Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A global view of hypertensive disorders and diabetes mellitus during pregnancy

Abstract

Two important maternal cardiometabolic disorders (CMDs), hypertensive disorders in pregnancy (HDP) (including pre-eclampsia) and gestational diabetes mellitus (GDM), result in a large disease burden for pregnant individuals worldwide. A global consensus has not been reached about the diagnostic criteria for HDP and GDM, making it challenging to assess differences in their disease burden between countries and areas. However, both diseases show an unevenly distributed disease burden for regions with a low income or middle income, or low-income and middle-income countries (LMICs), or regions with lower sociodemographic and human development indexes. In addition to many common clinical, demographic and behavioural risk factors, the development and clinical consequences of maternal CMDs are substantially influenced by the social determinants of health, such as systemic marginalization. Although progress has been occurring in the early screening and management of HDP and GDM, the accuracy and long-term effects of such screening and management programmes are still under investigation. In addition to pharmacological therapies and lifestyle modifications at the individual level, a multilevel approach in conjunction with multisector partnership should be adopted to tackle the public health issues and health inequity resulting from maternal CMDs. The current COVID-19 pandemic has disrupted health service delivery, with women with maternal CMDs being particularly vulnerable to this public health crisis.

Key points

  • Hypertensive disorders of pregnancy (HDP) and gestational diabetes mellitus (GDM) are common cardiometabolic complications of pregnancy.

  • HDP and GDM show an unevenly distributed disease burden (in terms of prevalence, disability-adjusted life years and/or maternal deaths) in low-income and middle-income countries and/or regions with low sociodemographic and human development indexes.

  • In addition to common clinical, demographic and behavioural risk factors, the development and clinical consequences of HDP and GDM are substantially influenced by the socioeconomic determinants of health.

  • Besides prevention and treatment at the individual level, strategies should also be made at different levels and in conjunction with multisector partnerships to improve societal and community conditions to prevent and/or manage HDP and GDM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prevalence of hypertensive disorders of pregnancy (per 100,000 women of childbearing age) in 2019 by WHO region.
Fig. 2: The prevalence of hypertensive disorders of pregnancy by country and region in relation to the sociodemographic index and human development index in 2019.
Fig. 3: Disability-adjusted life years attributable to hypertensive disorders of pregnancy by country and region in relation to the sociodemographic index and human development index in 2019.
Fig. 4: Maternal deaths attributable to hypertensive disorders of pregnancy by country and region in relation to the sociodemographic index and human development index in 2019.
Fig. 5: Prevalence of gestational diabetes mellitus in 2021 by WHO region.
Fig. 6: Prevalence of gestational diabetes mellitus by WHO region.
Fig. 7: Major risk factors for maternal cardiometabolic disorders.

Similar content being viewed by others

References

  1. Yang, Y. & Wu, N. Gestational diabetes mellitus and preeclampsia: correlation and influencing factors. Front. Cardiovasc. Med. 9, 831297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Steegers, E. A., von Dadelszen, P., Duvekot, J. J. & Pijnenborg, R. Pre-eclampsia. Lancet 376, 631–644 (2010).

    Article  PubMed  Google Scholar 

  3. Say, L. et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob. Health 2, e323–e333 (2014).

    Article  PubMed  Google Scholar 

  4. Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 33, 130–137 (2009).

    Article  PubMed  Google Scholar 

  5. Ferrara, A. Increasing prevalence of gestational diabetes mellitus: a public health perspective. Diabetes Care 30, S141–S146 (2007).

    Article  PubMed  Google Scholar 

  6. Anna, V., van der Ploeg, H. P., Cheung, N. W., Huxley, R. R. & Bauman, A. E. Sociodemographic correlates of the increasing trend in prevalence of gestational diabetes mellitus in a large population of women between 1995 and 2005. Diabetes Care 31, 2288–2293 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhu, Y. & Zhang, C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr. Diab. Rep. 16, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rich-Edwards, J. W., Fraser, A., Lawlor, D. A. & Catov, J. M. Pregnancy characteristics and women’s future cardiovascular health: an underused opportunity to improve women’s health? Epidemiol. Rev. 36, 57–70 (2014).

    Article  PubMed  Google Scholar 

  9. Hauspurg, A., Ying, W., Hubel, C. A., Michos, E. D. & Ouyang, P. Adverse pregnancy outcomes and future maternal cardiovascular disease. Clin. Cardiol. 41, 239–246 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Heida, K. Y. et al. Cardiovascular risk management after reproductive and pregnancy-related disorders: a Dutch multidisciplinary evidence-based guideline. Eur. J. Prev. Cardiol. 23, 1863–1879 (2016).

    Article  PubMed  Google Scholar 

  11. Morken, N. H., Halland, F., DeRoo, L. A., Wilcox, A. J. & Skjaerven, R. Offspring birthweight by gestational age and parental cardiovascular mortality: a population-based cohort study. BJOG 125, 336–341 (2018).

    Article  PubMed  Google Scholar 

  12. Nagraj, S. et al. Cardiometabolic risk factors in pregnancy and implications for long-term health: identifying the research priorities for low-resource settings. Front. Cardiovasc. Med. 7, 40 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roberts, J. M. & Bell, M. J. If we know so much about preeclampsia, why haven’t we cured the disease? J. Reprod. Immunol. 99, 1–9 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roberts, J. M., Rich-Edwards, J. W., McElrath, T. F., Garmire, L. & Myatt, L. Subtypes of preeclampsia: recognition and determining clinical usefulness. Hypertension 77, 1430–1441 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Brown, M. A. et al. Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 72, 24–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. The American College of Obstetricians and Gynecologists. Gestational hypertension and preeclampsia: ACOG practice bulletin, number 222. Obstet. Gynecol. 135, e237–e260 (2020).

    Article  Google Scholar 

  17. Bouter, A. R. & Duvekot, J. J. Evaluation of the clinical impact of the revised ISSHP and ACOG definitions on preeclampsia. Pregnancy Hypertens. 19, 206–211 (2020).

    Article  PubMed  Google Scholar 

  18. Khan, N. et al. Impact of new definitions of pre-eclampsia on incidence and performance of first-trimester screening. Ultrasound Obstet. Gynecol. 55, 50–57 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Kallela, J. et al. The diagnosis of pre-eclampsia using two revised classifications in the Finnish Pre-eclampsia Consortium (FINNPEC) cohort. BMC Pregnancy Childbirth 16, 221–221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reddy, M. et al. The impact of the definition of preeclampsia on disease diagnosis and outcomes: a retrospective cohort study. Am. J. Obstet. Gynecol. 224, e211–e217 (2021).

    Article  Google Scholar 

  21. Saleh, L., Danser, J. A. H., Van Den Meiracker, A. H. & Visser, W. The prevalence of hypertensive disorders according to the old and new criteria of ISSHP and ACOG: risk factors, prediction of preeclampsia. Pregnancy Hypertens. 6, 229 (2016).

    Article  Google Scholar 

  22. Lai, J., Syngelaki, A., Nicolaides, K. H., von Dadelszen, P. & Magee, L. A. Impact of new definitions of preeclampsia at term on identification of adverse maternal and perinatal outcomes. Am. J. Obstet. Gynecol. 224, e511–e518 (2021).

    Article  Google Scholar 

  23. Magee, L. A. et al. The impact of pre-eclampsia definitions on the identification of adverse outcome risk in hypertensive pregnancy – analyses from the CHIPS trial (Control of Hypertension in Pregnancy Study). BJOG 128, 1373–1382 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. O’Sullivan, E. P. et al. Atlantic Diabetes in Pregnancy (DIP): the prevalence and outcomes of gestational diabetes mellitus using new diagnostic criteria. Diabetologia 54, 1670–1675 (2011).

    Article  PubMed  Google Scholar 

  25. Bodmer-Roy, S., Morin, L., Cousineau, J. & Rey, E. Pregnancy outcomes in women with and without gestational diabetes mellitus according to the International Association of the Diabetes and Pregnancy Study Groups criteria. Obstet. Gynecol. 120, 746–752 (2012).

    Article  PubMed  Google Scholar 

  26. Mayo, K., Melamed, N., Vandenberghe, H. & Berger, H. The impact of adoption of the International Association of Diabetes in Pregnancy Study Group criteria or the screening and diagnosis of gestational diabetes. Am. J. Obstet. Gynecol. 212, e221–e229 (2015).

    Article  Google Scholar 

  27. Trujillo, J. et al. Impact of the International Association of Diabetes and Pregnancy Study Groups criteria for gestational diabetes. Diabetes Res. Clin. Pract. 108, 288–295 (2015).

    Article  PubMed  Google Scholar 

  28. Ramezani Tehrani, F., Naz, M. S. G., Yarandi, R. B. & Behboudi-Gandevani, S. The impact of diagnostic criteria for gestational diabetes mellitus on adverse maternal outcomes: a systematic review and meta-analysis. J. Clin. Med. 10, 666 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hartling, L. et al. Diagnostic thresholds for gestational diabetes and their impact on pregnancy outcomes: a systematic review. Diabet. Med. 31, 319–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Feldman, R. K., Tieu, R. S. & Yasumura, L. Gestational diabetes screening: the International Association of the Diabetes and Pregnancy Study Groups compared with Carpenter–Coustan screening. Obstet. Gynecol. 127, 10–17 (2016).

    Article  PubMed  Google Scholar 

  31. Saccone, G., Khalifeh, A., Al-Kouatly, H. B., Sendek, K. & Berghella, V. Screening for gestational diabetes mellitus: one step versus two step approach. A meta-analysis of randomized trials. J. Matern. Fetal Neonatal Med. 33, 1616–1624 (2020).

    Article  PubMed  Google Scholar 

  32. Brown, F. M. & Wyckoff, J. Application of one-step IADPSG versus two-step diagnostic criteria for gestational diabetes in the real world: impact on health services, clinical care, and outcomes. Curr. Diab. Rep. 17, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Metzger, B. E. et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 358, 1991–2002 (2008).

    Article  PubMed  Google Scholar 

  34. Metzger, B. E. et al. Hyperglycemia and adverse pregnancy outcome study: neonatal glycemia. Pediatrics 126, e1545–e1552 (2010).

    Article  PubMed  Google Scholar 

  35. Metzger, B. E. et al. International Association of Diabetes and Pregnancy Study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33, 676–682 (2010).

    Article  PubMed  Google Scholar 

  36. O’Sullivan, J. B. & Mahan, C. M. Criteria for the oral glucose tolerance test in pregnancy. Diabetes 13, 278–285 (1964).

    PubMed  Google Scholar 

  37. Carpenter, M. W. & Coustan, D. R. Criteria for screening tests for gestational diabetes. Am. J. Obstet. Gynecol. 144, 768–773 (1982).

    Article  CAS  PubMed  Google Scholar 

  38. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28, 1039–1057 (1979).

    Article  Google Scholar 

  39. Behboudi-Gandevani, S., Amiri, M., Bidhendi Yarandi, R. & Ramezani Tehrani, F. The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis. Diabetol. Metab. Syndr. 11, 11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gillespie, P., O’Neill, C., Avalos, G. & Dunne, F. P. New estimates of the costs of universal screening for gestational diabetes mellitus in Ireland. Ir. Med. J. 105, s15–s18 (2012).

    Google Scholar 

  41. Kalra, S., Baruah, M. P., Gupta, Y. & Kalra, B. Gestational diabetes: an onomastic opportunity. Lancet Diabetes Endocrinol. 1, 91 (2013).

    Article  PubMed  Google Scholar 

  42. Moss, J. R., Crowther, C. A., Hiller, J. E., Willson, K. J. & Robinson, J. S. Costs and consequences of treatment for mild gestational diabetes mellitus–evaluation from the ACHOIS randomised trial. BMC Pregnancy Childbirth 7, 27 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ohno, M. S., Sparks, T. N., Cheng, Y. W. & Caughey, A. B. Treating mild gestational diabetes mellitus: a cost-effectiveness analysis. Am. J. Obstet. Gynecol. 205, e281–e287 (2011).

    Article  Google Scholar 

  44. Lowe, W. L. et al. Association of gestational diabetes with maternal disorders of glucose metabolism and childhood adiposity. JAMA 320, 1005–1016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lauring, J. R., Kunselman, A. R., Pauli, J. M., Repke, J. T. & Ural, S. H. Comparison of healthcare utilization and outcomes by gestational diabetes diagnostic criteria. J. Perinat. Med. 46, 401–409 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Knight, M. et al. Saving lives, improving mothers’ care: lessons learned to inform maternity care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2013–15. National Perinatal Epidemiology Unit https://www.npeu.ox.ac.uk/assets/downloads/mbrrace-uk/reports/MBRRACE-UK%20Maternal%20Report%202017%20-%20Web.pdf (2017).

  47. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  48. Institute for Health Metrics and Evaluation. The Global Burden of Disease: a critical resource for informed policymaking. IHME http://www.healthdata.org/gbd/about (2021).

  49. Wang, W. et al. Epidemiological trends of maternal hypertensive disorders of pregnancy at the global, regional, and national levels: a population‐based study. BMC Pregnancy Childbirth 21, 364 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Alejandro, E. U. et al. Gestational diabetes mellitus: a harbinger of the vicious cycle of diabetes. Int. J. Mol. Sci. 21, 5003 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  51. Sacks, D. A. et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel-recommended criteria: the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study. Diabetes Care 35, 526–528 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Guariguata, L., Linnenkamp, U., Beagley, J., Whiting, D. R. & Cho, N. H. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res. Clin. Pract. 103, 176–185 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. International Diabetes Federation. IDF Diabetes Atlas 10th edn (IDF, 2021).

  54. McIntyre, H. D. et al. Gestational diabetes mellitus. Nat. Rev. Dis. Prim. 5, 47 (2019).

    Article  PubMed  Google Scholar 

  55. Ananth, C. V., Keyes, K. M. & Wapner, R. J. Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ 347, f6564 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ye, C. et al. The 2011 survey on hypertensive disorders of pregnancy (HDP) in China: prevalence, risk factors, complications, pregnancy and perinatal outcomes. PLoS ONE 9, e100180 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ma, R. et al. Study on the descriptive epidemiology of pregnancy-induced hypertension from 1995–2000 in Jiaxing of Zhejiang province, China [Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi 26, 960–963 (2005).

    PubMed  Google Scholar 

  58. Abalos, E. et al. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization multicountry survey on maternal and newborn health. BJOG 121, s14–s24 (2014).

    Article  Google Scholar 

  59. de Vienne, C. M., Creveuil, C. & Dreyfus, M. Does young maternal age increase the risk of adverse obstetric, fetal and neonatal outcomes: a cohort study. Eur. J. Obstet. Gynecol. Reprod. Biol. 147, 151–156 (2009).

    Article  PubMed  Google Scholar 

  60. Li, Y. et al. Maternal age and the risk of gestational diabetes mellitus: a systematic review and meta-analysis of over 120 million participants. Diabetes Res. Clin. Pract. 162, 108044 (2020).

    Article  PubMed  Google Scholar 

  61. Laine, M. K. et al. Gestational diabetes in primiparous women–impact of age and adiposity: a register-based cohort study. Acta Obstet. Gynecol. Scand. 97, 187–194 (2018).

    Article  PubMed  Google Scholar 

  62. Schummers, L. et al. Absolute risks of obstetric outcomes risks by maternal age at first birth: a population-based cohort. Epidemiology 29, 379–387 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee, K. W. et al. Prevalence and risk factors of gestational diabetes mellitus in Asia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18, 494 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Eades, C. E., Cameron, D. M. & Evans, J. M. M. Prevalence of gestational diabetes mellitus in Europe: a meta-analysis. Diabetes Res. Clin. Pract. 129, 173–181 (2017).

    Article  PubMed  Google Scholar 

  65. Meazaw, M. W., Chojenta, C., Muluneh, M. D. & Loxton, D. Systematic and meta-analysis of factors associated with preeclampsia and eclampsia in sub-Saharan Africa. PLoS ONE 15, e0237600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bilano, V. L., Ota, E., Ganchimeg, T., Mori, R. & Souza, J. P. Risk factors of pre-eclampsia/eclampsia and its adverse outcomes in low- and middle-income countries: a WHO secondary analysis. PLoS ONE 9, e91198 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang, Z. et al. Maternal adiposity as an independent risk factor for pre-eclampsia: a meta-analysis of prospective cohort studies. Obes. Rev. 14, 508–521 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Shah, A., Stotland, N. E., Cheng, Y. W., Ramos, G. A. & Caughey, A. B. The association between body mass index and gestational diabetes mellitus varies by race/ethnicity. Am. J. Perinatol. 28, 515–520 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shin, D. & Song, W. O. Prepregnancy body mass index is an independent risk factor for gestational hypertension, gestational diabetes, preterm labor, and small- and large-for-gestational-age infants. J. Matern. Fetal Neonatal Med. 28, 1679–1686 (2015).

    Article  PubMed  Google Scholar 

  70. Chu, S. Y. et al. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30, 2070–2076 (2007).

    Article  PubMed  Google Scholar 

  71. Hofmeyr, G. J., Lawrie, T. A., Atallah, Á. N. & Torloni, M. R. Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst. Rev. 10, CD001059 (2018).

    PubMed  Google Scholar 

  72. Kinshella, M. W. et al. Effects of maternal nutritional supplements and dietary interventions on placental complications: an umbrella review, meta-analysis and evidence map. Nutrients 13, 472 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hofmeyr, G. J., Manyame, S., Medley, N. & Williams, M. J. Calcium supplementation commencing before or early in pregnancy, for preventing hypertensive disorders of pregnancy. Cochrane Database Syst. Rev. 9, CD011192 (2019).

    PubMed  Google Scholar 

  74. Akbari, S., Khodadadi, B., Ahmadi, S., Abbaszadeh, S. & Shahsavar, F. Association of vitamin D level and vitamin D deficiency with risk of preeclampsia: a systematic review and updated meta-analysis. Taiwan. J. Obstet. Gynecol. 57, 241–247 (2018).

    Article  PubMed  Google Scholar 

  75. Aguilar-Cordero, M. J. et al. Vitamin D, preeclampsia and prematurity: a systematic review and meta-analysis of observational and interventional studies. Midwifery 87, 102707 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Belizán, J. M., Villar, J. & Repke, J. The relationship between calcium intake and pregnancy-induced hypertension: up-to-date evidence. Am. J. Obstet. Gynecol. 158, 898–902 (1988).

    Article  PubMed  Google Scholar 

  77. Osorio-Yanez, C. et al. Risk of gestational diabetes mellitus in relation to maternal dietary calcium intake. Public Health Nutr. 20, 1082–1089 (2017).

    Article  PubMed  Google Scholar 

  78. Bao, W. et al. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: a prospective cohort study. Am. J. Clin. Nutr. 99, 1378–1384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Looman, M. et al. Pre-pregnancy dietary carbohydrate quantity and quality, and risk of developing gestational diabetes: the Australian Longitudinal Study on Women’s Health. Br. J. Nutr. 120, 435–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Mijatovic-Vukas, J. et al. Associations of diet and physical activity with risk for gestational diabetes mellitus: a systematic review and meta-analysis. Nutrients 10, 698 (2018).

    Article  PubMed Central  Google Scholar 

  81. O’Malley, E. G. et al. Maternal obesity and dyslipidemia associated with gestational diabetes mellitus (GDM). Eur. J. Obstet. Gynecol. Reprod. Biol. 246, 67–71 (2020).

    Article  PubMed  Google Scholar 

  82. Shin, D., Lee, K. W. & Song, W. O. Dietary patterns during pregnancy are associated with risk of gestational diabetes mellitus. Nutrients 7, 9369–9382 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schoenaker, D. A., Soedamah-Muthu, S. S., Callaway, L. K. & Mishra, G. D. Prepregnancy dietary patterns and risk of developing hypertensive disorders of pregnancy: results from the Australian Longitudinal Study on Women’s Health. Am. J. Clin. Nutr. 102, 94–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Sahariah, S. A. et al. A daily snack containing leafy green vegetables, fruit, and milk before and during pregnancy prevents gestational diabetes in a randomized, controlled trial in Mumbai, India. J. Nutr. 146, 1453s–1460s (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schoenaker, D. A., Mishra, G. D., Callaway, L. K. & Soedamah-Muthu, S. S. The role of energy, nutrients, foods, and dietary patterns in the development of gestational diabetes mellitus: a systematic review of observational studies. Diabetes Care 39, 16–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Kinshella, M. W. et al. Maternal dietary patterns and pregnancy hypertension in low- and middle-income countries: a systematic review and meta-analysis. Adv. Nutr. 12, 2387–2400 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dolatkhah, N., Hajifaraji, M. & Shakouri, S. K. Nutrition therapy in managing pregnant women with gestational diabetes mellitus: a literature review. J. Fam. Reprod. Health 12, 57–72 (2018).

    Google Scholar 

  88. Lee, C. J. et al. Risk factors for pre-eclampsia in an Asian population. Int. J. Gynaecol. Obstet. 70, 327–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Coonrod, D. V., Hickok, D. E., Zhu, K., Easterling, T. R. & Daling, J. R. Risk factors for preeclampsia in twin pregnancies: a population-based cohort study. Obstet. Gynecol. 85, 645–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Eskenazi, B., Fenster, L. & Sidney, S. A multivariate analysis of risk factors for preeclampsia. JAMA 266, 237–241 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Conde-Agudelo, A. & Belizán, J. M. Risk factors for pre-eclampsia in a large cohort of Latin American and Caribbean women. BJOG 107, 75–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Ros, H. S., Cnattingius, S. & Lipworth, L. Comparison of risk factors for preeclampsia and gestational hypertension in a population-based cohort study. Am. J. Epidemiol. 147, 1062–1070 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Duckitt, K. & Harrington, D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330, 565 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bartsch, E., Medcalf, K. E., Park, A. L. & Ray, J. G. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 353, i1753 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Milne, F. et al. The pre-eclampsia community guideline (PRECOG): how to screen for and detect onset of pre-eclampsia in the community. BMJ 330, 576–580 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Grum, T., Seifu, A., Abay, M., Angesom, T. & Tsegay, L. Determinants of pre-eclampsia/eclampsia among women attending delivery services in selected public hospitals of Addis Ababa, Ethiopia: a case control study. BMC Pregnancy Childbirth 17, 307 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Leon, L. J. et al. Preeclampsia and cardiovascular disease in a large UK pregnancy cohort of linked electronic health records. Circulation 140, 1050–1060 (2019).

    Article  PubMed  Google Scholar 

  98. Zhang, J., Troendle, J. F. & Levine, R. J. Risks of hypertensive disorders in the second pregnancy. Paediatr. Perinat. Epidemiol. 15, 226–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Boghossian, N. S., Albert, P. S., Mendola, P., Grantz, K. L. & Yeung, E. Delivery blood pressure and other first pregnancy risk factors in relation to hypertensive disorders in second pregnancies. Am. J. Hypertens. 28, 1172–1179 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, J., Yang, W., Xiao, W. & Cao, S. The association between smoking during pregnancy and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Int. J. Gynaecol. Obstet. 157, 31–41 (2022).

    Article  PubMed  Google Scholar 

  101. Kharkova, O. A., Grjibovski, A. M., Krettek, A., Nieboer, E. & Odland, J. Ø. First-trimester smoking cessation in pregnancy did not increase the risk of preeclampsia/eclampsia: a Murmansk County Birth Registry study. PLoS ONE 12, e0179354 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yang, Q. et al. Maternal cigarette smoking and the risk of pregnancy-induced hypertension and eclampsia. Int. J. Epidemiol. 35, 288–293 (2005).

    Article  PubMed  Google Scholar 

  103. Retnakaran, R. et al. Fetal sex and maternal risk of gestational diabetes mellitus: the impact of having a boy. Diabetes Care 38, 844–851 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Yamashita, H. et al. Fetal sex and maternal insulin resistance during mid-pregnancy: a retrospective cohort study. BMC Pregnancy Childbirth 20, 560 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Retnakaran, R. & Shah, B. R. Fetal sex and the natural history of maternal risk of diabetes during and after pregnancy. J. Clin. Endocrinol. Metab. 100, 2574–2580 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Jaskolka, D., Retnakaran, R., Zinman, B. & Kramer, C. K. Sex of the baby and risk of gestational diabetes mellitus in the mother: a systematic review and meta-analysis. Diabetologia 58, 2469–2475 (2015).

    Article  PubMed  Google Scholar 

  107. Lo, J. C. et al. Increased prevalence of gestational diabetes mellitus among women with diagnosed polycystic ovary syndrome: a population-based study. Diabetes Care 29, 1915–1917 (2006).

    Article  PubMed  Google Scholar 

  108. Seghieri, G. et al. Does parity increase insulin resistance during pregnancy? Diabet. Med. 22, 1574–1580 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Tobias, D. K., Zhang, C., van Dam, R. M., Bowers, K. & Hu, F. B. Physical activity before and during pregnancy and risk of gestational diabetes mellitus: a meta-analysis. Diabetes Care 34, 223–229 (2005).

    Article  Google Scholar 

  110. Zhang, C., Solomon, C. G., Manson, J. E. & Hu, F. B. A prospective study of pregravid physical activity and sedentary behaviors in relation to the risk for gestational diabetes mellitus. Arch. Intern. Med. 166, 543–548 (2006).

    Article  PubMed  Google Scholar 

  111. Aune, D., Sen, A., Henriksen, T., Saugstad, O. D. & Tonstad, S. Physical activity and the risk of gestational diabetes mellitus: a systematic review and dose-response meta-analysis of epidemiological studies. Eur. J. Epidemiol. 31, 967–997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Caughey, A. B., Stotland, N. E., Washington, A. E. & Escobar, G. J. Maternal ethnicity, paternal ethnicity, and parental ethnic discordance: predictors of preeclampsia. Obstet. Gynecol. 106, 156–161 (2005).

    Article  PubMed  Google Scholar 

  113. Rao, A. K., Cheng, Y. W. & Caughey, A. B. Perinatal complications among different Asian-American subgroups. Am. J. Obstet. Gynecol. 194, e39–e41 (2006).

    Article  PubMed  Google Scholar 

  114. Johnson, J. D. & Louis, J. M. Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature. Am. J. Obstet. Gynecol. 226, S876–S885 (2022).

    Article  PubMed  Google Scholar 

  115. Bornstein, E., Eliner, Y., Chervenak, F. A. & Grünebaum, A. Racial disparity in pregnancy risks and complications in the US: temporal changes during 2007–2018. J. Clin. Med. 9, 1414 (2020).

    Article  PubMed Central  Google Scholar 

  116. Anderson, N. H., Sadler, L. C., Stewart, A. W., Fyfe, E. M. & McCowan, L. M. Ethnicity, body mass index and risk of pre-eclampsia in a multiethnic New Zealand population. Aust. N. Z. J. Obstet. Gynaecol. 52, 552–558 (2012).

    Article  PubMed  Google Scholar 

  117. Campbell, S. K., Lynch, J., Esterman, A. & McDermott, R. Pre-pregnancy predictors of hypertension in pregnancy among Aboriginal and Torres Strait Islander women in north Queensland, Australia; a prospective cohort study. BMC Public. Health 13, 138 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ghosh, G. et al. Racial/ethnic differences in pregnancy-related hypertensive disease in nulliparous women. Ethn. Dis. 24, 283–289 (2014).

    PubMed  Google Scholar 

  119. Chang, A. L., Hurwitz, E., Miyamura, J., Kaneshiro, B. & Sentell, T. Maternal risk factors and perinatal outcomes among Pacific Islander groups in Hawaii: a retrospective cohort study using statewide hospital data. BMC Pregnancy Childbirth 15, 239 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Berkowitz, G. S., Lapinski, R. H., Wein, R. & Lee, D. Race/ethnicity and other risk factors for gestational diabetes. Am. J. Epidemiol. 135, 965–973 (1992).

    Article  CAS  PubMed  Google Scholar 

  121. Dornhorst, A. et al. High prevalence of gestational diabetes in women from ethnic minority groups. Diabet. Med. 9, 820–825 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Hedderson, M. et al. Racial/ethnic disparities in the prevalence of gestational diabetes mellitus by BMI. Diabetes Care 35, 1492–1498 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Girgis, C. M., Gunton, J. E. & Cheung, N. The influence of ethnicity on the development of type 2 diabetes mellitus in women with gestational diabetes: a prospective study and review of the literature. ISRN Endocrinol. 2012, 341638 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Savitz, D. A., Janevic, T. M., Engel, S. M., Kaufman, J. S. & Herring, A. H. Ethnicity and gestational diabetes in New York City, 1995–2003. BJOG 115, 969–978 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Pedula, K. L. et al. Ethnic differences in gestational oral glucose screening in a large US population. Ethn. Dis. 19, 414–419 (2009).

    PubMed  Google Scholar 

  126. Kragelund Nielsen, K., Andersen, G. S., Damm, P. & Andersen, A. N. Gestational diabetes risk in migrants. A nationwide, register-based study of all births in Denmark 2004 to 2015. J. Clin. Endocrinol. Metab. 105, e692–e703 (2020).

    Article  Google Scholar 

  127. Wan, C. S. et al. Ethnic differences in prevalence, risk factors, and perinatal outcomes of gestational diabetes mellitus: a comparison between immigrant ethnic Chinese women and Australian-born Caucasian women in Australia. J. Diabetes 11, 809–817 (2019).

    Article  PubMed  Google Scholar 

  128. McDonald, R., Karahalios, A., Le, T. & Said, J. A retrospective analysis of the relationship between ethnicity, body mass index, and the diagnosis of gestational diabetes in women attending an Australian antenatal clinic. Int. J. Endocrinol. 2015, 297420 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. O’Gorman, N. et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 214, 103.e1–103.e12 (2016).

    Article  Google Scholar 

  130. Yang, J. et al. Racial-ethnic differences in midtrimester maternal serum levels of angiogenic and antiangiogenic factors. Am. J. Obstet. Gynecol. 215, 359.e1–359.e9 (2016).

    Article  CAS  Google Scholar 

  131. Abo-Elmatty, D. M. & Mehanna, E. T. MIR146A rs2910164 (G/C) polymorphism is associated with incidence of preeclampsia in gestational diabetes patients. Biochem. Genet. 57, 222–233 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Beysel, S. et al. HNF1A gene p.I27L is associated with co-existing preeclampsia in gestational diabetes mellitus. Gynecol. Endocrinol. 36, 530–534 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Dmitrenko, O. P., Karpova, N. S., Nurbekov, M. K. & Papysheva, O. V. I/D polymorphism gene ACE and risk of preeclampsia in women with gestational diabetes mellitus. Dis. Markers 2020, 8875230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ford, M. E. & Kelly, P. A. Conceptualizing and categorizing race and ethnicity in health services research. Health Serv. Res. 40, 1658–1675 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  135. White, K., Lawrence, J. A., Tchangalova, N., Huang, S. J. & Cummings, J. L. Socially-assigned race and health: a scoping review with global implications for population health equity. Int. J. Equity Health 19, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Mersha, T. B. & Abebe, T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum. Genomics 9, 1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mohsen, H. Race and genetics: somber history, troubled present. Yale J. Biol. Med. 93, 215–219 (2020).

    PubMed  PubMed Central  Google Scholar 

  138. Maglo, K. N., Mersha, T. B. & Martin, L. J. Population genomics and the statistical values of race: an interdisciplinary perspective on the biological classification of human populations and implications for clinical genetic epidemiological research. Front. Genet. 7, 22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. World Health Organization. Social determinants of health. WHO https://www.who.int/health-topics/social-determinants-of-health#tab=tab_1 (2022).

  140. US Department of Health and Human Services. Healthy People 2030: Social Determinants of Health. US Department of Health and Human Services https://health.gov/healthypeople/objectives-and-data/browse-objectives#social-determinants-of-health (2022).

  141. Thornburg, K. L., Boone-Heinonen, J. & Valent, A. M. Social determinants of placental health and future disease risks for babies. Obstet. Gynecol. Clin. North. Am. 47, 1–15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Silva, L. M. et al. Low socioeconomic status is a risk factor for preeclampsia: the Generation R Study. J. Hypertens. 26, 1200–1208 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Silva, L. et al. Maternal educational level and risk of gestational hypertension: the Generation R Study. J. Hum. Hypertens. 22, 483–492 (2008).

    Article  PubMed  Google Scholar 

  144. Ross, K. M. et al. Socioeconomic status, preeclampsia risk and gestational length in black and white women. J. Racial Ethn. Health Disparities 6, 1182–1191 (2019).

    Article  PubMed  Google Scholar 

  145. Grady, S. C. & Ramírez, I. J. Mediating medical risk factors in the residential segregation and low birthweight relationship by race in New York City. Health Place. 14, 661–677 (2008).

    Article  PubMed  Google Scholar 

  146. Mayne, S. L., Yellayi, D., Pool, L. R., Grobman, W. A. & Kershaw, K. N. Racial residential segregation and hypertensive disorder of pregnancy among women in Chicago: analysis of electronic health record data. Am. J. Hypertens. 31, 1221–1227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Boakye, E. et al. Nativity-related disparities in preeclampsia and cardiovascular disease risk among a racially diverse cohort of US women. JAMA Netw. Open 4, e2139564 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hill-Briggs, F. et al. Social determinants of health and diabetes: a scientific review. Diabetes Care 44, 258–279 (2020).

    Article  PubMed Central  Google Scholar 

  149. Haire-Joshu, D. & Hill-Briggs, F. The next generation of diabetes translation: a path to health equity. Annu. Rev. Public Health 40, 391–410 (2019).

    Article  PubMed  Google Scholar 

  150. Dixon, B., Peña, M. M. & Taveras, E. M. Lifecourse approach to racial/ethnic disparities in childhood obesity. Adv. Nutr. 3, 73–82 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Phonyiam, R. & Berry, D. C. Racial and ethnic disparities in health care and health outcomes for pregnant women with diabetes. Nurs. Women’s Health 25, 437–449 (2021).

    Article  Google Scholar 

  152. Dode, M. A. & dos Santos, I. S. Non classical risk factors for gestational diabetes mellitus: a systematic review of the literature. Cad. Saude Publica 25, S341–S359 (2009).

    Article  PubMed  Google Scholar 

  153. Bo, S. et al. Low socioeconomic status as a risk factor for gestational diabetes. Diabetes Metab. 28, 139–140 (2002).

    CAS  PubMed  Google Scholar 

  154. Bouthoorn, S. H. et al. Low-educated women have an increased risk of gestational diabetes mellitus: the Generation R Study. Acta Diabetol. 52, 445–452 (2015).

    Article  PubMed  Google Scholar 

  155. Song, L. et al. Socio-economic status and risk of gestational diabetes mellitus among Chinese women. Diabet. Med. 34, 1421–1427 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Carroll, X. et al. Socioeconomic, environmental and lifestyle factors associated with gestational diabetes mellitus: a matched case-control study in Beijing, China. Sci. Rep. 8, 8103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Liu, J. et al. Indicators of socio-economic status and risk of gestational diabetes mellitus in pregnant women in urban Tianjin, China. Diabetes Res. Clin. Pract. 144, 192–199 (2018).

    Article  PubMed  Google Scholar 

  158. Smarr, M. M. et al. Persistent organic pollutants and pregnancy complications. Sci. Total Environ. 551–552, 285–291 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhang, C. et al. A prospective study of prepregnancy serum concentrations of perfluorochemicals and the risk of gestational diabetes. Fertil. Steril. 103, 184–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Hinkle, S. N. et al. A longitudinal study of depression and gestational diabetes in pregnancy and the postpartum period. Diabetologia 59, 2594–2602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, Y., Wang, L., Wang, F. & Li, C. Effect of fine particulate matter (PM2.5) on rat placenta pathology and perinatal outcomes. Med. Sci. Monit. 22, 3274–3280 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li, Z. et al. Impact of ambient PM(2.5) on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 169, 248–254 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Saenen, N. D. et al. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIRONAGE cohort. Environ. Health Perspect. 125, 262–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Neven, K. Y. et al. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study. Lancet Planet. Health 2, e174–e183 (2018).

    Article  PubMed  Google Scholar 

  165. Daniel, S. et al. Risk for preeclampsia following exposure to PM(2.5) during pregnancy. Env. Int. 156, 106636 (2021).

    Article  CAS  Google Scholar 

  166. Yi, L., Wei, C. & Fan, W. Fine particulate matter (PM(2.5)), a risk factor of rat gestational diabetes with altered blood glucose and pancreatic GLUT2 expression. Gynecol. Endocrinol. https://doi.org/10.1080/09513590.2017.1318368 (2017).

    Article  PubMed  Google Scholar 

  167. Hu, C. Y. et al. Human epidemiological evidence about the association between air pollution exposure and gestational diabetes mellitus: systematic review and meta-analysis. Env. Res. 180, 108843 (2020).

    Article  CAS  Google Scholar 

  168. Agrawal, S. & Yamamoto, S. Effect of indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women. Indoor Air 25, 341–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Rosen, E. M., Muñoz, M. I., McElrath, T., Cantonwine, D. E. & Ferguson, K. K. Environmental contaminants and preeclampsia: a systematic literature review. J. Toxicol. Env. Health B Crit. Rev. 21, 291–319 (2018).

    Article  CAS  Google Scholar 

  170. Robledo, C. A., Romano, M. E. & Alonso-Magdalena, P. Review of current evidence on the impact of environmental chemicals on gestational diabetes mellitus. Curr. Epidemiol. Rep. 3, 51–62 (2016).

    Article  Google Scholar 

  171. Wong, T., Ross, G. P., Jalaludin, B. B. & Flack, J. R. The clinical significance of overt diabetes in pregnancy. Diabet. Med. 30, 468–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Szmuilowicz, E. D., Josefson, J. L. & Metzger, B. E. Gestational diabetes mellitus. Endocrinol. Metab. Clin. North. Am. 48, 479–493 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Bellizzi, S. et al. Are hypertensive disorders in pregnancy associated with congenital malformations in offspring? Evidence from the WHO multicountry cross sectional survey on maternal and newborn health. BMC Pregnancy Childbirth 16, 198 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu, Y. et al. Association of maternal prepregnancy diabetes and gestational diabetes mellitus with congenital anomalies of the newborn. Diabetes Care 43, 2983–2990 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  175. van Oostwaard, M. F. et al. Recurrence of hypertensive disorders of pregnancy: an individual patient data metaanalysis. Am. J. Obstet. Gynecol. 212, 624.e1–624.e17 (2015).

    Article  Google Scholar 

  176. Zhao, G., Bhatia, D., Jung, F. & Lipscombe, L. Risk of type 2 diabetes mellitus in women with prior hypertensive disorders of pregnancy: a systematic review and meta-analysis. Diabetologia 64, 491–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Wu, R. et al. Hypertensive disorders of pregnancy and risk of cardiovascular disease-related morbidity and mortality: a systematic review and meta-analysis. Cardiology 145, 633–647 (2020).

    Article  PubMed  Google Scholar 

  178. Melchiorre, K. et al. Hypertensive disorders of pregnancy and future cardiovascular health. Front. Cardiovasc. Med. 7, 59 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335, 974 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Wilson, B. J. et al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ 326, 845 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Stuart, J. J. et al. Hypertensive disorders of pregnancy and 10-year cardiovascular risk prediction. J. Am. Coll. Cardiol. 72, 1252–1263 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Veerbeek, J. H. et al. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension 65, 600–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. McDonald, S. D., Malinowski, A., Zhou, Q., Yusuf, S. & Devereaux, P. J. Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am. Heart J. 156, 918–930 (2008).

    Article  PubMed  Google Scholar 

  184. Brown, M. C. et al. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur. J. Epidemiol. 28, 1–19 (2013).

    Article  PubMed  Google Scholar 

  185. Wu, P. et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ. Cardiovasc. Qual. Outcomes 10, e003497 (2017).

    Article  PubMed  Google Scholar 

  186. Lo, C. et al. Future cardiovascular disease risk for women with gestational hypertension: a systematic review and meta-analysis. J. Am. Heart Assoc. 9, e013991 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Giorgione, V., Ridder, A., Kalafat, E., Khalil, A. & Thilaganathan, B. Incidence of postpartum hypertension within 2 years of a pregnancy complicated by pre-eclampsia: a systematic review and meta-analysis. BJOG 128, 495–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Dall’Asta, A. et al. Cardiovascular events following pregnancy complicated by pre-eclampsia with emphasis on comparison between early- and late-onset forms: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 57, 698–709 (2021).

    Article  PubMed  Google Scholar 

  189. Li, J. et al. Increased risk of cardiovascular disease in women with prior gestational diabetes: a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 140, 324–338 (2018).

    Article  PubMed  Google Scholar 

  190. Kramer, C. K., Campbell, S. & Retnakaran, R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 62, 905–914 (2019).

    Article  PubMed  Google Scholar 

  191. Carr, D. B. et al. Gestational diabetes mellitus increases the risk of cardiovascular disease in women with a family history of type 2 diabetes. Diabetes Care 29, 2078–2083 (2006).

    Article  PubMed  Google Scholar 

  192. Shah, B. R., Retnakaran, R. & Booth, G. L. Increased risk of cardiovascular disease in young women following gestational diabetes mellitus. Diabetes Care 31, 1668–1669 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Gunderson, E. P. et al. History of gestational diabetes mellitus and future risk of atherosclerosis in mid-life: the Coronary Artery Risk Development in Young Adults study. J. Am. Heart Assoc. 3, e000490 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chen, L., Mayo, R., Chatry, A. & Hu, G. Gestational diabetes mellitus: its epidemiology and implication beyond pregnancy. Curr. Epidemiol. Rep. 3, 1–11 (2016).

    Article  CAS  Google Scholar 

  195. Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373, 1773–1779 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Li, Z. et al. Incidence rate of type 2 diabetes mellitus after gestational diabetes mellitus: a systematic review and meta-analysis of 170,139 women. J. Diabetes Res. 2020, 3076463 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Rayanagoudar, G. et al. Quantification of the type 2 diabetes risk in women with gestational diabetes: a systematic review and meta-analysis of 95,750 women. Diabetologia 59, 1403–1411 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Benhalima, K., Lens, K., Bosteels, J. & Chantal, M. The risk for glucose intolerance after gestational diabetes mellitus since the introduction of the IADPSG criteria: a systematic review and meta-analysis. J. Clin. Med. 8, 1431 (2019).

    Article  PubMed Central  Google Scholar 

  199. Vounzoulaki, E. et al. Progression to type 2 diabetes in women with a known history of gestational diabetes: systematic review and meta-analysis. BMJ 369, m1361 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dennison, R. A. et al. The absolute and relative risk of type 2 diabetes after gestational diabetes: a systematic review and meta-analysis of 129 studies. Diabetes Res. Clin. Pract. 171, 108625 (2021).

    Article  PubMed  Google Scholar 

  201. You, H., Hu, J., Liu, Y., Luo, B. & Lei, A. Risk of type 2 diabetes mellitus after gestational diabetes mellitus: a systematic review & meta-analysis. Indian J. Med. Res. 154, 62–77 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bartha, J. L., Martinez-del-Fresno, P. & Comino-Delgado, R. Postpartum metabolism and autoantibody markers in women with gestational diabetes mellitus diagnosed in early pregnancy. Am. J. Obstet. Gynecol. 184, 965–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  203. Sivaraman, S. C., Vinnamala, S. & Jenkins, D. Gestational diabetes and future risk of diabetes. J. Clin. Med. Res. 5, 92–96 (2013).

    PubMed  PubMed Central  Google Scholar 

  204. Gluckman, P. D., Hanson, M. A. & Buklijas, T. A conceptual framework for the developmental origins of health and disease. J. Dev. Orig. Health Dis. 1, 6–18 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Calkins, K. & Devaskar, S. U. Fetal origins of adult disease. Curr. Probl. Pediatr. Adolesc. Health Care 41, 158–176 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Vatten, L. J. et al. Intrauterine exposure to preeclampsia and adolescent blood pressure, body size, and age at menarche in female offspring. Obstet. Gynecol. 101, 529–533 (2003).

    PubMed  Google Scholar 

  207. Tenhola, S., Rahiala, E., Halonen, P., Vanninen, E. & Voutilainen, R. Maternal preeclampsia predicts elevated blood pressure in 12-year-old children: evaluation by ambulatory blood pressure monitoring. Pediatr. Res. 59, 320–324 (2006).

    Article  PubMed  Google Scholar 

  208. Hoodbhoy, Z. et al. The impact of maternal preeclampsia and hyperglycemia on the cardiovascular health of the offspring: a systematic review and meta-analysis. Am. J. Perinatol. https://doi.org/10.1055/s-0041-1728823 (2021).

    Article  PubMed  Google Scholar 

  209. Pittara, T., Vyrides, A., Lamnisos, D. & Giannakou, K. Pre-eclampsia and long-term health outcomes for mother and infant: an umbrella review. BJOG 128, 1421–1430 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Pettitt, D. J., Baird, H. R., Aleck, K. A., Bennett, P. H. & Knowler, W. C. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N. Engl. J. Med. 308, 242–245 (1983).

    Article  CAS  PubMed  Google Scholar 

  211. Pettitt, D. J., Nelson, R. G., Saad, M. F., Bennett, P. H. & Knowler, W. C. Diabetes and obesity in the offspring of Pima Indian women with diabetes during pregnancy. Diabetes Care 16, 310–314 (1993).

    Article  CAS  PubMed  Google Scholar 

  212. Philipps, L. H. et al. The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia 54, 1957–1966 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Lawlor, D. A., Lichtenstein, P. & Långström, N. Association of maternal diabetes mellitus in pregnancy with offspring adiposity into early adulthood: sibling study in a prospective cohort of 280,866 men from 248,293 families. Circulation 123, 258–265 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Pirkola, J. et al. Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. Diabetes Care 33, 1115–1121 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Lawlor, D. A. et al. Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: findings from a prospective pregnancy cohort. Diabetologia 53, 89–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Kim, S. Y., England, J. L., Sharma, J. A. & Njoroge, T. Gestational diabetes mellitus and risk of childhood overweight and obesity in offspring: a systematic review. Exp. Diabetes Res. 2011, 541308 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Maher, G. M. et al. Association of hypertensive disorders of pregnancy with risk of neurodevelopmental disorders in offspring: a systematic review and meta-analysis. JAMA Psychiatry 75, 809–819 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Dachew, B. A., Mamun, A., Maravilla, J. C. & Alati, R. Pre-eclampsia and the risk of autism-spectrum disorder in offspring: meta-analysis. Br. J. Psychiatry 212, 142–147 (2018).

    Article  PubMed  Google Scholar 

  219. Nahum Sacks, K. et al. Long-term neuropsychiatric morbidity in children exposed prenatally to preeclampsia. Early Hum. Dev. 130, 96–100 (2019).

    Article  PubMed  Google Scholar 

  220. Wu, C. S. et al. Preeclampsia and risk for epilepsy in offspring. Pediatrics 122, 1072–1078 (2008).

    Article  PubMed  Google Scholar 

  221. Rowland, J. & Wilson, C. A. The association between gestational diabetes and ASD and ADHD: a systematic review and meta-analysis. Sci. Rep. 11, 5136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. van Niekerk, G., Christowitz, C. & Engelbrecht, A. M. Insulin-mediated immune dysfunction in the development of preeclampsia. J. Mol. Med. 99, 889–897 (2021).

    Article  PubMed  Google Scholar 

  223. Brownfoot, F. C. et al. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction. Am. J. Obstet. Gynecol. 214, 356.e1–356.e15 (2016).

    Article  CAS  Google Scholar 

  224. Dodd, J. M., Grivell, R. M., Deussen, A. R. & Hague, W. M. Metformin for women who are overweight or obese during pregnancy for improving maternal and infant outcomes. Cochrane Database Syst. Rev. 7, CD010564 (2018).

    PubMed  Google Scholar 

  225. Alqudah, A. et al. Risk of pre-eclampsia in women taking metformin: a systematic review and meta-analysis. Diabet. Med. 35, 160–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  226. Tarry-Adkins, J. L., Ozanne, S. E. & Aiken, C. E. Impact of metformin treatment during pregnancy on maternal outcomes: a systematic review/meta-analysis. Sci. Rep. 11, 9240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Nascimento, I. et al. Evaluation of preeclampsia results after use of metformin in gestation: systematic review and meta-analysis. Rev. Bras. Ginecol. Obstet. 40, 713–721 (2018).

    Article  PubMed  Google Scholar 

  228. Kumasawa, K. et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc. Natl Acad. Sci. USA 108, 1451–1455 (2011).

    Article  CAS  PubMed  Google Scholar 

  229. Ermini, L., Post, M. & Caniggia, I. Statins, mevalonate pathway and its intermediate products in placental development and preeclampsia. Curr. Mol. Pharmacol. 10, 152–160 (2017).

    Article  PubMed  Google Scholar 

  230. Brownfoot, F. C. et al. Effects of simvastatin, rosuvastatin and pravastatin on soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sENG) secretion from human umbilical vein endothelial cells, primary trophoblast cells and placenta. BMC Pregnancy Childbirth 16, 117 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Bauer, A. J. et al. Pravastatin attenuates hypertension, oxidative stress, and angiogenic imbalance in rat model of placental ischemia-induced hypertension. Hypertension 61, 1103–1110 (2013).

    Article  CAS  PubMed  Google Scholar 

  232. Esteve-Valverde, E. et al. Pravastatin for preventing and treating preeclampsia: a systematic review. Obstet. Gynecol. Surv. 73, 40–55 (2018).

    Article  PubMed  Google Scholar 

  233. Garrett, N. et al. Pravastatin therapy during preeclampsia prevents long-term adverse health effects in mice. JCI Insight 3, e120147 (2018).

    Article  PubMed Central  Google Scholar 

  234. Saleh, L. et al. Low soluble fms-like tyrosine kinase-1, endoglin, and endothelin-1 levels in women with confirmed or suspected preeclampsia using proton pump inhibitors. Hypertension 70, 594–600 (2017).

    Article  CAS  PubMed  Google Scholar 

  235. Onda, K. et al. Proton pump inhibitors decrease soluble fms-like tyrosine kinase-1 and soluble endoglin secretion, decrease hypertension, and rescue endothelial dysfunction. Hypertension 69, 457–468 (2017).

    Article  CAS  PubMed  Google Scholar 

  236. Cluver, C. A. et al. Esomeprazole to treat women with preterm preeclampsia: a randomized placebo controlled trial. Am. J. Obstet. Gynecol. 219, 388.e1–388.e17 (2018).

    Article  CAS  Google Scholar 

  237. Tong, S. et al. Pravastatin, proton-pump inhibitors, metformin, micronutrients, and biologics: new horizons for the prevention or treatment of preeclampsia. Am. J. Obstet. Gynecol. 226, S1157–S1170 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. de Alwis, N. et al. Novel approaches to combat preeclampsia: from new drugs to innovative delivery. Placenta 102, 10–16 (2020).

    Article  PubMed  Google Scholar 

  239. Rana, S., Lemoine, E., Granger, J. P. & Karumanchi, S. A. Preeclampsia: pathophysiology, challenges, and perspectives. Circ. Res. 124, 1094–1112 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Grimes, S., Bombay, K., Lanes, A., Walker, M. & Corsi, D. J. Potential biological therapies for severe preeclampsia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 19, 163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Suvakov, S. et al. Emerging therapeutic potential of mesenchymal stem/stromal cells in preeclampsia. Curr. Hypertens. Rep. 22, 37 (2020).

    Article  CAS  PubMed  Google Scholar 

  242. Yu, J., Jia, J., Guo, X., Chen, R. & Feng, L. Modulating circulating sFlt1 in an animal model of preeclampsia using PAMAM nanoparticles for siRNA delivery. Placenta 58, 1–8 (2017).

    Article  PubMed  Google Scholar 

  243. Zhang, B. et al. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Theranostics 8, 2765–2781 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ganguly, E., Hula, N., Spaans, F., Cooke, C. M. & Davidge, S. T. Placenta-targeted treatment strategies: an opportunity to impact fetal development and improve offspring health later in life. Pharmacol. Res. 157, 104836 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Farrar, D. et al. Treatments for gestational diabetes: a systematic review and meta-analysis. BMJ Open 7, e015557 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Martis, R. et al. Treatments for women with gestational diabetes mellitus: an overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 8, CD012327 (2018).

    PubMed  Google Scholar 

  247. Griffith, R. J. et al. Interventions to prevent women from developing gestational diabetes mellitus: an overview of Cochrane reviews. Cochrane Database Syst. Rev. 6, CD012394 (2020).

    PubMed  Google Scholar 

  248. Brown, J. et al. Lifestyle interventions for the treatment of women with gestational diabetes. Cochrane Database Syst. Rev. 5, CD011970 (2017).

    PubMed  Google Scholar 

  249. Chen, Y. et al. Effects of probiotics on blood glucose, biomarkers of inflammation and oxidative stress in pregnant women with gestational diabetes mellitus: a meta-analysis of randomized controlled trials. Med. Clin. 154, 199–206 (2020).

    Article  CAS  Google Scholar 

  250. de Brito Alves, J. L. et al. Gut microbiota and probiotic intervention as a promising therapeutic for pregnant women with cardiometabolic disorders: present and future directions. Pharmacol. Res. 145, 104252 (2019).

    Article  PubMed  Google Scholar 

  251. Wallis, A. B., Tsigas, E. Z., Saftlas, A. F. & Sibai, B. M. Prenatal education is an opportunity for improved outcomes in hypertensive disorders of pregnancy: results from an internet-based survey. J. Matern. Fetal Neonatal Med. 26, 1565–1567 (2013).

    Article  PubMed  Google Scholar 

  252. Dijkhuis, T. E. et al. Investigating the current knowledge and needs concerning a follow-up for long-term cardiovascular risks in Dutch women with a preeclampsia history: a qualitative study. BMC Pregnancy Childbirth 20, 486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Crowther, C. A. et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N. Engl. J. Med. 352, 2477–2486 (2005).

    Article  CAS  PubMed  Google Scholar 

  254. Klonoff, D. C. Improved outcomes from diabetes monitoring: the benefits of better adherence, therapy adjustments, patient education, and telemedicine support. J. Diabetes Sci. Technol. 6, 486–490 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  255. de Barros, M. C., Lopes, M. A., Francisco, R. P., Sapienza, A. D. & Zugaib, M. Resistance exercise and glycemic control in women with gestational diabetes mellitus. Am. J. Obstet. Gynecol. 203, 556.e1–556.e6 (2010).

    Article  Google Scholar 

  256. Ogu, R. N. et al. Gestational diabetes mellitus knowledge among women of reproductive age in southern Nigeria: implications for diabetes education. Int. Q. Community Health Educ. 40, 177–183 (2020).

    Article  PubMed  Google Scholar 

  257. Hussain, Z., Yusoff, Z. M. & Sulaiman, S. A. Evaluation of knowledge regarding gestational diabetes mellitus and its association with glycaemic level: a Malaysian study. Prim. Care Diabetes 9, 184–190 (2015).

    Article  PubMed  Google Scholar 

  258. Agurs-Collins, T. et al. Designing and assessing multilevel interventions to improve minority health and reduce health disparities. Am. J. Public Health 109, S86–S93 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  259. von Dadelszen, P. et al. The Community-Level Interventions for Pre-eclampsia (CLIP) cluster randomised trials in Mozambique, Pakistan, and India: an individual participant-level meta-analysis. Lancet 396, 553–563 (2020).

    Article  Google Scholar 

  260. Bone, J. N. et al. Economic and cost-effectiveness analysis of the Community-Level Interventions for Pre-eclampsia (CLIP) trials in India, Pakistan and Mozambique. BMJ Glob. Health 6, e004123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Marquez, I., Calman, N. & Crump, C. Using enhanced primary care services in high-risk Latino populations to reduce disparities in glycemic control. J. Health Care Poor Underserved 29, 676–686 (2018).

    Article  PubMed  Google Scholar 

  262. Rothan, H. A. & Byrareddy, S. N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109, 102433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Kc, A. et al. Effect of the COVID-19 pandemic response on intrapartum care, stillbirth, and neonatal mortality outcomes in Nepal: a prospective observational study. Lancet Glob. Health 8, e1273–e1281 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Papageorghiou, A. T. et al. Preeclampsia and COVID-19: results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 225, 289.e1–289.e17 (2021).

    Article  CAS  Google Scholar 

  265. Holman, N. et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 8, 823–833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Grasselli, G. et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 323, 1574–1581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Goyal, P. et al. Clinical characteristics of Covid-19 in New York city. N. Engl. J. Med. 382, 2372–2374 (2020).

    Article  PubMed  Google Scholar 

  268. Myers, L. C., Parodi, S. M., Escobar, G. J. & Liu, V. X. Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California. JAMA 323, 2195–2198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Murphy, H. R. Managing diabetes in pregnancy before, during, and after COVID-19. Diabetes Technol. Ther. 22, 454–461 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Z.A.B. and L.J. researched data for the article. Z.A.B., L.J., K.T. and P.v.D. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Zulfiqar A. Bhutta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Xilin Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Tang, K., Magee, L.A. et al. A global view of hypertensive disorders and diabetes mellitus during pregnancy. Nat Rev Endocrinol 18, 760–775 (2022). https://doi.org/10.1038/s41574-022-00734-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-022-00734-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing