Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolically healthy obesity: from epidemiology and mechanisms to clinical implications

Abstract

The concept of metabolic health, particularly in obesity, has attracted a lot of attention in the scientific community, and is being increasingly used to determine the risk of cardiovascular diseases and diabetes mellitus-related complications. This Review assesses the current understanding of metabolically healthy obesity (MHO). First, we present the historical evolution of the concept. Second, we discuss the evidence for and against its existence, the usage of different definitions of MHO over the years and the efforts made to provide novel definitions of MHO. Third, we highlight epidemiological data with regard to cardiovascular risk in MHO, which is estimated to be moderately elevated using widely used definitions of MHO when compared with individuals with metabolically healthy normal weight, but potentially not elevated using a novel definition of MHO. Fourth, we discuss novel findings about the physiological mechanisms involved in MHO and how such knowledge helps to identify and characterize both people with MHO and those with metabolically unhealthy normal weight. Finally, we address how the concept of MHO can be used for risk stratification and treatment in clinical practice.

Key points

  • The concept of metabolically healthy obesity (MHO) is attracting a huge amount of attention in the scientific community.

  • Total cardiovascular risk in individuals with MHO, when compared with individuals with metabolically healthy normal weight, is moderately elevated using widely used definitions of MHO.

  • Cardiovascular mortality risk in individuals with MHO, when compared with individuals with metabolically healthy normal weight, might not be elevated when using a novel definition of MHO.

  • Novel genetic data strongly support the hypothesis that body adipose tissue distribution, including the ability to expand adipose tissue mass in the gluteofemoral adipose tissue compartment, is an important determinant of MHO.

  • As of today, the concept of MHO can be used for risk stratification and treatment in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of the metabolically healthy obesity concept over time.
Fig. 2: Process to establish a novel definition of metabolically healthy obesity.
Fig. 3: Cardiovascular risk in subgroups according to BMI and metabolic health status.
Fig. 4: Consequences of stability of metabolic health versus transition to a metabolically unhealthy phenotype for cardiovascular disease risk.
Fig. 5: Energy storage under positive energy balance and metabolic health.
Fig. 6: Potential strategies to identify and treat metabolically healthy and metabolically at-risk people with obesity.

Similar content being viewed by others

References

  1. Dai, H. et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: an analysis of the Global Burden of Disease Study. PLoS Med. 17, e1003198 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V. & Roth, G. A. The Global Burden of Cardiovascular Diseases and Risk: a compass for future health. J. Am. Coll. Cardiol. 80, 2361–2371 (2022).

    Article  PubMed  Google Scholar 

  3. Sims, E. A. Are there persons who are obese, but metabolically healthy? Metabolism 50, 1499–1504 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Karelis, A. D., Brochu, M. & Rabasa-Lhoret, R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 30, 569–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Reaven, G. All obese individuals are not created equal: insulin resistance is the major determinant of cardiovascular disease in overweight/obese individuals. Diab. Vasc. Dis. Res. 2, 105–112 (2005).

    Article  PubMed  Google Scholar 

  6. Stefan, N., Haring, H. U., Hu, F. B. & Schulze, M. B. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. Lancet Diabetes Endocrinol. 1, 152–162 (2013).

    Article  PubMed  Google Scholar 

  7. Neeland, I. J., Poirier, P. & Despres, J. P. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation 137, 1391–1406 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stefan, N., Haring, H. U. & Schulze, M. B. Metabolically healthy obesity: the low-hanging fruit in obesity treatment? Lancet Diabetes Endocrinol. 6, 249–258 (2018).

    Article  PubMed  Google Scholar 

  9. Magkos, F. Metabolically healthy obesity: what’s in a name? Am. J. Clin. Nutr. 110, 533–539 (2019).

    Article  PubMed  Google Scholar 

  10. Schulze, M. B. Metabolic health in normal-weight and obese individuals. Diabetologia 62, 558–566 (2019).

    Article  PubMed  Google Scholar 

  11. Smith, G. I., Mittendorfer, B. & Klein, S. Metabolically healthy obesity: facts and fantasies. J. Clin. Invest. 129, 3978–3989 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bluher, M. Metabolically healthy obesity. Endocr. Rev. 41, bnaa004 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stefan, N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 8, 616–627 (2020).

    Article  PubMed  Google Scholar 

  14. Vague, J. Sexual differentiation; factor determining forms of obesity [French]. Presse Med. 55, 339 (1947).

    CAS  Google Scholar 

  15. Ruderman, N. B., Berchtold, P. & Schneider, S. Obesity-associated disorders in normal-weight individuals: some speculations. Int. J. Obes. 6, 151–157 (1982).

    PubMed  Google Scholar 

  16. Manson, J. E. et al. A prospective study of obesity and risk of coronary heart disease in women. N. Engl. J. Med. 322, 882–889 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Ferrannini, E. et al. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J. Clin. Invest. 100, 1166–1173 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katzmarzyk, P. T., Church, T. S., Janssen, I., Ross, R. & Blair, S. N. Metabolic syndrome, obesity, and mortality: impact of cardiorespiratory fitness. Diabetes Care 28, 391–397 (2005).

    Article  PubMed  Google Scholar 

  19. Meigs, J. B. et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J. Clin. Endocrinol. Metab. 91, 2906–2912 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. McLaughlin, T., Abbasi, F., Lamendola, C. & Reaven, G. Heterogeneity in the prevalence of risk factors for cardiovascular disease and type 2 diabetes mellitus in obese individuals: effect of differences in insulin sensitivity. Arch. Intern. Med. 167, 642–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Stefan, N. et al. Identification and characterization of metabolically benign obesity in humans. Arch. Intern. Med. 168, 1609–1616 (2008).

    Article  PubMed  Google Scholar 

  22. Wildman, R. P. et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch. Intern. Med. 168, 1617–1624 (2008).

    Article  PubMed  Google Scholar 

  23. Fan, J., Song, Y., Chen, Y., Hui, R. & Zhang, W. Combined effect of obesity and cardio-metabolic abnormality on the risk of cardiovascular disease: a meta-analysis of prospective cohort studies. Int. J. Cardiol. 168, 4761–4768 (2013).

    Article  PubMed  Google Scholar 

  24. Zembic, A., Eckel, N., Stefan, N., Baudry, J. & Schulze, M. B. An empirically derived definition of metabolically healthy obesity based on risk of cardiovascular and total mortality. JAMA Netw. Open. 4, e218505 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petersen, M. C. et al. Cardiometabolic characteristics of people with metabolically healthy and unhealthy obesity. Cell Metab. 36, 745–761.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. [No authors listed] Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 894, 1–253 (2000).

    Google Scholar 

  27. Eckel, N., Meidtner, K., Kalle-Uhlmann, T., Stefan, N. & Schulze, M. B. Metabolically healthy obesity and cardiovascular events: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 23, 956–966 (2016).

    Article  PubMed  Google Scholar 

  28. Yeh, T. L. et al. The relationship between metabolically healthy obesity and the risk of cardiovascular disease: a systematic review and meta-analysis. J. Clin. Med. 8, 1228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

    Article  Google Scholar 

  30. Alberti, K. G., Zimmet, P. & Shaw, J. Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 23, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Caleyachetty, R. et al. Metabolically healthy obese and incident cardiovascular disease events among 3.5 million men and women. J. Am. Coll. Cardiol. 70, 1429–1437 (2017).

    Article  PubMed  Google Scholar 

  33. Eckel, N. et al. Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses’ Health Study): 30 year follow-up from a prospective cohort study. Lancet Diabetes Endocrinol. 6, 714–724 (2018).

    Article  PubMed  Google Scholar 

  34. Commodore-Mensah, Y. et al. High burden of subclinical and cardiovascular disease risk in adults with metabolically healthy obesity: the Atherosclerosis Risk in Communities (ARIC) study. Diabetes Care 44, 1657–1663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arnlov, J., Ingelsson, E., Sundstrom, J. & Lind, L. Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men. Circulation 121, 230–236 (2010).

    Article  PubMed  Google Scholar 

  36. Durward, C. M., Hartman, T. J. & Nickols-Richardson, S. M. All-cause mortality risk of metabolically healthy obese individuals in NHANES III. J. Obes. 2012, 460321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kramer, C. K., Zinman, B. & Retnakaran, R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann. Intern. Med. 159, 758–769 (2013).

    Article  PubMed  Google Scholar 

  38. Zheng, R., Zhou, D. & Zhu, Y. The long-term prognosis of cardiovascular disease and all-cause mortality for metabolically healthy obesity: a systematic review and meta-analysis. J. Epidemiol. Community Health 70, 1024–1031 (2016).

    Article  PubMed  Google Scholar 

  39. Mirzababaei, A., Djafarian, K., Mozafari, H. & Shab-Bidar, S. The long-term prognosis of heart diseases for different metabolic phenotypes: a systematic review and meta-analysis of prospective cohort studies. Endocrine 63, 439–462 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Hsueh, Y. W. et al. Association of metabolically healthy obesity and elevated risk of coronary artery calcification: a systematic review and meta-analysis. PeerJ 8, e8815 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huang, M. Y. et al. The association between metabolically healthy obesity, cardiovascular disease, and all-cause mortality risk in Asia: a systematic review and meta-analysis. Int. J. Environ. Res. Public. Health 17, 1320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Opio, J. et al. Metabolically healthy overweight/obesity are associated with increased risk of cardiovascular disease in adults, even in the absence of metabolic risk factors: a systematic review and meta-analysis of prospective cohort studies. Obes. Rev. 21, e13127 (2020).

    Article  PubMed  Google Scholar 

  43. Abiri, B., Koohi, F., Ebadinejad, A., Valizadeh, M. & Hosseinpanah, F. Transition from metabolically healthy to unhealthy overweight/obesity and risk of cardiovascular disease incidence: a systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 32, 2041–2051 (2022).

    Article  PubMed  Google Scholar 

  44. Putra, I. C. S. et al. Metabolically unhealthy phenotype in normal weight population and risk of mortality and major adverse cardiac events: a meta-analysis of 41 prospective cohort studies. Diabetes Metab. Syndr. 16, 102635 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X. et al. Risk of heart failure between different metabolic states of health and weight: a meta-analysis of cohort studies. Nutrients 14, 5223 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Harmon, B. E. et al. The joint association of cardiometabolic health and weight on mortality in the multiethnic cohort. Ethn. Health 27, 658–671 (2022).

    Article  PubMed  Google Scholar 

  47. Wei, D. et al. Cardiovascular risk of metabolically healthy obesity in two European populations: prevention potential from a metabolomic study. Cardiovasc. Diabetol. 22, 82 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Q. et al. A novel criterion of metabolically healthy obesity could effectively identify individuals with low cardiovascular risk among Chinese cohort. Front. Endocrinol. 14, 1140472 (2023).

    Article  Google Scholar 

  49. Ortega, F. B. et al. Role of physical activity and fitness in the characterization and prognosis of the metabolically healthy obesity phenotype: a systematic review and meta-analysis. Prog. Cardiovasc. Dis. 61, 190–205 (2018).

    Article  PubMed  Google Scholar 

  50. Lavie, C. J. & Ortega, F. B. Body composition – more to fat than first meets the eye. Nat. Rev. Endocrinol. 14, 569–570 (2018).

    Article  PubMed  Google Scholar 

  51. Lavie, C. J., Deedwania, P. & Ortega, F. B. Obesity is rarely healthy. Lancet Diabetes Endocrinol. 6, 678–679 (2018).

    Article  PubMed  Google Scholar 

  52. Fauchier, G. et al. Metabolically healthy obesity and cardiovascular events: a nationwide cohort study. Diabetes Obes. Metab. 23, 2492–2501 (2021).

    Article  PubMed  Google Scholar 

  53. Morkedal, B., Vatten, L. J., Romundstad, P. R., Laugsand, L. E. & Janszky, I. Risk of myocardial infarction and heart failure among metabolically healthy but obese individuals: HUNT (Nord-Trondelag Health Study), Norway. J. Am. Coll. Cardiol. 63, 1071–1078 (2014).

    Article  PubMed  Google Scholar 

  54. Lavie, C. J., Milani, R. V. & Ventura, H. O. Disparate effects of metabolically healthy obesity in coronary heart disease and heart failure. J. Am. Coll. Cardiol. 63, 1079–1081 (2014).

    Article  PubMed  Google Scholar 

  55. Stefan, N., Fritsche, A. & Haring, H. U. Mechanisms explaining the relationship between metabolically healthy obesity and cardiovascular risk. J. Am. Coll. Cardiol. 63, 2748–2749 (2014).

    Article  PubMed  Google Scholar 

  56. Kanbay, M. et al. The risk for chronic kidney disease in metabolically healthy obese patients: a systematic review and meta-analysis. Eur. J. Clin. Invest. 53, e13878 (2023).

    Article  PubMed  Google Scholar 

  57. Lin, C. J. et al. The association between metabolically healthy obesity and risk of cancer: a systematic review and meta-analysis of prospective cohort studies. Obes. Rev. 21, e13049 (2020).

    Article  PubMed  Google Scholar 

  58. Zheng, X. et al. The association between metabolic status and risk of cancer among patients with obesity: metabolically healthy obesity vs. metabolically unhealthy obesity. Front. Nutr. 9, 783660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mahamat-Saleh, Y. et al. Metabolically defined body size and body shape phenotypes and risk of postmenopausal breast cancer in the European Prospective Investigation into Cancer and Nutrition. Cancer Med. 12, 12668–12682 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gunter, M. J. et al. Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res. 75, 270–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gallagher, E. J. & LeRoith, D. Hyperinsulinaemia in cancer. Nat. Rev. Cancer 20, 629–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Mirzababaei, A., Mozaffari, H., Shab-Bidar, S., Milajerdi, A. & Djafarian, K. Risk of hypertension among different metabolic phenotypes: a systematic review and meta-analysis of prospective cohort studies. J. Hum. Hypertens. 33, 365–377 (2019).

    Article  PubMed  Google Scholar 

  63. Bell, J. A., Kivimaki, M. & Hamer, M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes. Rev. 15, 504–515 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tajik, S., Mirzababaei, A., Ghaedi, E., Kord-Varkaneh, H. & Mirzaei, K. Risk of type 2 diabetes in metabolically healthy people in different categories of body mass index: an updated network meta-analysis of prospective cohort studies. J. Cardiovasc. Thorac. Res. 11, 254–263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hashimoto, Y. et al. Metabolically healthy obesity without fatty liver and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes. Res. Clin. Pract. 12, 4–15 (2018).

    Article  PubMed  Google Scholar 

  66. Huang, Q. et al. Metabolically healthy obesity, transition from metabolic healthy to unhealthy status, and carotid atherosclerosis. Diabetes Metab. Res. Rev. 40, e3766 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Mirzai, S., Neeland, I. J. & Lavie, C. J. The transiency of metabolically healthy obesity: metabolic decline and atherosclerotic risk. Diabetes Metab. Res. Rev. 40, e3765 (2024).

    Article  PubMed  Google Scholar 

  68. Mongraw-Chaffin, M. et al. Metabolically healthy obesity, transition to metabolic syndrome, and cardiovascular risk. J. Am. Coll. Cardiol. 71, 1857–1865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gao, M. et al. Metabolically healthy obesity, transition to unhealthy metabolic status, and vascular disease in Chinese adults: a cohort study. PLoS Med. 17, e1003351 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fabbrini, E. et al. Metabolically normal obese people are protected from adverse effects following weight gain. J. Clin. Invest. 125, 787–795 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Peppa, M. et al. Body composition determinants of metabolic phenotypes of obesity in nonobese and obese postmenopausal women. Obesity 21, 1807–1814 (2013).

    Article  PubMed  Google Scholar 

  72. Farabi, S. S., Smith, G. I., Yoshino, J. & Klein, S. Metabolically healthy obesity is not a myth. JCEM Case Rep. 1, luad015 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Stefan, N., Schick, F. & Haring, H. U. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 26, 292–300 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 49, 17–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Agrawal, S. et al. BMI-adjusted adipose tissue volumes exhibit depot-specific and divergent associations with cardiometabolic diseases. Nat. Commun. 14, 266 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Agrawal, S. et al. Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots. Nat. Commun. 13, 3771 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lotta, L. A. et al. Association of genetic variants related to gluteofemoral vs abdominal fat distribution with type 2 diabetes, coronary disease, and cardiovascular risk factors. JAMA 320, 2553–2563 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yaghootkar, H. et al. Genetic evidence for a link between favorable adiposity and lower risk of type 2 diabetes, hypertension, and heart disease. Diabetes 65, 2448–2460 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Scott, R. A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Winkler, T. W. et al. A joint view on genetic variants for adiposity differentiates subtypes with distinct metabolic implications. Nat. Commun. 9, 1946 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karpe, F. & Pinnick, K. E. Biology of upper-body and lower-body adipose tissue – link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Hammarstedt, A., Gogg, S., Hedjazifar, S., Nerstedt, A. & Smith, U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98, 1911–1941 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Kahn, C. R., Wang, G. & Lee, K. Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129, 3990–4000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Vishvanath, L. & Gupta, R. K. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J. Clin. Invest. 129, 4022–4031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia 62, 17–23 (2019).

    Article  PubMed  Google Scholar 

  89. Roden, M. & Shulman, G. I. The integrative biology of type 2 diabetes. Nature 576, 51–60 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Stefan, N., Schick, F., Birkenfeld, A. L., Haring, H. U. & White, M. F. The role of hepatokines in NAFLD. Cell Metab. 35, 236–252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, C. et al. Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nat. Commun. 12, 6486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Akbari, P. et al. Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes. Nat. Commun. 13, 4844 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hansen, G. T. et al. Genetics of sexually dimorphic adipose distribution in humans. Nat. Genet. 55, 461–470 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qin, B., He, M., Chen, X. & Pei, D. Sorting nexin 10 induces giant vacuoles in mammalian cells. J. Biol. Chem. 281, 36891–36896 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Ye, L. et al. Osteopetrorickets due to Snx10 deficiency in mice results from both failed osteoclast activity and loss of gastric acid-dependent calcium absorption. PLoS Genet. 11, e1005057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Small, K. S. et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet. 50, 572–580 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Small, K. S. et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 43, 561–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuo, F. C. et al. HOTAIR interacts with PRC2 complex regulating the regional preadipocyte transcriptome and human fat distribution. Cell Rep. 40, 111136 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stefan, N. & Schulze, M. B. Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment. Lancet Diabetes Endocrinol. 11, 426–440 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Martinez-Gomez, D. et al. Physical activity without weight loss reduces the development of cardiovascular disease risk factors – a prospective cohort study of more than one hundred thousand adults. Prog. Cardiovasc. Dis. 62, 522–530 (2019).

    Article  PubMed  Google Scholar 

  101. Kantartzis, K. et al. Effects of a lifestyle intervention in metabolically benign and malign obesity. Diabetologia 54, 864–868 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Guo, F. & Garvey, W. T. Cardiometabolic disease staging predicts effectiveness of weight loss therapy to prevent type 2 diabetes: pooled results from phase III clinical trials assessing phentermine/ topiramateextended release. Diabetes Care 40, 856–862 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. WHO Expert Committee on Physical Status. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 854, 1–452 (1995).

    Google Scholar 

  104. NHLBI Obesity Education Initiative. The Practical Guide to the Identification, Evaluation and Treatment of Overweight and Obesity in Adults (NIH, 2000).

  105. Ross, R. et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 16, 177–189 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ogedegbe, G. & Pickering, T. Principles and techniques of blood pressure measurement. Cardiol. Clin. 28, 571–586 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schulze, M. B., Kroke, A., Saracci, R. & Boeing, H. The effect of differences in measurement procedure on the comparability of blood pressure estimates in multi-centre studies. Blood Press. Monit. 7, 95–104 (2002).

    Article  PubMed  Google Scholar 

  108. Perloff, D. et al. Human blood pressure determination by sphygmomanometry. Circulation 88, 2460–2470 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of funding from the German Federal Ministry of Education and Research (BMBF) to the German Centre of Diabetes Research (DZD) and the Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy (SOPHIA) project. The authors thank M. Bauer (German Institute of Human Nutrition Potsdam-Rehbruecke) for assistance in literature handling and data extraction and E. Llanaj (German Institute of Human Nutrition Potsdam-Rehbruecke) for assistance in the preparation of the initial versions of the figures.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Matthias B. Schulze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Carl Lavie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

UK Biobank: https://www.ukbiobank.ac.uk/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, M.B., Stefan, N. Metabolically healthy obesity: from epidemiology and mechanisms to clinical implications. Nat Rev Endocrinol 20, 633–646 (2024). https://doi.org/10.1038/s41574-024-01008-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-024-01008-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing