Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polycystic ovary syndrome as a metabolic disease

Abstract

Polycystic ovary syndrome (PCOS) is a heterogeneous familial disorder affecting up to one in five women. The aetiology remains unclear, but available evidence suggests it is a polygenic disorder with epigenetic, developmental, and environmental components. The diagnostic criteria for PCOS are based on reproductive features, and the syndrome is categorized into several phenotypes that can vary by race and ethnicity. Insulin resistance and metabolic dysfunction have a crucial role in the pathogenesis of the syndrome and contribute to many adverse metabolic outcomes that place a substantial burden on the health of women with PCOS across their lifespan. Metabolic abnormalities like those identified in women with PCOS are also present in their female and male first-degree relatives. Overall, more emphasis is required on defining PCOS as a metabolic disorder in addition to a reproductive one. This approach could affect the management and future treatment options for the syndrome. The rationale of the current review is to identify and analyse existing evidence for PCOS as a metabolic, as well as a reproductive, disease.

Key points

  • Beyond reproductive features, polycystic ovary syndrome (PCOS) is associated with an increased prevalence of several metabolic abnormalities, some of which are also observed in the first-degree relatives of women with PCOS.

  • Insulin resistance and compensatory hyperinsulinaemia, intrinsic to PCOS and exacerbated by obesity, are major drivers of metabolic complications and strong determinants of reproductive dysfunction and hyperandrogenaemia in affected women.

  • The clinical presentation of PCOS is heterogeneous and can be categorized into several phenotypes that can vary by life stage, race and/or ethnicity and degree of adiposity.

  • Cluster analysis suggests that there are reproducible reproductive and metabolic PCOS subtypes with distinct genetic architecture, which cannot be identified by the current diagnostic criteria.

  • With advances in omics-based studies and artificial intelligence-based methods, it might be possible to classify women with PCOS into subgroups that correlate with the clinical severity and identify those at high risk of long-term metabolic complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of PCOS.
Fig. 2: Adipose tissue dysfunction in PCOS.
Fig. 3: Metabolic dysfunction in PCOS phenotypes.

Similar content being viewed by others

References

  1. Lizneva, D. et al. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil. Steril. 106, 6–15 (2016).

    PubMed  Google Scholar 

  2. Bozdag, G., Mumusoglu, S., Zengin, D., Karabulut, E. & Yildiz, B. O. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. 31, 2841–2855 (2016).

    PubMed  Google Scholar 

  3. Azziz, R. et al. Polycystic ovary syndrome. Nat. Rev. Dis. Prim. 2, 16057 (2016).

    PubMed  Google Scholar 

  4. Riestenberg, C., Jagasia, A., Markovic, D., Buyalos, R. P. & Azziz, R. Health care-related economic burden of polycystic ovary syndrome in the United States: pregnancy-related and long-term health consequences. J. Clin. Endocrinol. Metab. 107, 575–585 (2022).

    PubMed  Google Scholar 

  5. Ruddenklau, A. & Campbell, R. E. Neuroendocrine impairments of polycystic ovary syndrome. Endocrinology 160, 2230–2242 (2019).

    PubMed  CAS  Google Scholar 

  6. Moore, A. M. Impaired steroid hormone feedback in polycystic ovary syndrome: evidence from preclinical models for abnormalities within central circuits controlling fertility. Clin. Endocrinol. 97, 199–207 (2022).

    CAS  Google Scholar 

  7. Garg, A., Patel, B., Abbara, A. & Dhillo, W. S. Treatments targeting neuroendocrine dysfunction in polycystic ovary syndrome (PCOS). Clin. Endocrinol. 97, 156–164 (2022).

    CAS  Google Scholar 

  8. Cimino, I. et al. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat. Commun. 7, 10055 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Dewailly, D., Barbotin, A. L., Dumont, A., Catteau-Jonard, S. & Robin, G. Role of anti-Müllerian hormone in the pathogenesis of polycystic ovary syndrome. Front. Endocrinol. 11, 641 (2020).

    Google Scholar 

  10. Cassar, S. et al. Insulin resistance in polycystic ovary syndrome: a systematic review and meta-analysis of euglycaemic-hyperinsulinaemic clamp studies. Hum. Reprod. 31, 2619–2631 (2016).

    PubMed  CAS  Google Scholar 

  11. Tosi, F., Bonora, E. & Moghetti, P. Insulin resistance in a large cohort of women with polycystic ovary syndrome: a comparison between euglycaemic-hyperinsulinaemic clamp and surrogate indexes. Hum. Reprod. 32, 2515–2521 (2017).

    PubMed  CAS  Google Scholar 

  12. Diamanti-Kandarakis, E. & Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33, 981–1030 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Zhao, H., Zhang, J., Cheng, X., Nie, X. & He, B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J. Ovarian Res. 16, 9 (2023).

    PubMed  PubMed Central  Google Scholar 

  14. Angelidi, A. M., Filippaios, A. & Mantzoros, C. S. Severe insulin resistance syndromes. J. Clin. Invest. 131, e142245 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Lungu, A. O., Zadeh, E. S., Goodling, A., Cochran, E. & Gorden, P. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 97, 563–567 (2012).

    PubMed  CAS  Google Scholar 

  16. Malek, M. et al. Treatment of type B insulin resistance: a novel approach to reduce insulin receptor autoantibodies. J. Clin. Endocrinol. Metab. 95, 3641–3647 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Long, C. et al. Prevalence of polycystic ovary syndrome in patients with type 2 diabetes: a systematic review and meta-analysis. Front. Endocrinol. 13, 980405 (2022).

    Google Scholar 

  18. Bayona, A. et al. Prevalence of PCOS and related hyperandrogenic traits in premenopausal women with type 1 diabetes: a systematic review and meta-analysis. Hum. Reprod. Update 28, 501–517 (2022).

    PubMed  CAS  Google Scholar 

  19. Kataoka, J. et al. Prevalence of polycystic ovary syndrome in women with severe obesity – effects of a structured weight loss programme. Clin. Endocrinol. 91, 750–758 (2019).

    CAS  Google Scholar 

  20. Teede, H. et al. International evidence-based guideline for the assessment and management of polycystic ovary syndrome 2023. Monash.edu www.monash.edu/__data/assets/pdf_file/0003/3379521/Evidence-Based-Guidelines-2023.pdf (2023).

  21. Brothers, K. J. et al. Rescue of obesity-induced infertility in female mice due to a pituitary-specific knockout of the insulin receptor. Cell Metab. 12, 295–305 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu, C. et al. High-fat and high-sucrose diet impairs female reproduction by altering ovarian transcriptomic and metabolic signatures. J. Transl. Med. 22, 145 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Wu, S. et al. Obesity-induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabetes 63, 1270–1282 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Franks, S., Stark, J. & Hardy, K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod. Update 14, 367–378 (2008).

    PubMed  CAS  Google Scholar 

  25. Barber, T. M. et al. Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 999–1004 (2008).

    PubMed  CAS  Google Scholar 

  26. Mannerås-Holm, L. et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 96, E304–E311 (2011).

    PubMed  Google Scholar 

  27. Zhu, S. et al. Imaging-based body fat distribution in polycystic ovary syndrome: a systematic review and meta-analysis. Front. Endocrinol. 12, 697223 (2021).

    Google Scholar 

  28. Bril, F. et al. Adipose tissue dysfunction in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 109, 10–24 (2023).

    PubMed  PubMed Central  Google Scholar 

  29. Ezeh, U., Chen, I. Y. D., Chen, Y. H. & Azziz, R. Adipocyte expression of glucose transporter 1 and 4 in PCOS: relationship to insulin-mediated and non-insulin-mediated whole-body glucose uptake. Clin. Endocrinol. 90, 542–552 (2019).

    CAS  Google Scholar 

  30. Ezeh, U. et al. Alterations in plasma non-esterified fatty acid (NEFA) kinetics and relationship with insulin resistance in polycystic ovary syndrome. Hum. Reprod. 34, 335–344 (2019).

    PubMed  CAS  Google Scholar 

  31. Ezeh, U., Chen, I. Y. D., Chen, Y. H. & Azziz, R. Adipocyte insulin resistance in PCOS: relationship with GLUT-4 expression and whole-body glucose disposal and β-cell function. J. Clin. Endocrinol. Metab. 105, e2408–e2420 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. Dumesic, D. A. et al. Adipose insulin resistance in normal-weight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 104, 2171–2183 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Echiburú, B. et al. Enlarged adipocytes in subcutaneous adipose tissue associated to hyperandrogenism and visceral adipose tissue volume in women with polycystic ovary syndrome. Steroids 130, 15–21 (2018).

    PubMed  Google Scholar 

  34. Chazenbalk, G. et al. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids 78, 920–926 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Blouin, K. et al. Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women. Clin. Endocrinol. 72, 176–188 (2010).

    CAS  Google Scholar 

  36. Dumesic, D. A., Padmanabhan, V., Chazenbalk, G. D. & Abbott, D. H. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod. Biol. Endocrinol. 20, 12 (2022).

    PubMed  PubMed Central  Google Scholar 

  37. O’Reilly, M. W. et al. AKR1C3-mediated adipose androgen generation drives lipotoxicity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102, 3327–3339 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Raeisi, T. et al. Circulating resistin and follistatin levels in obese and non-obese women with polycystic ovary syndrome: a systematic review and meta-analysis. PLoS ONE 16, e0246200 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Lin, K., Sun, X., Wang, X., Wang, H. & Chen, X. Circulating adipokine levels in nonobese women with polycystic ovary syndrome and in nonobese control women: a systematic review and meta-analysis. Front. Endocrinol. 11, 537809 (2021).

    Google Scholar 

  40. Livadas, S. et al. Prevalence and impact of hyperandrogenemia in 1,218 women with polycystic ovary syndrome. Endocrine 47, 631–638 (2014).

    PubMed  CAS  Google Scholar 

  41. Huang, A., Brennan, K. & Azziz, R. Prevalence of hyperandrogenemia in the polycystic ovary syndrome diagnosed by the National Institutes of Health 1990 criteria. Fertil. Steril. 93, 1938–1941 (2010).

    PubMed  Google Scholar 

  42. Rosenfield, R. L. & Ehrmann, D. A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 37, 467–520 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Sanchez-Garrido, M. A. & Tena-Sempere, M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol. Metab. 35, 100937 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Escobar-Morreale, H. F. The role of androgen excess in metabolic dysfunction in women: androgen excess and female metabolic dysfunction. Adv. Exp. Med. Biol. 1043, 597–608 (2017).

    PubMed  CAS  Google Scholar 

  45. Aboeldalyl, S. et al. The role of chronic inflammation in polycystic ovarian syndrome–a systematic review and meta-analysis. Int. J. Mol. Sci. 22, 2734 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Huang, Z. H. et al. PCOS is associated with increased CD11c expression and crown-like structures in adipose tissue and increased central abdominal fat depots independent of obesity. J. Clin. Endocrinol. Metab. 98, E17–E24 (2013).

    PubMed  CAS  Google Scholar 

  47. Sengupta, P., Dutta, S. & Fallah Hassan, M. Polycystic ovary syndrome (PCOS) and oxidative stress. J. Integr. Sci. Technol. 12, 752–752 (2024).

    Google Scholar 

  48. Bhattacharya, K. et al. Polycystic ovary syndrome and its management: in view of oxidative stress. Biomol. Concepts 15 https://doi.org/10.1515/bmc-2022-0038 (2024).

  49. Lewis, R. D., Narayanaswamy, A. K., Farewell, D. & Rees, D. A. Complement activation in polycystic ovary syndrome occurs in the postprandial and fasted state and is influenced by obesity and insulin sensitivity. Clin. Endocrinol. 94, 74–84 (2021).

    CAS  Google Scholar 

  50. Butler, A. E., Moin, A. S. M., Sathyapalan, T. & Atkin, S. L. Components of the complement cascade differ in polycystic ovary syndrome. Int. J. Mol. Sci. 23, 12232 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Butler, A. E., Moin, A. S. M., Sathyapalan, T. & Atkin, S. L. Complement dysregulation in obese versus nonobese polycystic ovary syndrome patients. Cells 12, 2002 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Zawadzki, J. K. & Dunaif, A. in Polycystic Ovary Syndrome (eds Dunaif, A., Givens, J. R. & Haseltine, F.) 377–384 (Blackwell, 1992).

  53. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25 (2004).

    Google Scholar 

  54. Azziz, R. et al. The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertil. Steril. 91, 456–488 (2009).

    PubMed  Google Scholar 

  55. Day, F. et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 14, e1007813 (2018). This large-scale meta-analysis of genome-wide association studies in women with PCOS shows a similar underlying genetic architecture of PCOS phenotypes regardless of the diagnostic criteria used.

    PubMed  PubMed Central  Google Scholar 

  56. Joo, Y. Y. et al. A polygenic and phenotypic risk prediction for polycystic ovary syndrome evaluated by phenome-wide association studies. J. Clin. Endocrinol. Metab. 105, 1918–1936 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Daan, N. M. P. et al. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk? Fertil. Steril. 102, 1444–1451 (2014).

    PubMed  Google Scholar 

  58. Guastella, E., Longo, R. A. & Carmina, E. Clinical and endocrine characteristics of the main polycystic ovary syndrome phenotypes. Fertil. Steril. 94, 2197–2201 (2010).

    PubMed  CAS  Google Scholar 

  59. Moghetti, P. et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 98, E628–E637 (2013).

    PubMed  CAS  Google Scholar 

  60. Panidis, D. et al. Insulin resistance and endocrine characteristics of the different phenotypes of polycystic ovary syndrome: a prospective study. Hum. Reprod. 27, 541–549 (2012).

    PubMed  CAS  Google Scholar 

  61. Moran, L. & Teede, H. Metabolic features of the reproductive phenotypes of polycystic ovary syndrome. Hum. Reprod. Update 15, 477–488 (2009).

    PubMed  CAS  Google Scholar 

  62. Stepto, N. K. et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 28, 777–784 (2013). This study demonstrates the increased prevalence of insulin resistance even in lean women with PCOS, supporting the view that intrinsic insulin resistance is associated with the syndrome.

    PubMed  CAS  Google Scholar 

  63. Diamanti-Kandarakis, E. & Panidis, D. Unravelling the phenotypic map of polycystic ovary syndrome (PCOS): a prospective study of 634 women with PCOS. Clin. Endocrinol. 67, 735–742 (2007).

    CAS  Google Scholar 

  64. Wiltgen, D. & Spritzer, P. M. Variation in metabolic and cardiovascular risk in women with different polycystic ovary syndrome phenotypes. Fertil. Steril. 94, 2493–2496 (2010).

    PubMed  Google Scholar 

  65. Carmina, E. & Lobo, R. A. Comparing lean and obese PCOS in different PCOS phenotypes: evidence that the body weight is more important than the Rotterdam phenotype in influencing the metabolic status. Diagnostics 12, 2313 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Rajska, A., Buszewska-Forajta, M., Rachoń, D. & Markuszewski, M. J. Metabolomic insight into polycystic ovary syndrome – an overview. Int. J. Mol. Sci. 21, 4853 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Insenser, M. & Escobar-Morreale, H. F. Androgen excess in women: proteomic and metabolomic approaches. Front. Horm. Res. 53, 162–176 (2019).

    PubMed  CAS  Google Scholar 

  68. Chen, B., Xu, P., Wang, J. & Zhang, C. The role of miRNA in polycystic ovary syndrome (PCOS). Gene 706, 91–96 (2019).

    PubMed  CAS  Google Scholar 

  69. Lizneva, D. et al. Phenotypes and body mass in women with polycystic ovary syndrome identified in referral versus unselected populations: systematic review and meta-analysis. Fertil. Steril. 106, 1510–1520 (2016).

    PubMed  Google Scholar 

  70. Sendur, S. N. & Yildiz, B. O. Influence of ethnicity on different aspects of polycystic ovary syndrome: a systematic review. Reprod. Biomed. Online 42, 799–818 (2021).

    PubMed  CAS  Google Scholar 

  71. VanHise, K. et al. Racial and ethnic disparities in polycystic ovary syndrome. Fertil. Steril. 119, 348–354 (2023).

    PubMed  PubMed Central  Google Scholar 

  72. Kazemi, M. et al. Comprehensive evaluation of disparities in cardiometabolic and reproductive risk between Hispanic and White women with polycystic ovary syndrome in the United States: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 226, 187–204 (2022).

    PubMed  Google Scholar 

  73. Lee, I., Vresilovic, J., Irfan, M., Gallop, R. & Dokras, A. Higher incidence of metabolic syndrome in black women with polycystic ovary syndrome: a longitudinal study. J. Clin. Endocrinol. Metab. 107, E1558–E1567 (2022).

    PubMed  Google Scholar 

  74. Chan, J. L. et al. Racial and ethnic differences in the prevalence of metabolic syndrome and its components of metabolic syndrome in women with polycystic ovary syndrome: a regional cross-sectional study. Am. J. Obstet. Gynecol. 217, 189.e1–189.e8 (2017).

    PubMed  Google Scholar 

  75. Ezeh, U., Ida Chen, Y. D. & Azziz, R. Racial and ethnic differences in the metabolic response of polycystic ovary syndrome. Clin. Endocrinol. 93, 163–172 (2020).

    CAS  Google Scholar 

  76. Lo, J. C. et al. Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 91, 1357–1363 (2006).

    PubMed  CAS  Google Scholar 

  77. Lofton, H., Ard, J. D., Hunt, R. R. & Knight, M. G. Obesity among African American people in the United States: a review. Obesity 31, 306–315 (2023).

    PubMed  Google Scholar 

  78. Hyatt, T. C. et al. Insulin sensitivity in African-American and white women: association with inflammation. Obesity 17, 276–282 (2009).

    PubMed  CAS  Google Scholar 

  79. Allister-Price, C., Craig, C. M., Spielman, D., Cushman, S. S. & McLaughlin, T. L. Metabolic markers, regional adiposity, and adipose cell size: relationship to insulin resistance in African-American as compared with Caucasian women. Int. J. Obes. 43, 1164–1173 (2019).

    CAS  Google Scholar 

  80. Armiyaw, L., Sarcone, C., Fosam, A. & Muniyappa, R. Increased β-cell responsivity independent of insulin sensitivity in healthy African American adults. J. Clin. Endocrinol. Metab. 105, e2429–e2438 (2020).

    PubMed  PubMed Central  Google Scholar 

  81. Chung, S. T. et al. Postprandial insulin response and clearance among black and white women: the Federal Women’s Study. J. Clin. Endocrinol. Metab. 104, 181–192 (2019).

    PubMed  Google Scholar 

  82. Inaishi, J. & Saisho, Y. Ethnic similarities and differences in the relationship between beta cell mass and diabetes. J. Clin. Med. 6, 113 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Ibáñez, L. et al. An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr. 88, 371–395 (2017).

    PubMed  Google Scholar 

  84. Cree-Green, M. et al. Insulin resistance, hyperinsulinemia, and mitochondria dysfunction in nonobese girls with polycystic ovarian syndrome. J. Endocr. Soc. 1, 931–944 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Winters, S. J., Talbott, E., Guzick, D. S., Zborowski, J. & McHugh, K. P. Serum testosterone levels decrease in middle age in women with the polycystic ovary syndrome. Fertil. Steril. 73, 724–729 (2000).

    PubMed  CAS  Google Scholar 

  86. Alsamarai, S. et al. Criteria for polycystic ovarian morphology in polycystic ovary syndrome as a function of age. J. Clin. Endocrinol. Metab. 94, 4961–4970 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Elting, M. W., Korsen, T. J. M., Rekers-Mombarg, L. T. M. & Schoemaker, J. Women with polycystic ovary syndrome gain regular menstrual cycles when ageing. Hum. Reprod. 15, 24–28 (2000).

    PubMed  CAS  Google Scholar 

  88. Jacewicz-święcka, M., Wołczyński, S. & Kowalska, I. The effect of ageing on clinical, hormonal and sonographic features associated with PCOS – a long-term follow-up study. J. Clin. Med. 10, 2101 (2021).

    PubMed  PubMed Central  Google Scholar 

  89. van Keizerswaard, J., Dietz de Loos, A. L. P., Louwers, Y. V. & Laven, J. S. E. Changes in individual polycystic ovary syndrome phenotypical characteristics over time: a long-term follow-up study. Fertil. Steril. 117, 1059–1066 (2022). This long-term follow-up study provides evidence for the changes in the prevalence of PCOS phenotypes over time.

    PubMed  Google Scholar 

  90. Millán-de-Meer, M., Luque-Ramírez, M., Nattero-Chávez, L. & Escobar-Morreale, H. F. PCOS during the menopausal transition and after menopause: a systematic review and meta-analysis. Hum. Reprod. Update 29, 741–772 (2023).

    PubMed  Google Scholar 

  91. Behboudi-Gandevani, S. et al. Cardiometabolic risks in polycystic ovary syndrome: long-term population-based follow-up study. Fertil. Steril. 110, 1377–1386 (2018).

    PubMed  Google Scholar 

  92. Kazemi Jaliseh, H. et al. Polycystic ovary syndrome is a risk factor for diabetes and prediabetes in middle-aged but not elderly women: a long-term population-based follow-up study. Fertil. Steril. 108, 1078–1084 (2017).

    PubMed  Google Scholar 

  93. Polotsky, A. J. et al. Hyperandrogenic oligomenorrhea and metabolic risks across menopausal transition. J. Clin. Endocrinol. Metab. 99, 2120–2127 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Aksun, S. et al. Alterations of cardiometabolic risk profile in polycystic ovary syndrome: 13 years follow-up in an unselected population. J. Endocrinol. Invest. 47, 1129–1137 (2023).

    PubMed  Google Scholar 

  95. Vink, J. M., Sadrzadeh, S., Lambalk, C. B. & Boomsma, D. I. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J. Clin. Endocrinol. Metab. 91, 2100–2104 (2006).

    PubMed  CAS  Google Scholar 

  96. Dapas, M. & Dunaif, A. Deconstructing a syndrome: genomic insights into PCOS causal mechanisms and classification. Endocr. Rev. 43, 927–965 (2022).

    PubMed  PubMed Central  Google Scholar 

  97. Dapas, M. et al. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: an unsupervised, phenotypic clustering analysis. PLoS Med. 17, e1003132 (2020). Using unsupervised cluster analysis in a genotyped cohort of women with PCOS, this study reveals reproducible reproductive and metabolic subtypes of PCOS with distinct genetic architecture.

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Stener-Victorin, E. & Deng, Q. Epigenetic inheritance of polycystic ovary syndrome – challenges and opportunities for treatment. Nat. Rev. Endocrinol. 17, 521–533 (2021).

    PubMed  Google Scholar 

  99. Risal, S. et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat. Med. 25, 1894–1904 (2019).

    PubMed  CAS  Google Scholar 

  100. Lim, S. S., Davies, M. J., Norman, R. J. & Moran, L. J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum. Reprod. Update 18, 618–637 (2012).

    PubMed  CAS  Google Scholar 

  101. Yildiz, B. O. Polycystic ovary syndrome: is obesity a symptom? Women’s Health 9, 505–507 (2013).

    PubMed  CAS  Google Scholar 

  102. Azziz, R. et al. The prevalence and features of the polycystic ovary syndrome in an unselected population. J. Clin. Endocrinol. Metab. 89, 2745–2749 (2004).

    PubMed  CAS  Google Scholar 

  103. Asunción, M. et al. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J. Clin. Endocrinol. Metab. 85, 2434–2438 (2000).

    PubMed  Google Scholar 

  104. Kumarapeli, V., Seneviratne, R. D. A., Wijeyaratne, C. N., Yapa, R. M. S. C. & Dodampahala, S. H. A simple screening approach for assessing community prevalence and phenotype of polycystic ovary syndrome in a semi-urban population in Sri Lanka. Am. J. Epidemiol. 168, 321–328 (2008).

    PubMed  CAS  Google Scholar 

  105. Yildiz, B. O., Knochenhauer, E. S. & Azziz, R. Impact of obesity on the risk for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 162–168 (2008).

    PubMed  CAS  Google Scholar 

  106. Yildiz, B. O., Bozdag, G., Yapici, Z., Esinler, I. & Yarali, H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum. Reprod. 27, 3067–3073 (2012). This study highlights the risk of metabolic syndrome in different PCOS phenotypes in an unselected, medically unbiased population.

    PubMed  Google Scholar 

  107. Escobar-Morreale, H. F., Santacruz, E., Luque-Ramírez, M. & Carretero, J. I. B. Prevalence of ‘obesity-associated gonadal dysfunction’ in severely obese men and women and its resolution after bariatric surgery: a systematic review and meta-analysis. Hum. Reprod. Update 23, 390–408 (2017).

    PubMed  CAS  Google Scholar 

  108. Koivuaho, E. et al. Age at adiposity rebound in childhood is associated with PCOS diagnosis and obesity in adulthood – longitudinal analysis of BMI data from birth to age 46 in cases of PCOS. Int. J. Obes. 43, 1370–1379 (2019).

    CAS  Google Scholar 

  109. Ollila, M. M. E. et al. Weight gain and dyslipidemia in early adulthood associate with polycystic ovary syndrome: prospective cohort study. J. Clin. Endocrinol. Metab. 101, 739–747 (2016).

    PubMed  CAS  Google Scholar 

  110. Brower, M. A. et al. Bidirectional Mendelian randomization to explore the causal relationships between body mass index and polycystic ovary syndrome. Hum. Reprod. 34, 127–136 (2019).

    PubMed  CAS  Google Scholar 

  111. Zhao, Y. et al. Body mass index and polycystic ovary syndrome: a 2-sample bidirectional mendelian randomization study. J. Clin. Endocrinol. Metab. 105, 1778–1784 (2020).

    Google Scholar 

  112. Liu, Q. et al. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: a large-scale genome-wide cross-trait analysis. BMC Med. 20, 66 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Lim, S. S., Norman, R. J., Davies, M. J. & Moran, L. J. The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes. Rev. 14, 95–109 (2013).

    PubMed  CAS  Google Scholar 

  114. Zhang, L. et al. Impact of body mass index on assisted reproductive technology outcomes in patients with polycystic ovary syndrome: a meta-analysis. Reprod. Biomed. Online 48, 103849 (2024).

    PubMed  CAS  Google Scholar 

  115. Glueck, C. J. & Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: etiology, treatment, and genetics. Metabolism 92, 108–120 (2019).

    PubMed  CAS  Google Scholar 

  116. Benham, J. L. et al. Impact of bariatric surgery on anthropometric, metabolic, and reproductive outcomes in polycystic ovary syndrome: a systematic review and meta-analysis. Obes. Rev. 25, e13737 (2024).

    PubMed  CAS  Google Scholar 

  117. Bhandari, M. et al. Effects of bariatric surgery on people with obesity and polycystic ovary syndrome: a large single center study from India. Obes. Surg. 32, 3305–3312 (2022).

    PubMed  Google Scholar 

  118. Samarasinghe, S. N. S. et al. Bariatric surgery for spontaneous ovulation in women living with polycystic ovary syndrome: the BAMBINI multicentre, open-label, randomised controlled trial. Lancet 403, 2489–2503 (2024).

    PubMed  Google Scholar 

  119. Benito, E. et al. Fertility and pregnancy outcomes in women with polycystic ovary syndrome following bariatric surgery. J. Clin. Endocrinol. Metab. 105, E3384–E3391 (2020).

    Google Scholar 

  120. Ehrmann, D. A. et al. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J. Clin. Invest. 96, 520–527 (1995). This study demonstrates β-cell dysfunction in women with PCOS in the absence of impaired glucose tolerance.

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Kakoly, N. S. et al. Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS: a systematic review and meta-regression. Hum. Reprod. Update 24, 455–467 (2018).

    PubMed  CAS  Google Scholar 

  122. Slopien, R. et al. Menopause and diabetes: EMAS clinical guide. Maturitas 117, 6–10 (2018).

    PubMed  CAS  Google Scholar 

  123. Anagnostis, P. et al. Risk of type 2 diabetes mellitus in polycystic ovary syndrome is associated with obesity: a meta-analysis of observational studies. Endocrine 74, 245–253 (2021).

    PubMed  CAS  Google Scholar 

  124. Wekker, V. et al. Long-term cardiometabolic disease risk in women with PCOS: a systematic review and meta-analysis. Hum. Reprod. Update 26, 942–960 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Ollila, M. M. E. et al. Overweight and obese but not normal weight women with PCOS are at increased risk of type 2 diabetes mellitus – a prospective, population-based cohort study. Hum. Reprod. 32, 423–431 (2017). This study provides long-term follow-up data on the risk of type 2 diabetes mellitus in women with PCOS.

    PubMed  PubMed Central  CAS  Google Scholar 

  126. Rubin, K. H., Glintborg, D., Nybo, M., Abrahamsen, B. & Andersen, M. Development and risk factors of type 2 diabetes in a nationwide population of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102, 3848–3857 (2017).

    PubMed  Google Scholar 

  127. Ryu, K. J. et al. Risk of type 2 diabetes is increased in nonobese women with polycystic ovary syndrome: the National Health Insurance Service–National Sample Cohort Study. Fertil. Steril. 115, 1569–1575 (2021).

    PubMed  Google Scholar 

  128. Zhu, T., Cui, J. & Goodarzi, M. O. Polycystic ovary syndrome and risk of type 2 diabetes, coronary heart disease, stroke. Diabetes 70, 627–637 (2021).

    PubMed  CAS  Google Scholar 

  129. Sweeting, A., Wong, J., Murphy, H. R. & Ross, G. P. A clinical update on gestational diabetes mellitus. Endocr. Rev. 43, 763–793 (2022).

    PubMed  PubMed Central  Google Scholar 

  130. Palomba, S. et al. Pregnancy complications in women with polycystic ovary syndrome. Hum. Reprod. Update 21, 575–592 (2015).

    PubMed  Google Scholar 

  131. Sha, T., Wang, X., Cheng, W. & Yan, Y. A meta-analysis of pregnancy-related outcomes and complications in women with polycystic ovary syndrome undergoing IVF. Reprod. Biomed. Online 39, 281–293 (2019).

    PubMed  Google Scholar 

  132. Yan, Q. et al. The incidence of gestational diabetes mellitus among women with polycystic ovary syndrome: a meta-analysis of longitudinal studies. BMC Pregnancy Childbirth 22, 370 (2022).

    PubMed  PubMed Central  Google Scholar 

  133. Legro, R. S., Kunselman, A. R. & Dunaif, A. Prevalence and predictors of dyslipidemia in women with polycystic ovary syndrome. Am. J. Med. 111, 607–613 (2001).

    PubMed  CAS  Google Scholar 

  134. Wild, R. A., Rizzo, M., Clifton, S. & Carmina, E. Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil. Steril. 95, 1073–1079 (2011).

    PubMed  CAS  Google Scholar 

  135. Roe, A. et al. Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS. J. Clin. Endocrinol. Metab. 99, E841–E847 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Alberti, K. G. M. M. et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; and international association for the study of obesity. Circulation 120, 1640–1645 (2009).

    PubMed  CAS  Google Scholar 

  137. Kakoly, N. S., Moran, L. J., Teede, H. J. & Joham, A. E. Cardiometabolic risks in PCOS: a review of the current state of knowledge. Expert. Rev. Endocrinol. Metab. 14, 23–33 (2019).

    PubMed  CAS  Google Scholar 

  138. Lim, S. S. et al. Metabolic syndrome in polycystic ovary syndrome: a systematic review, meta-analysis and meta-regression. Obes. Rev. 20, 339–352 (2019).

    PubMed  CAS  Google Scholar 

  139. Vernon, G., Baranova, A. & Younossi, Z. M. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 34, 274–285 (2011).

    PubMed  CAS  Google Scholar 

  140. Tziomalos, K., G. Athyros, V. & Karagiannis, A. Non-alcoholic fatty liver disease in type 2 diabetes: pathogenesis and treatment options. Curr. Vasc. Pharmacol. 10, 162–172 (2012).

    PubMed  CAS  Google Scholar 

  141. Kelley, C. E., Brown, A. J., Diehl, A. M. & Setji, T. L. Review of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. World J. Gastroenterol. 20, 14172–14184 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Falzarano, C. et al. Nonalcoholic fatty liver disease in women and girls with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 107, 258–272 (2022).

    PubMed  Google Scholar 

  143. Gomez, J. M. D. et al. Subclinical atherosclerosis and polycystic ovary syndrome. Fertil. Steril. 117, 912–923 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Mousa, A. et al. Polycystic ovary syndrome: Technical report for the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome, 2023. Monash.edu www.monash.edu/__data/assets/pdf_file/0010/3379591/TechnicalReport-2023.pdf (2023).

  145. Yilmaz, B., Vellanki, P., Ata, B. & Yildiz, B. O. Metabolic syndrome, hypertension, and hyperlipidemia in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil. Steril. 109, 356–364 (2018). This systematic review and meta-analysis provides compelling evidence of increased prevalence of metabolic syndrome, hypertension and dyslipidaemia in first-degree relatives of women with PCOS compared with the general population.

    PubMed  PubMed Central  Google Scholar 

  146. Yilmaz, B., Vellanki, P., Ata, B. & Yildiz, B. O. Diabetes mellitus and insulin resistance in mothers, fathers, sisters, and brothers of women with polycystic ovary syndrome: a systematic review and meta-analysis. Fertil. Steril. 110, 523–533 (2018). This meta-analysis provides quantitative evidence of the clustering of insulin resistance and type 2 diabetes mellitus in the parents and siblings of women with PCOS.

    PubMed  Google Scholar 

  147. Crisosto, N. et al. Reproductive and metabolic features during puberty in sons of women with polycystic ovary syndrome. Endocr. Connect. 6, 607–613 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Recabarren, S. E. et al. Metabolic profile in sons of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 93, 1820–1826 (2008).

    PubMed  CAS  Google Scholar 

  149. Zhu, J. et al. Evidence from men for ovary-independent effects of genetic risk factors for polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 107, E1577–E1587 (2022).

    PubMed  Google Scholar 

  150. Moolhuijsen, L. M. E. et al. Genomic and proteomic evidence for hormonal and metabolic foundations of polycystic ovary syndrome. Preprint at medRxiv https://doi.org/10.1101/2024.04.18.24306020 (2024).

  151. Yildiz, B. O., Yarali, H., Oguz, H. & Bayraktar, M. Glucose intolerance, insulin resistance, and hyperandrogenemia in first degree relatives of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 88, 2031–2036 (2003).

    PubMed  CAS  Google Scholar 

  152. Shan, D. et al. Reproductive health in first-degree relatives of patients with polycystic ovary syndrome: a review and meta-analysis. J. Clin. Endocrinol. Metab. 107, 273–295 (2022).

    PubMed  Google Scholar 

  153. Chang, S. & Dunaif, A. Diagnosis of polycystic ovary syndrome: which criteria to use and when? Endocrinol. Metab. Clin. North. Am. 50, 11–23 (2021).

    PubMed  PubMed Central  Google Scholar 

  154. Buchanan, T. A., Watanabe, R. M. & Xiang, A. H. Limitations in surrogate measures of insulin resistance. J. Clin. Endocrinol. Metab. 95, 4874–4876 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  155. Silva, I. S. et al. Polycystic ovary syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models. J. Endocrinol. Invest. 45, 497–505 (2022).

    PubMed  Google Scholar 

  156. Suha, S. A. & Islam, M. N. An extended machine learning technique for polycystic ovary syndrome detection using ovary ultrasound image. Sci. Rep. 12, 17123 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  157. Zhu, T. & Goodarzi, M. O. Causes and consequences of polycystic ovary syndrome: insights from mendelian randomization. J. Clin. Endocrinol. Metab. 107, E899–E911 (2022).

    PubMed  Google Scholar 

  158. Bastarache, L., Denny, J. C. & Roden, D. M. Phenome-wide association studies. JAMA 327, 75–76 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Bulent Okan Yildiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Anna Benrick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helvaci, N., Yildiz, B.O. Polycystic ovary syndrome as a metabolic disease. Nat Rev Endocrinol 21, 230–244 (2025). https://doi.org/10.1038/s41574-024-01057-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-024-01057-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing