation of PPARG. Cell Rep. 33, 108295 (2020).

    CAS  PubMed  Google Scholar 

  190. Han, Y. et al. Mesenchymal stem cells for regenerative medicine. Cells 8, 886 (2019).

    CAS  PubMed Central  Google Scholar 

  191. Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Shukla, L., Yuan, Y., Shayan, R., Greening, D. W. & Karnezis, T. Fat therapeutics: the clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front. Pharmacol. 11, 158 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang, C.-H. et al. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci. Transl. Med. 12, eaaz8664 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L.S. Rajcsanyi (University of Duisburg-Essen, Essen, Germany) for her help with the first version of the figure. A.H. acknowledges the support of funding from Deutsche Forschungsgemeinschaft (DFG; HI 865/2-1), the BMBF (01GS0820, PALGER2017-33: 01DH19010) and the Stiftung Universitätsmedizin Essen. A.K. acknowledges the support of grants from the DFG, KO3512/3-1 and the DFG-funded Collaborative Research Center “ObesityMechanisms” CRC1052 (no. 209933838), and the German Diabetes Association (DDG). P.F.-P. acknowledges the support of funding from Deutsche Forschungsgemeinschaft (Heisenberg professorship, project number 398707781).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Anke Hinney.

Ethics declarations

Competing interests

A.K. provided unpaid advice to Rhythm Pharmaceuticals. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks ELT van den Akker who co-reviewed the manuscript with Ozair Abawi, Jesus Argente and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CDC growth charts: https://www.cdc.gov/growthcharts/clinical_charts.htm

Clinical trials: https://clinicaltrials.gov/ct2/home

Confirmed genes for different complex traits: https://www.ebi.ac.uk/gwas/

FDA approval: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-dual-targeted-treatment-type-2-diabetes

OMIM database: https://www.omim.org/

WHO child growth standards: https://www.who.int/tools/child-growth-standards

Glossary

Heritability estimates

The proportion of variation that is attributable to genetic as opposed to environmental factors for a given phenotype.

Polygenic predictor

An estimation of the genetic liability to a complex human trait using genome-wide genetic variants.

Barker hypothesis

This hypothesis postulates that the origins of chronic diseases in adult life lie in fetal responses to the intrauterine environment.

CRISPR-mediated gene editing

CRISPR–Cas9 enzymes were developed from a naturally occurring genome editing system, important for immune defence in bacteria, and can be used to edit parts of the genome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinney, A., Körner, A. & Fischer-Posovszky, P. The promise of new anti-obesity therapies arising from knowledge of genetic obesity traits. Nat Rev Endocrinol 18, 623–637 (2022). https://doi.org/10.1038/s41574-022-00716-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-022-00716-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing