Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation and resolution in obesity

Abstract

Inflammation is an essential physiological defence mechanism, but prolonged or excessive inflammation can cause disease. Indeed, unresolved systemic and adipose tissue inflammation drives obesity-related cardiovascular disease and type 2 diabetes mellitus. Drugs targeting pro-inflammatory cytokine pathways or inflammasome activation have been approved for clinical use for the past two decades. However, potentially serious adverse effects, such as drug-induced weight gain and increased susceptibility to infections, prevented their wider clinical implementation. Furthermore, these drugs do not modulate the resolution phase of inflammation. This phase is an active process orchestrated by specialized pro-resolving mediators, such as lipoxins, and other endogenous resolution mechanisms. Pro-resolving mediators mitigate inflammation and development of obesity-related disease, for instance, alleviating insulin resistance and atherosclerosis in experimental disease models, so mechanisms to modulate their activity are, therefore, of great therapeutic interest. Here, we review current clinical attempts to either target pro-inflammatory mediators (IL-1β, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, tumour necrosis factor (TNF) and IL-6) or utilize endogenous resolution pathways to reduce obesity-related inflammation and improve cardiometabolic outcomes. A remaining challenge in the field is to establish more precise biomarkers that can differentiate between acute and chronic inflammation and to assess the functionality of individual leukocyte populations. Such advancements would improve the monitoring of drug effects and support personalized treatment strategies that battle obesity-related inflammation and cardiometabolic disease.

Key points

  • Chronic unresolved systemic and adipose tissue inflammation drives obesity-related cardiometabolic disease.

  • Drugs targeting pro-inflammatory cytokines, or inflammasome activation, are approved for clinical use but can elicit serious adverse effects (such as weight gain and increased susceptibility to infections), hampering their clinical implementation.

  • The resolution phase of inflammation is an active process regulated by specialized pro-resolving mediators. These mediators mitigate obesity-related inflammation and systemic disease in experimental models and are of therapeutic interest.

  • The field lacks biomarkers that can differentiate between acute and chronic inflammation and assess the functionality of individual leukocyte populations, which would improve personalized treatment strategies and support drug monitoring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Specialized pro-resolving mediator synthesis pathways.
Fig. 2: Anti-inflammatory therapeutic strategies under investigation to reduce obesity-related inflammation and disease burdens.
Fig. 3: Pro-resolving therapeutic strategies under investigation to reduce obesity-related inflammation and disease burdens.
Fig. 4: Timing is crucial to the inflammatory process.

Similar content being viewed by others

References

  1. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019). This manuscript offers a comprehensive review of the role of chronic low-grade inflammation in systemic disease, including obesity-related pathophysiologies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bradley, D., Deng, T., Shantaram, D. & Hsueh, W. A. Orchestration of the adipose tissue immune landscape by adipocytes. Annu. Rev. Physiol. 86, 199–223 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Hagberg, C. E. & Spalding, K. L. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat. Rev. Mol. Cell Biol. 25, 270–289 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Reilly, S. M. & Saltiel, A. R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 13, 633–643 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Shaikh, S. R., Beck, M. A., Alwarawrah, Y. & MacIver, N. J. Emerging mechanisms of obesity-associated immune dysfunction. Nat. Rev. Endocrinol. 20, 136–148 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Xourafa, G., Korbmacher, M. & Roden, M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 20, 27–49 (2024).

    Article  PubMed  Google Scholar 

  7. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018). This study shows that although inhibiting IL-1β in patients who have had a myocardial infarction and CRP levels ≥2 mg/l prevents further cardiovascular events, it has no effect on reducing their risk of developing diabetes mellitus.

    Article  CAS  PubMed  Google Scholar 

  8. Li, D., Zhong, J., Zhang, Q. & Zhang, J. Effects of anti-inflammatory therapies on glycemic control in type 2 diabetes mellitus. Front. Immunol. 14, 1125116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017). This study provides definitive evidence that inhibiting IL-1β in patients who have had a myocardial infarction and CRP levels ≥2 mg/l prevents further cardiovascular events.

    Article  CAS  PubMed  Google Scholar 

  10. Antonelli, M. & Kushner, I. It’s time to redefine inflammation. FASEB J. 31, 1787–1791 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Medzhitov, R. The spectrum of inflammatory responses. Science 374, 1070–1075 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Meizlish, M. L., Franklin, R. A., Zhou, X. & Medzhitov, R. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39, 557–581 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M. & Teixeira, M. M. Resolution of inflammation: what controls its onset? Front. Immunol. 7, 160 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Serhan, C. N. Discovery of specialized pro-resolving mediators marks the dawn of resolution physiology and pharmacology. Mol. Asp. Med. 58, 1–11 (2017).

    Article  Google Scholar 

  15. Wallace, J. L., Ianaro, A., Flannigan, K. L. & Cirino, G. Gaseous mediators in resolution of inflammation. Semin. Immunol. 27, 227–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Perretti, M. & D’Acquisto, F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rev. Immunol. 9, 62–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Schett, G. & Neurath, M. F. Resolution of chronic inflammatory disease: universal and tissue-specific concepts. Nat. Commun. 9, 3261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brennan, E., Kantharidis, P., Cooper, M. E. & Godson, C. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nat. Rev. Nephrol. 17, 725–739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiang, N. & Serhan, C. N. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol. Asp. Med. 58, 114–129 (2017). This review provides an elegant and comprehensive overview of the synthesis, receptors and function of SPMs.

    Article  CAS  Google Scholar 

  20. Fredman, G. & Serhan, C. N. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-023-00984-x (2024).

  21. Panigrahy, D., Gilligan, M. M., Serhan, C. N. & Kashfi, K. Resolution of inflammation: an organizing principle in biology and medicine. Pharmacol. Ther. 227, 107879 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Pirault, J. & Back, M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol. 9, 1273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dalli, J. & Serhan, C. N. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120, e60–e72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doran, A. C., Yurdagul, A. Jr. & Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol. 20, 254–267 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Julliard, W. A. et al. Specialized pro-resolving mediators as modulators of immune responses. Semin. Immunol. 59, 101605 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borgeson, E. et al. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab. 22, 125–137 (2015). This study shows that lipoxin treatment of mice alleviates obesity-related adipose tissue inflammation, as well as kidney and liver disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Borgeson, E. et al. Lipoxin A4 attenuates adipose inflammation. FASEB J. 26, 4287–4294 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, T. et al. Resolvin D1 improves the Treg/Th17 imbalance in systemic lupus erythematosus through miR-30e-5p. Front. Immunol. 12, 668760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Hernandez, J., Chiurchiu, V., Perruche, S. & You, S. Regulation of T-cell immune responses by pro-resolving lipid mediators. Front. Immunol. 12, 768133 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramon, S., Bancos, S., Serhan, C. N. & Phipps, R. P. Lipoxin A4 modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism. Eur. J. Immunol. 44, 357–369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, N. et al. Lipoxin B4 enhances human memory B cell antibody production via upregulating cyclooxygenase-2 expression. J. Immunol. 201, 3343–3351 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Ramon, S., Gao, F., Serhan, C. N. & Phipps, R. P. Specialized proresolving mediators enhance human B cell differentiation to antibody-secreting cells. J. Immunol. 189, 1036–1042 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Kraft, J. D. et al. Specialized pro-resolving mediators and the lymphatic system. Int. J. Mol. Sci. 22, 2750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nathan, C. Nonresolving inflammation redux. Immunity 55, 592–605 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ridker, P. M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol. 49, 2129–2138 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, S., Pan, Y. & Zheng, W. Baseline high-sensitivity C-reactive protein as a predictor of adverse clinical events in patients with coronary artery disease undergoing percutaneous coronary intervention: a meta-analysis. Cardiol. Rev. https://doi.org/10.1097/CRD.0000000000000604 (2023).

  37. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rattarasarn, C. Dysregulated lipid storage and its relationship with insulin resistance and cardiovascular risk factors in non-obese Asian patients with type 2 diabetes. Adipocyte 7, 71–80 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fandriks, L. Roles of the gut in the metabolic syndrome: an overview. J. Intern. Med. 281, 319–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Violi, F. et al. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat. Rev. Cardiol. 20, 24–37 (2023).

    Article  PubMed  Google Scholar 

  41. Sanz, M. et al. Periodontitis and cardiovascular diseases: consensus report. J. Clin. Periodontol. 47, 268–288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mishra, S. P. et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut 72, 1848–1865 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Scheithauer, T. P. M. et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front. Immunol. 11, 571731 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Camilleri, M. & Vella, A. What to do about the leaky gut. Gut 71, 424–435 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Fasano, A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res 9, 69 (2020).

    Article  CAS  Google Scholar 

  46. An, L. et al. The role of gut-derived lipopolysaccharides and the intestinal barrier in fatty liver diseases. J. Gastrointest. Surg. 26, 671–683 (2022).

    Article  PubMed  Google Scholar 

  47. Boren, J., Taskinen, M. R., Olofsson, S. O. & Levin, M. Ectopic lipid storage and insulin resistance: a harmful relationship. J. Intern. Med. 274, 25–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Docherty, S. et al. The effect of exercise on cytokines: implications for musculoskeletal health: a narrative review. BMC Sports Sci. Med. Rehabil. 14, 5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kawai, T., Autieri, M. V. & Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 320, C375–C391 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Kolb, H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med. 20, 494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Baat, A., Trinh, B., Ellingsgaard, H. & Donath, M. Y. Physiological role of cytokines in the regulation of mammalian metabolism. Trends Immunol. 44, 613–627 (2023).

    Article  PubMed  Google Scholar 

  52. Lempesis, I. G., van Meijel, R. L. J., Manolopoulos, K. N. & Goossens, G. H. Oxygenation of adipose tissue: a human perspective. Acta Physiol. 228, e13298 (2020).

    Article  CAS  Google Scholar 

  53. Sun, K., Li, X. & Scherer, P. E. Extracellular matrix (ECM) and fibrosis in adipose tissue: overview and perspectives. Compr. Physiol. 13, 4387–4407 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. AlZaim, I., de Rooij, L., Sheikh, B. N., Borgeson, E. & Kalucka, J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat. Rev. Endocrinol. 19, 691–707 (2023).

    Article  PubMed  Google Scholar 

  55. Maqdasy, S. et al. Impaired phosphocreatine metabolism in white adipocytes promotes inflammation. Nat. Metab. 4, 190–202 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bradley, D. et al. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat. Commun. 13, 5606 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, Q. et al. Obesity and hyperinsulinemia drive adipocytes to activate a cell cycle program and senesce. Nat. Med. 27, 1941–1953 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Hildebrandt, X., Ibrahim, M. & Peltzer, N. Cell death and inflammation during obesity: “Know my methods, WAT(son)”. Cell Death Differ. 30, 279–292 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hagglof, T. et al. T-bet+ B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab. 34, 1121–1136.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pestel, J., Blangero, F., Watson, J., Pirola, L. & Eljaafari, A. Adipokines in obesity and metabolic-related-diseases. Biochimie 212, 48–59 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Jacks, R. D. & Lumeng, C. N. Macrophage and T cell networks in adipose tissue. Nat. Rev. Endocrinol. 20, 50–61 (2024).

    Article  PubMed  Google Scholar 

  63. Saltiel, A. R. & Olefsky, J. M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest. 127, 1–4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sharma, B. R. & Kanneganti, T. D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 22, 550–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Sattar, L. et al. Efficacy and safety of colchicine in prevention of secondary cardiovascular outcomes among patients with coronary vessel disease: a meta-analysis. Cureus 14, e26680 (2022).

    PubMed  PubMed Central  Google Scholar 

  67. Cronstein, B. N. et al. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J. Clin. Invest. 96, 994–1002 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Demidowich, A. P. et al. Effects of colchicine in adults with metabolic syndrome: a pilot randomized controlled trial. Diabetes Obes. Metab. 21, 1642–1651 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Patel, T. P. et al. Immunomodulatory effects of colchicine on peripheral blood mononuclear cell subpopulations in human obesity: data from a randomized controlled trial. Obesity 31, 466–478 (2023). This study highlights the changes in circulating leukocyte populations in individuals with obesity after colchicine treatment.

    Article  CAS  PubMed  Google Scholar 

  71. Levine, J. A. et al. Effects of colchicine on lipolysis and adipose tissue inflammation in adults with obesity and metabolic syndrome. Obesity 30, 358–368 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Evangelatos, G., Bamias, G., Kitas, G. D., Kollias, G. & Sfikakis, P. P. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol. Int. 42, 1493–1511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mantravadi, S. et al. Impact of tumor necrosis factor inhibitors and methotrexate on diabetes mellitus among patients with inflammatory arthritis. BMC Rheumatol. 4, 39 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Otsuka, Y. et al. Effects of tumor necrosis factor inhibitors and tocilizumab on the glycosylated hemoglobin levels in patients with rheumatoid arthritis; an observational study. PLoS ONE 13, e0196368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res. 42, 517–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Paquot, N., Castillo, M. J., Lefebvre, P. J. & Scheen, A. J. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol. Metab. 85, 1316–1319 (2000).

    CAS  PubMed  Google Scholar 

  78. Patsalos, O., Dalton, B., Leppanen, J., Ibrahim, M. A. A. & Himmerich, H. Impact of TNF-α inhibitors on body weight and BMI: a systematic review and meta-analysis. Front. Pharmacol. 11, 481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tiburca, L. et al. The treatment with interleukin 17 inhibitors and immune-mediated inflammatory diseases. Curr. Issues Mol. Biol. 44, 1851–1866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, J. et al. Serum IL-17A concentration and a IL17RA single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes. Diabetes Metab. Res. Rev. 38, e3547 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Honkanen, J. et al. IL-17 immunity in human type 1 diabetes. J. Immunol. 185, 1959–1967 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Catterall, T., Fynch, S., Kay, T. W. H., Thomas, H. E. & Sutherland, A. P. R. IL-17F induces inflammation, dysfunction and cell death in mouse islets. Sci. Rep. 10, 13077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salama-Frisbie, R. et al. Association of polymorphisms of the IL-17A and IL-17f genes with increased risk of hypertension and obesity in Mexican patients with COVID-19. J. Interferon Cytokine Res. 44, 60–67 (2024).

    Article  CAS  PubMed  Google Scholar 

  84. Qiao, Y. C. et al. Changes of regulatory T cells and of proinflammatory and immunosuppressive cytokines in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J. Diabetes Res. 2016, 3694957 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Timis, T. L., Beni, L., Florian, I. A., Orasan, M. & Orasan, R. I. Prevalence of metabolic syndrome and chronic inflammation in psoriasis before and after biologic therapy: a prospective study. Med. Pharm. Rep. 96, 368–383 (2023). This prospective study finds that the prevalence of metabolic syndrome in patients with psoriasis was reduced by biologic therapies (TNF inhibitors and IL-12–IL-23 and IL-17 antagonists) that were administered to treat their psoriasis.

    PubMed  PubMed Central  Google Scholar 

  86. Adamstein, N. H. et al. Association of interleukin 6 inhibition with ziltivekimab and the neutrophil-lymphocyte ratio: a secondary analysis of the RESCUE clinical trial. JAMA Cardiol. 8, 177–181 (2023).

    Article  PubMed  Google Scholar 

  87. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Wada, Y., Jensen, C., Meyer, A. S. P., Zonoozi, A. A. M. & Honda, H. Efficacy and safety of interleukin-6 inhibition with ziltivekimab in patients at high risk of atherosclerotic events in Japan (RESCUE-2): a randomized, double-blind, placebo-controlled, phase 2 trial. J. Cardiol. 82, 279–285 (2023).

    Article  PubMed  Google Scholar 

  90. Wedell-Neergaard, A. S. et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 29, 844–855.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Garbers, C., Heink, S., Korn, T. & Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov. 17, 395–412 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Wueest, S. & Konrad, D. The controversial role of IL-6 in adipose tissue on obesity-induced dysregulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 319, E607–E613 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Hasan, I., Rainsford, K. D. & Ross, J. S. Salsalate: a pleotropic anti-inflammatory drug in the treatment of diabetes, obesity, and metabolic diseases. Inflammopharmacology 31, 2781–2797 (2023).

    Article  CAS  PubMed  Google Scholar 

  94. Fleischman, A., Shoelson, S. E., Bernier, R. & Goldfine, A. B. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 31, 289–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Goldfine, A. B. et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1, 36–43 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hawley, S. A. et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goldfine, A. B. et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 152, 346–357 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Goldfine, A. B. et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 159, 1–12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mashayekhi, M. et al. Comparative effects of weight loss and incretin-based therapies on vascular endothelial function, fibrinolysis and inflammation in individuals with obesity and prediabetes: a randomized controlled trial. Diabetes Obes. Metab. 25, 570–580 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Sandsdal, R. M. et al. Combination of exercise and GLP-1 receptor agonist treatment reduces severity of metabolic syndrome, abdominal obesity, and inflammation: a randomized controlled trial. Cardiovasc. Diabetol. 22, 41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hammoud, R. & Drucker, D. J. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19, 201–216 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Lee, Y. S. et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia 55, 2456–2468 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Wong, C. K. et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 36, 130–143.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  104. Claria, J., Dalli, J., Yacoubian, S., Gao, F. & Serhan, C. N. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol. 189, 2597–2605 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Neuhofer, A. et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes 62, 1945–1956 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. White, P. J., Arita, M., Taguchi, R., Kang, J. X. & Marette, A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes 59, 3066–3073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barden, A. et al. Adiposity associates with lower plasma resolvin E1 (Rve1): a population study. Int. J. Obes. 48, 725–732 (2024). This population study has examined plasma levels of SPMs in relation to sex differences, lifestyle and a broad range of cardiovascular disease risk factors and has found that decreased plasma levels of resolvin E1 could be a consequence of obesity.

    Article  CAS  Google Scholar 

  108. Fisk, H. L. et al. Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity-a double blind, randomised clinical trial. EBioMedicine 77, 103909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lopez-Vicario, C. et al. Leukocytes from obese individuals exhibit an impaired SPM signature. FASEB J. 33, 7072–7083 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Titos, E. et al. Signaling and immunoresolving actions of resolvin D1 in inflamed human visceral adipose tissue. J. Immunol. 197, 3360–3370 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Guo, Y. P., Jiang, H. K., Jiang, H., Tian, H. Y. & Li, L. Lipoxin A4 may attenuate the progression of obesity-related glomerulopathy by inhibiting NF-κB and ERK/p38 MAPK-dependent inflammation. Life Sci. 198, 112–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Sotak, M. et al. Lipoxins reduce obesity-induced adipose tissue inflammation in 3D-cultured human adipocytes and explant cultures. iScience 25, 104602 (2022). Using 3D adipocyte spheroids and patient-specific explant cultures, this study provides proof-of-concept evidence supporting the therapeutic potential of lipoxins in reducing obesity-related human adipose tissue inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Ioannidou, A. et al. Hypertrophied human adipocyte spheroids as in vitro model of weight gain and adipose tissue dysfunction. J. Physiol. 600, 869–883 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Lauschke, V. M. & Hagberg, C. E. Next-generation human adipose tissue culture methods. Curr. Opin. Genet. Dev. 80, 102057 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Beydag-Tasoz, B. S., Yennek, S. & Grapin-Botton, A. Towards a better understanding of diabetes mellitus using organoid models. Nat. Rev. Endocrinol. 19, 232–248 (2023).

    PubMed  PubMed Central  Google Scholar 

  117. Serhan, C. N., Fiore, S., Brezinski, D. A. & Lynch, S. Lipoxin A4 metabolism by differentiated HL-60 cells and human monocytes: conversion to novel 15-oxo and dihydro products. Biochemistry 32, 6313–6319 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. Godson, C., Guiry, P. & Brennan, E. Lipoxin mimetics and the resolution of inflammation. Annu. Rev. Pharmacol. Toxicol. 63, 429–448 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Ozdemir, A. T., Nalbantsoy, A., Ozgul Ozdemir, R. B. & Berdeli, A. Effects of 15-lipoxygenase overexpressing adipose tissue mesenchymal stem cells on the Th17 / Treg plasticity. Prostaglandins Other Lipid Mediat. 159, 106610 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Fredman, G. et al. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl Acad. Sci. USA 111, 14530–14535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Qin, C. X. et al. Formylpeptide receptor 2: nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br. J. Pharmacol. 179, 4617–4639 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Tourki, B. et al. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol. Metab. 31, 138–149 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Takano, T. et al. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J. Exp. Med. 185, 1693–1704 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dyall, S. C. et al. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: recent advances in the understanding of their biosynthesis, structures, and functions. Prog. Lipid Res. 86, 101165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Amiri Khosroshahi, R. et al. The effects of omega-3 fatty acids supplementation on inflammatory factors in cancer patients: a systematic review and dose-response meta-analysis of randomized clinical trials. Nutr. Cancer 76, 1–16 (2024).

    Article  CAS  PubMed  Google Scholar 

  126. Delpino, F. M. et al. Omega-3 supplementation and diabetes: a systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 62, 4435–4448 (2022). This meta-analysis evaluates the effects of ω-3 supplementation on parameters of T2DM in humans and demonstrates that the supplementation had a protective effect in approximately 70% of the studies.

    Article  CAS  PubMed  Google Scholar 

  127. Nomali, M. et al. Omega-3 supplementation and outcomes of heart failure: a systematic review of clinical trials. Medicine 103, e36804 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kiecolt-Glaser, J. K. et al. Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: a randomized controlled trial. Brain Behav. Immun. 26, 988–995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kratz, M. et al. n3 PUFAs do not affect adipose tissue inflammation in overweight to moderately obese men and women. J. Nutr. 143, 1340–1347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sherratt, S. C. R., Mason, R. P., Libby, P., Steg, P. G. & Bhatt, D. L. Do patients benefit from omega-3 fatty acids. Cardiovasc. Res. 119, 2884–2901 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yokoyama, M. et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369, 1090–1098 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Miyauchi, K. et al. Randomized trial for evaluation in secondary prevention efficacy of combination therapy-statin and eicosapentaenoic acid (RESPECT-EPA). Circulation 150, 425–434 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Hariri, M. et al. Does omega-3 fatty acids supplementation affect circulating leptin levels? A systematic review and meta-analysis on randomized controlled clinical trials. Clin. Endocrinol. 82, 221–228 (2015).

    Article  CAS  Google Scholar 

  135. Zhang, Y. Y., Liu, W., Zhao, T. Y. & Tian, H. M. Efficacy of omega-3 polyunsaturated fatty acids supplementation in managing overweight and obesity: a meta-analysis of randomized clinical trials. J. Nutr. Health Aging 21, 187–192 (2017).

    Article  PubMed  Google Scholar 

  136. Delpino, F. M., Figueiredo, L. M. & da Silva, B. G. C. Effects of omega-3 supplementation on body weight and body fat mass: a systematic review. Clin. Nutr. ESPEN 44, 122–129 (2021).

    Article  PubMed  Google Scholar 

  137. Barden, A. et al. Effect of weight loss on neutrophil resolvins in the metabolic syndrome. Prostaglandins Leukot. Essent. Fat. Acids 148, 25–29 (2019).

    Article  CAS  Google Scholar 

  138. Bakker, N. et al. Oral omega-3 PUFA supplementation modulates inflammation in adipose tissue depots in morbidly obese women: a randomized trial. Nutrition 111, 112055 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Titos, E. et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J. Immunol. 187, 5408–5418 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Gemperle, C. et al. Resolvin D1 reduces inflammation in co-cultures of primary human macrophages and adipocytes by triggering macrophages. Prostaglandins Leukot. Essent. Fat. Acids 174, 102363 (2021).

    Article  CAS  Google Scholar 

  141. Hellmann, J., Tang, Y., Kosuri, M., Bhatnagar, A. & Spite, M. Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J. 25, 2399–2407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pal, A. et al. Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB J. 34, 10640–10656 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Shimizu, T. et al. Resolvin E3 ameliorates high-fat diet-induced insulin resistance via the phosphatidylinositol-3-kinase/Akt signaling pathway in adipocytes. FASEB J. 36, e22188 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Sima, C. et al. ERV1 overexpression in myeloid cells protects against high fat diet induced obesity and glucose intolerance. Sci. Rep. 7, 12848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Trilleaud, C. et al. Agonist anti-ChemR23 mAb reduces tissue neutrophil accumulation and triggers chronic inflammation resolution. Sci. Adv. 7, eabd1453 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Laguna-Fernandez, A. et al. ERV1/ChemR23 signaling protects against atherosclerosis by modifying oxidized low-density lipoprotein uptake and phagocytosis in macrophages. Circulation 138, 1693–1705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jung, T. W., Chung, Y. H., Kim, H. C., Abd El-Aty, A. M. & Jeong, J. H. Protectin DX attenuates LPS-induced inflammation and insulin resistance in adipocytes via AMPK-mediated suppression of the NF-κB pathway. Am. J. Physiol. Endocrinol. Metab. 315, E543–E551 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Martinez-Fernandez, L. et al. Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and diet-induced obese mice. FASEB J. 31, 2135–2145 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Martinez-Fernandez, L. et al. Maresin 1 regulates insulin signaling in human adipocytes as well as in adipose tissue and muscle of lean and obese mice. J. Physiol. Biochem. 77, 167–173 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Laiglesia, L. M. et al. Maresin 1 inhibits TNF-alpha-induced lipolysis and autophagy in 3T3-L1 adipocytes. J. Cell Physiol. 233, 2238–2246 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Martinez-Fernandez, L. et al. Maresin 1 exerts a tissue-specific regulation of adipo-hepato-myokines in diet-induced obese mice and modulates adipokine expression in cultured human adipocytes in basal and inflammatory conditions. Biomolecules 13, 919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Sugimoto, S. et al. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat. Metab. 4, 775–790 (2022). This study highlights that the synthesis of maresins in brown adipose tissue can be induced in response to cold exposure, resulting in the subsequent stimulation of inflammatory resolution pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Felix-Soriano, E. et al. Changes in brown adipose tissue lipid mediator signatures with aging, obesity, and DHA supplementation in female mice. FASEB J. 35, e21592 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Laiglesia, L. M. et al. Maresin 1 activates brown adipose tissue and promotes browning of white adipose tissue in mice. Mol. Metab. 74, 101749 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao, Z. et al. CMKLR1 senses chemerin/resolvin E1 to control adipose thermogenesis and modulate metabolic homeostasis. Fundam. Res. 4, 575–588 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kristof, E. et al. Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp. Cell Res. 377, 47–55 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Wang, Q., Jin, F., Zhang, J., Li, Z. & Yu, D. Lipoxin A4 promotes adipogenic differentiation and browning of mouse embryonic fibroblasts. Vitr. Cell Dev. Biol. Anim. 57, 953–961 (2021).

    Article  CAS  Google Scholar 

  159. Goetz, L. H. & Schork, N. J. Personalized medicine: motivation, challenges, and progress. Fertil. Steril. 109, 952–963 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Morgan, P. et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat. Rev. Drug Discov. 17, 167–181 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Miner, J. J. & Fitzgerald, K. A. A path towards personalized medicine for autoinflammatory and related diseases. Nat. Rev. Rheumatol. 19, 182–189 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Toro-Dominguez, D. & Alarcon-Riquelme, M. E. Precision medicine in autoimmune diseases: fact or fiction. Rheumatology 60, 3977–3985 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Passaro, A. et al. Cancer biomarkers: emerging trends and clinical implications for personalized treatment. Cell 187, 1617–1635 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sethi, Y. et al. Precision medicine and the future of cardiovascular diseases: a clinically oriented comprehensive review. J. Clin. Med. 12, 1799 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Buckler, A. J. et al. Virtual transcriptomics: noninvasive phenotyping of atherosclerosis by decoding plaque biology from computed tomography angiography imaging. Arterioscler. Thromb. Vasc. Biol. 41, 1738–1750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Buckler, A. J. et al. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput. Biol. Med. 152, 106364 (2023).

    Article  CAS  PubMed  Google Scholar 

  167. DeGroat, W. et al. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci. Rep. 14, 1 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ridker, P. M. et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 391, 319–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. Al-Shaer, A. E. et al. Modeling human heterogeneity of obesity with diversity outbred mice reveals a fat mass-dependent therapeutic window for resolvin E1. FASEB J. 36, e22354 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Saraswathi, V., Heineman, R., Alnouti, Y., Shivaswamy, V. & Desouza, C. V. A combination of omega-3 PUFAs and COX inhibitors: a novel strategy to manage obesity-linked dyslipidemia and adipose tissue inflammation. J. Diabetes Complicat. 34, 107494 (2020).

    Article  Google Scholar 

  171. Yin, S. et al. Effect of α-linolenic acid supplementation on cardiovascular disease risk profile in individuals with obesity or overweight: a systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 14, 1644–1655 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Moosavian, S. P., Arab, A., Mehrabani, S., Moradi, S. & Nasirian, M. The effect of omega-3 and vitamin E on oxidative stress and inflammation: systematic review and meta-analysis of randomized controlled trials. Int. J. Vitam. Nutr. Res. 90, 553–563 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Musazadeh, V. et al. Can omega-3 fatty acids and vitamin E co-supplementation affect obesity indices? Int. J. Vitam. Nutr. Res. 93, 471–480 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Al-Shaer, A. E., Buddenbaum, N. & Shaikh, S. R. Polyunsaturated fatty acids, specialized pro-resolving mediators, and targeting inflammation resolution in the age of precision nutrition. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 158936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kraft, J. D. et al. Lipoxins modulate neutrophil oxidative burst, integrin expression and lymphatic transmigration differentially in human health and atherosclerosis. FASEB J. 36, e22173 (2022). This study shows that, in humans, lipoxins regulate neutrophil oxidative burst and the activation of the CD11b–CD18 integrin (which has a central role in clot activation and atherosclerosis), and it highlights the potential effects of lipoxins on thrombus formation in individuals with atherosclerosis.

    Article  CAS  PubMed  Google Scholar 

  176. Borgeson, E. et al. Lipoxin A4 inhibits Porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil-platelet interaction and CD11b expression. Infect. Immun. 79, 1489–1497 (2011). This manuscript demonstrates the mechanism underlying lipoxin-mediated attenuation of the aggregation of platelets and leukocytes, and resulting reactive oxygen species production, in human whole blood.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. de Gaetano, G., Cerletti, C. & Evangelista, V. Recent advances in platelet-polymorphonuclear leukocyte interaction. Haemostasis 29, 41–49 (1999).

    PubMed  Google Scholar 

  178. Blaho, V. A., Buczynski, M. W., Brown, C. R. & Dennis, E. A. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J. Biol. Chem. 284, 21599–21612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chan, M. M. & Moore, A. R. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J. Immunol. 184, 6418–6426 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Loynes, C. A. et al. PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Sci. Adv. 4, eaar8320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schmid, T. & Brune, B. Prostanoids and resolution of inflammation — beyond the lipid-mediator class switch. Front. Immunol. 12, 714042 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Elajami, T. K. et al. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 30, 2792–2801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gomez, D. et al. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat. Med. 24, 1418–1429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hellmann, J. et al. Biosynthesis of D-series resolvins in skin provides insights into their role in tissue repair. J. Invest. Dermatol. 138, 2051–2060 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Higgins, G. et al. Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 51, 178–190 (2014).

    Article  PubMed  Google Scholar 

  186. Borgeson, E. et al. Lipoxin A4 and benzo-lipoxin A4 attenuate experimental renal fibrosis. FASEB J. 25, 2967–2979 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Dormandy, J. A. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366, 1279–1289 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. Delgado-Lista, J. et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet 399, 1876–1885 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Jangsiripornpakorn, J. et al. The glucose-lowering effect of low-dose diacerein and its responsiveness metabolic markers in uncontrolled diabetes. BMC Res. Notes 15, 91 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Schebb, N. H. et al. Formation, signaling and occurrence of specialized pro-resolving lipid mediators — what is the evidence so far? Front. Pharmacol. 13, 838782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Skarke, C. et al. Bioactive products formed in humans from fish oils. J. Lipid Res. 56, 1808–1820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Witting, M. et al. Challenges and perspectives for naming lipids in the context of lipidomics. Metabolomics 20, 15 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hasanzad, M. et al. Precision medicine journey through omics approach. J. Diabetes Metab. Disord. 21, 881–888 (2022).

    Article  PubMed  Google Scholar 

  194. Vande Walle, L. & Lamkanfi, M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat. Rev. Drug Discov. 23, 43–66 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of E.B. is supported by the European Research Council (ERC-StG no. 804418), Independent Research Fund Denmark (DFF number 3165-00026B), Aarhus University Research Foundation (AUFF-E-2022-7-8), Novo Nordisk Foundation (NNF22OC0079363), the Swedish Research Council (VR 2023-02627), the Swedish state’s ALF-agreement (ALFGBG-978978), and Regionala FoU-medel Västra Götalandsregionen (OLG-2023-02-22). The authors thank S. Tavajoh and A. Harazin for their valuable input while assembling the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Emma Börgeson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Mauro Perretti, who co-reviewed with Jianmin Chen, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soták, M., Clark, M., Suur, B.E. et al. Inflammation and resolution in obesity. Nat Rev Endocrinol 21, 45–61 (2025). https://doi.org/10.1038/s41574-024-01047-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-024-01047-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research