Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetes mellitus and the key role of endoplasmic reticulum stress in pancreatic β cells

Abstract

Insufficient insulin secretion by pancreatic β cells is central to the pathogenesis of diabetes mellitus. As insulin is synthesized in the endoplasmic reticulum (ER), perturbations in ER homeostasis lead to ER stress and activate the ER stress response. Over the past two decades, considerable data have accumulated on the role of β cell ER stress in diabetes mellitus. Several monogenic forms of diabetes mellitus are caused by excessive ER stress, perturbed ER stress response signalling or impaired ER–Golgi protein trafficking. These pathways are now recognized to contribute to β cell failure in both type 1 and type 2 diabetes mellitus. This Review considers the role of β cell ER stress in common forms of diabetes mellitus and examines whether it is a cause or a consequence of these diseases. The strong genetic evidence for a causal role of ER stress in 15 monogenic forms of diabetes mellitus is summarized, and the effects of ER stress on human β cell differentiation, function and survival are described. Although definitive proof is lacking that ER stress responses can be therapeutically targeted to improve β cell function in diabetes mellitus, existing and novel treatments that aim to restore ER homeostasis are also outlined.

Key points

  • The unfolded protein response (UPR) is an essential adaptive mechanism in β cells that is activated by perturbed functioning of the endoplasmic reticulum (ER) and/or Golgi organelles.

  • The effects of ER stress on β cell proliferation, differentiation, function, apoptosis and immune cell crosstalk depend on the β cell developmental stage, duration of ER stress and genetic background.

  • Of ~70 known monogenic forms of diabetes mellitus, 15 provide indisputable genetic evidence for the critical roles of ER stress, dysregulated UPR and impaired ER–Golgi trafficking in human β cells.

  • ER stress occurs during both early and late stages in the pathogenesis of polygenic type 1 and type 2 diabetes mellitus, but causality has yet to be firmly demonstrated.

  • ER stress modulators have been shown to protect β cells in preclinical studies, and a few early clinical studies are underway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Endoplasmic reticulum stress and unfolded protein response signalling pathways.
Fig. 2: Consequences of endoplasmic reticulum stress at different β cell developmental stages.
Fig. 3: Evidence of endoplasmic reticulum stress in human islets and β cells.
Fig. 4: Cause or consequence?
Fig. 5: Monogenic forms of diabetes mellitus due to endoplasmic reticulum stress.

Similar content being viewed by others

References

  1. GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

    Article  Google Scholar 

  2. American Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: standards of care in diabetes – 2025. Diabetes Care 48, S27–S49 (2025).

    Article  Google Scholar 

  3. Piron, A. et al. Identification of novel type 1 and type 2 diabetes genes by co-localization of human islet eQTL and GWAS variants with colocRedRibbon. Preprint at medRxiv https://doi.org/10.1101/2024.10.19.24315808 (2024).

  4. Chiou, J. et al. Interpreting type 1 diabetes risk with genetics and single-cell epigenomics. Nature 594, 398–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robertson, C. C. et al. Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes. Nat. Genet. 53, 962–971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 627, 347–357 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, K. et al. Multi-ancestry polygenic mechanisms of type 2 diabetes. Nat. Med. 30, 1065–1074 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Redondo, M. J. & Morgan, N. G. Heterogeneity and endotypes in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 19, 542–554 (2023).

    Article  PubMed  Google Scholar 

  9. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article  PubMed  Google Scholar 

  10. Nair, A. T. N. et al. Heterogeneity in phenotype, disease progression and drug response in type 2 diabetes. Nat. Med. 28, 982–988 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Mansour et al. Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nat. Genet. 53, 1534–1542 (2021).

    Article  Google Scholar 

  12. Udler, M. S. et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 15, e1002654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marhfour, I. et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55, 2417–2420 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Laybutt, D. R. et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50, 752–763 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, C. J. et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56, 2016–2027 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Marchetti, P. et al. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia 50, 2486–2494 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Kang, S. W. et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127, 999–1013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, H. et al. Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes. J. Biol. Chem. 289, 16290–16302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melnyk, A., Lang, S., Sicking, M., Zimmermann, R. & Jung, M. Co-chaperones of the human endoplasmic reticulum: an update. Subcell. Biochem. 101, 247–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Boriushkin, E., Wang, J. J. & Zhang, S. X. Role of p58IPK in endoplasmic reticulum stress-associated apoptosis and inflammation. J. Ophthalmic Vis. Res. 9, 134–143 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Yan, Y., Rato, C., Rohland, L., Preissler, S. & Ron, D. MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP. Nat. Commun. 10, 541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Preissler, S., Rato, C., Perera, L., Saudek, V. & Ron, D. FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat. Struct. Mol. Biol. 24, 23–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Siwecka, N. et al. The structure, activation and signaling of IRE1 and its role in determining cell fate. Biomedicines 9, 156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bone, R. N. et al. A computational approach for defining a signature of β-cell Golgi stress in diabetes. Diabetes 69, 2364–2376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Xu, X. et al. Proteasomal degradation of WT proinsulin in pancreatic beta cells. J. Biol. Chem. 298, 102406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kadowaki, H. et al. Pre-emptive quality control protects the ER from protein overload via the proximity of ERAD components and SRP. Cell Rep. 13, 944–956 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Braunstein, I., Zach, L., Allan, S., Kalies, K. U. & Stanhill, A. Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL–p97 complex. Mol. Biol. Cell 26, 3719–3727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Legesse, A. et al. The role of RNF149 in the pre-emptive quality control substrate ubiquitination. Commun. Biol. 6, 385 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Pirot, P. et al. Global profiling of genes modified by endoplasmic reticulum stress in pancreatic beta cells reveals the early degradation of insulin mRNAs. Diabetologia 50, 1006–1014 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kovaleva, V. et al. MANF regulates neuronal survival and UPR through its ER-located receptor IRE1α. Cell Rep. 42, 112066 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Piecyk, M., Ferraro-Peyret, C., Laville, D., Perros, F. & Chaveroux, C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J. 291, 4867–4889 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Girardin, S. E., Cuziol, C., Philpott, D. J. & Arnoult, D. The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress. FEBS J. 288, 3094–3107 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Gal-Ben-Ari, S., Barrera, I., Ehrlich, M. & Rosenblum, K. PKR: a kinase to remember. Front. Mol. Neurosci. 11, 480 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Cnop, M., Toivonen, S., Igoillo Esteve, M. & Salpea, P. Endoplasmic reticulum stress and eIF2α phosphorylation: the achilles heel of pancreatic β cells. Mol. Metab. 6, 1024–1039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pappalardo, Z. et al. A whole-genome RNA interference screen reveals a role for Spry2 in insulin transcription and the unfolded protein response. Diabetes 66, 1703–1712 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jousse, C. et al. Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163, 767–775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Huizen, R., Martindale, J. L., Gorospe, M. & Holbrook, N. J. P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2α signaling. J. Biol. Chem. 278, 15558–15564 (2003).

    Article  PubMed  Google Scholar 

  46. Kim, I., Xu, W. & Reed, J. C. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 7, 1013–1030 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Gorasia, D. G. et al. A prominent role of PDIA6 in processing of misfolded proinsulin. Biochim. Biophys. Acta 1864, 715–723 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Eletto, D., Eletto, D., Boyle, S. & Argon, Y. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1. FASEB J. 30, 653–665 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Eletto, D., Eletto, D., Dersh, D., Gidalevitz, T. & Argon, Y. Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol. Cell 53, 562–576 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen, J., Chen, X., Hendershot, L. & Prywes, R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brown, M. S., Ye, J., Rawson, R. B. & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Schroder, M. & Kaufman, R. J. ER stress and the unfolded protein response. Mutat. Res. 569, 29–63 (2005).

    Article  PubMed  Google Scholar 

  54. Sharma, R. B., Darko, C. & Alonso, L. C. Intersection of the ATF6 and XBP1 ER stress pathways in mouse islet cells. J. Biol. Chem. 295, 14164–14177 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Yoshida, H. et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755–6767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fonseca, S. G. et al. Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J. Clin. Invest. 120, 744–755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Odisho, T., Zhang, L. & Volchuk, A. ATF6β regulates the Wfs1 gene and has a cell survival role in the ER stress response in pancreatic β-cells. Exp. Cell Res. 330, 111–122 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Bailey, D. & O’Hare, P. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid. Redox Signal. 9, 2305–2321 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Murakami, T. et al. Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat. Cell Biol. 11, 1205–1211 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Barbosa, S. et al. An orchestrated program regulating secretory pathway genes and cargos by the transmembrane transcription factor CREB-H. Traffic 14, 382–398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oh-Hashi, K., Hasegawa, T., Mizutani, Y., Takahashi, K. & Hirata, Y. Elucidation of brefeldin A-induced ER and Golgi stress responses in Neuro2a cells. Mol. Cell. Biochem. 476, 3869–3877 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Sampieri, L., Di Giusto, P. & Alvarez, C. CREB3 transcription factors: ER-Golgi stress transducers as hubs for cellular homeostasis. Front. Cell. Dev. Biol. 7, 123 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Knupp, J., Pletan, M. L., Arvan, P. & Tsai, B. Autophagy of the ER: the secretome finds the lysosome. FEBS J. 290, 5656–5673 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fang, J. et al. COPII-dependent ER export: a critical component of insulin biogenesis and β-cell ER homeostasis. Mol. Endocrinol. 29, 1156–1169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Staufner, C. et al. Defining clinical subgroups and genotype–phenotype correlations in NBAS-associated disease across 110 patients. Genet. Med. 22, 610–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Weigel, A. V. et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 184, 2412–2429.e16 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Shomron, O. et al. COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J. Cell. Biol. 220, e201907224 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tojima, T., Suda, Y., Jin, N., Kurokawa, K. & Nakano, A. Spatiotemporal dissection of the Golgi apparatus and the ER–Golgi intermediate compartment in budding yeast. eLife 13, e92900 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, W. K., Choi, W., Deshar, B., Kang, S. & Kim, J. Golgi stress response: new insights into the pathogenesis and therapeutic targets of human diseases. Mol. Cell 46, 191–199 (2023).

    Article  CAS  Google Scholar 

  71. Sue, N. et al. Independent activation of CREB3L2 by glucose fills a regulatory gap in mouse β-cells by co-ordinating insulin biosynthesis with secretory granule formation. Mol. Metab. 79, 101845 (2024).

    Article  CAS  PubMed  Google Scholar 

  72. Fox, R. M., Hanlon, C. D. & Andrew, D. J. The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity. J. Cell Biol. 191, 479–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sbodio, J. I., Snyder, S. H. & Paul, B. D. Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington’s disease. Proc. Natl Acad. Sci. USA 115, 780–785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, L. et al. WFS1 functions in ER export of vesicular cargo proteins in pancreatic β-cells. Nat. Commun. 12, 6996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Taguchi, Y. et al. Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog. 11, e1004747 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tang, B. L. et al. A membrane protein enriched in endoplasmic reticulum exit sites interacts with COPII. J. Biol. Chem. 276, 40008–40017 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Yoshida, Y. et al. YIPF5 and YIF1A recycle between the ER and the Golgi apparatus and are involved in the maintenance of the Golgi structure. Exp. Cell. Res. 314, 3427–3443 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, J. et al. IER3IP1 is critical for maintaining glucose homeostasis through regulating the endoplasmic reticulum function and survival of β cells. Proc. Natl Acad. Sci. USA 119, e2204443119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Esk, C. et al. A human tissue screen identifies a regulator of ER secretion as a brain-size determinant. Science 370, 935–941 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Zhong, X. et al. Essential requirement for IER3IP1 in B cell development. Proc. Natl Acad. Sci. USA 120, e2312810120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Raote, I., Saxena, S., Campelo, F. & Malhotra, V. TANGO1 marshals the early secretory pathway for cargo export. Biochim. Biophys. Acta Biomembr. 1863, 183700 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Arnolds, O. & Stoll, R. Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. Nat. Commun. 14, 2273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lekszas, C. et al. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. eLife 9, e51319 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fan, J. et al. cTAGE5 deletion in pancreatic β cells impairs proinsulin trafficking and insulin biogenesis in mice. J. Cell Biol. 216, 4153–4164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Raote, I. et al. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife 7, e32723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aoki, T. et al. Identification of the neuroblastoma-amplified gene product as a component of the syntaxin 18 complex implicated in Golgi-to-endoplasmic reticulum retrograde transport. Mol. Biol. Cell 20, 2639–2649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wicksteed, B., Alarcon, C., Briaud, I., Lingohr, M. K. & Rhodes, C. J. Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels in islet β-cells but not regulated via a positive feedback of secreted insulin. J. Biol. Chem. 278, 42080–42090 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Vasiljevic, J., Torkko, J. M., Knoch, K. P. & Solimena, M. The making of insulin in health and disease. Diabetologia 63, 1981–1989 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Guest, P. C. 2D gel electrophoresis of insulin secretory granule proteins from biosynthetically labelled pancreatic islets. Adv. Exp. Med. Biol. 974, 167–174 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Itoh, N. & Okamoto, H. Translational control of proinsulin synthesis by glucose. Nature 283, 100–102 (1980).

    Article  CAS  PubMed  Google Scholar 

  91. Evans-Molina, C. et al. Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes 56, 827–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, M. et al. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J. Clin. Invest. 131, e142240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sahin, G. S., Lee, H. & Engin, F. An accomplice more than a mere victim: the impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol. Metab. 54, 101365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gao, Y. et al. PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis. Mol. Cell. Biol. 32, 5129–5139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang, P. et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22, 3864–3874 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, W. et al. PERK EIF2AK3 control of pancreatic β cell differentiation and proliferation is required for postnatal glucose homeostasis. Cell. Metab. 4, 491–497 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Xu, T. et al. The IRE1α–XBP1 pathway regulates metabolic stress-induced compensatory proliferation of pancreatic β-cells. Cell Res. 24, 1137–1140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tsuchiya, Y. et al. IRE1–XBP1 pathway regulates oxidative proinsulin folding in pancreatic β cells. J. Cell. Biol. 217, 1287–1301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hassler, J. R. et al. The IRE1α/XBP1s pathway is essential for the glucose response and protection of β cells. PLoS Biol. 13, e1002277 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Usui, M. et al. Atf6α-null mice are glucose intolerant due to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism 61, 1118–1128 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Engin, F. et al. Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci. Transl. Med. 5, 211ra156 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lytrivi, M., Castell, A. L., Poitout, V. & Cnop, M. Recent insights into mechanisms of β-cell lipo- and glucolipotoxicity in type 2 diabetes. J. Mol. Biol. 432, 1514–1534 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Arunagiri, A. et al. Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLife 8, e44532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chan, J. Y., Luzuriaga, J., Bensellam, M., Biden, T. J. & Laybutt, D. R. Failure of the adaptive unfolded protein response in islets of obese mice is linked with abnormalities in β-cell gene expression and progression to diabetes. Diabetes 62, 1557–1568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cunha, D. A. et al. Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J. Cell Sci. 121, 2308–2318 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Cunha, D. A. et al. Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipotoxic rodent and human β-cell apoptosis. Diabetes 61, 2763–2775 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eizirik, D. L., Pasquali, L. & Cnop, M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat. Rev. Endocrinol. 16, 349–362 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Oshima, M. et al. Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity. Diabetologia 63, 395–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Kahn, S. E., Andrikopoulos, S. & Verchere, C. B. Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48, 241–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Wirth, F. et al. A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models. Nat. Commun. 14, 6294 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shrestha, S. et al. Aging compromises human islet beta cell function and identity by decreasing transcription factor activity and inducing ER stress. Sci. Adv. 8, eabo3932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Green, A. et al. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia 64, 2741–2750 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Khan, M. A. B. et al. Epidemiology of type 2 diabetes — global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 10, 107–111 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Snyder, J. T., Darko, C., Sharma, R. B. & Alonso, L. C. Endoplasmic reticulum stress induced proliferation remains intact in aging mouse β-cells. Front. Endocrinol. 12, 734079 (2021).

    Article  Google Scholar 

  117. Jaskulska, A., Janecka, A. E. & Gach-Janczak, K. Thapsigargin — from traditional medicine to anticancer drug. Int. J. Mol. Sci. 22, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Song, J. et al. Aging impairs adaptive unfolded protein response and drives beta cell dedifferentiation in humans. J. Clin. Endocrinol. Metab. 107, 3231–3241 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Brozzi, F. et al. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 58, 2307–2316 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Brozzi, F. & Eizirik, D. L. ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. Ups. J. Med. Sci. 121, 133–139 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. van Kuppeveld, F. J., de Jong, A. S., Melchers, W. J. & Willems, P. H. Enterovirus protein 2B po(u)res out the calcium: a viral strategy to survive? Trends Microbiol. 13, 41–44 (2005).

    Article  PubMed  Google Scholar 

  122. Eizirik, D. L., Cardozo, A. K. & Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 29, 42–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Schuit, F. C., In’t Veld, P. A. & Pipeleers, D. G. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc. Natl Acad. Sci. USA 85, 3865–3869 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Eizirik, D. L. & Cnop, M. ER stress in pancreatic β cells: the thin red line between adaptation and failure. Sci. Signal. 3, pe7 (2010).

    Article  PubMed  Google Scholar 

  125. Marroqui, L. et al. Pancreatic α cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes. eBioMedicine 2, 378–385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Eizirik, D. L., Szymczak, F. & Mallone, R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nat. Rev. Endocrinol. 19, 425–434 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Yong, J., Johnson, J. D., Arvan, P., Han, J. & Kaufman, R. J. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus. Nat. Rev. Endocrinol. 17, 455–467 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sharma, R. B. et al. Insulin demand regulates β cell number via the unfolded protein response. J. Clin. Invest. 125, 3831–3846 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Perl, S. et al. Significant human β-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J. Clin. Endocrinol. Metab. 95, E234–E239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cnop, M. et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53, 321–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Mezza, T. & Kulkarni, R. N. The regulation of pre- and post-maturational plasticity of mammalian islet cell mass. Diabetologia 57, 1291–1303 (2014).

    Article  PubMed  Google Scholar 

  132. Dai, C. et al. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets. J. Clin. Invest. 126, 1857–1870 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Riahi, Y. et al. Inhibition of mTORC1 by ER stress impairs neonatal β-cell expansion and predisposes to diabetes in the Akita mouse. eLife 7, e38472 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Balboa, D. et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. eLife 7, e38519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zhang, Y. et al. Permanent neonatal diabetes-causing insulin mutations have dominant negative effects on beta cell identity. Mol. Metab. 80, 101879 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Szabat, M. et al. Reduced insulin production relieves endoplasmic reticulum stress and induces β cell proliferation. Cell. Metab. 23, 179–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Chen, C. W. et al. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat. Commun. 13, 4621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mezza, T. et al. β-cell fate in human insulin resistance and type 2 diabetes: a perspective on islet plasticity. Diabetes 68, 1121–1129 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lee, H. et al. Beta cell dedifferentiation induced by IRE1α deletion prevents type 1 diabetes. Cell Metab. 31, 822–836.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, H. et al. Stress-induced β cell early senescence confers protection against type 1 diabetes. Cell Metab. 35, 2200–2215.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bensellam, M., Jonas, J. C. & Laybutt, D. R. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J. Endocrinol. 236, R109–R143 (2018).

    Article  PubMed  Google Scholar 

  142. Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. J. Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest. 118, 3378–3389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525–532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yong, J. et al. Chop/Ddit3 depletion in β cells alleviates ER stress and corrects hepatic steatosis in mice. Sci. Transl. Med. 13, eaba9796 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee, J.-H. et al. Endoplasmic reticulum stress in pancreatic β cells induces incretin desensitization and β-cell dysfunction via ATF4-mediated PDE4D expression. Am. J. Physiol. Endocrinol. Metab. 325, E448–E465 (2023).

    Article  CAS  PubMed  Google Scholar 

  146. Zhang, I. X., Ren, J., Vadrevu, S., Raghavan, M. & Satin, L. S. ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. J. Biol. Chem. 295, 5685–5700 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, I. X. et al. ER stress increases expression of intracellular calcium channel RyR1 to modify Ca2+ homeostasis in pancreatic beta cells. J. Biol. Chem. 299, 105065 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marre, M. L. et al. Modifying enzymes are elicited by ER stress, generating epitopes that are selectively recognized by CD4+ T cells in patients with type 1 diabetes. Diabetes 67, 1356–1368 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kracht, M. J. et al. Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat. Med. 23, 501–507 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Nasteska, D. et al. PDX1LOW MAFALOW β-cells contribute to islet function and insulin release. Nat. Commun. 12, 674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, X. et al. Requirement for translocon-associated protein (TRAP) α in insulin biogenesis. Sci. Adv. 5, eaax0292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sandhu, M. S. et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet. 39, 951–953 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Costanzo, M. C. et al. The type 2 diabetes knowledge portal: an open access genetic resource dedicated to type 2 diabetes and related traits. Cell Metab. 35, 695–710.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hanson, R. L. et al. Association of CREBRF variants with obesity and diabetes in Pacific Islanders from Guam and Saipan. Diabetologia 62, 1647–1652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Williamson, A. et al. Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake. Nat. Genet. 55, 973–983 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ghosh, C. et al. Involvement of Cdkal1 in the etiology of type 2 diabetes mellitus and microvascular diabetic complications: a review. J. Diabetes Metab. Disord. 21, 991–1001 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Rehman, S. U. et al. Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development. Mamm. Genome 32, 153–172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Loffler, D. et al. Functional and clinical relevance of novel and known PCSK1 variants for childhood obesity and glucose metabolism. Mol. Metab. 6, 295–305 (2017).

    Article  PubMed  Google Scholar 

  161. Robertson, C. C. et al. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol. Metab. 86, 101973 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Greenwald, W. W. et al. Pancreatic islet chromatin accessibility and conformation reveals distal enhancer networks of type 2 diabetes risk. Nat. Commun. 10, 2078 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wang, G. et al. Integrating genetics with single-cell multiomic measurements across disease states identifies mechanisms of beta cell dysfunction in type 2 diabetes. Nat. Genet. 55, 984–994 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Vinuela, A. et al. Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nat. Commun. 11, 4912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Russell, M. A. et al. HLA class II antigen processing and presentation pathway components demonstrated by transcriptome and protein analyses of islet β-cells from donors with type 1 diabetes. Diabetes 68, 988–1001 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Alonso, L. et al. TIGER: the gene expression regulatory variation landscape of human pancreatic islets. Cell Rep. 37, 109807 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fadista, J. et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc. Natl Acad. Sci. USA 111, 13924–13929 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Marselli, L. et al. Persistent or transient human β cell dysfunction induced by metabolic stress: specific signatures and shared gene expression with type 2 diabetes. Cell Rep. 33, 108466 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Yi, X. et al. Mining the transcriptome of target tissues of autoimmune and degenerative pancreatic β-cell and brain diseases to discover therapies. iScience 25, 105376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nyalwidhe, J. O. et al. Comparative quantitative proteomic analysis of disease stratified laser captured microdissected human islets identifies proteins and pathways potentially related to type 1 diabetes. PLoS ONE 12, e0183908 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Yi, X. & Eizirik, D. L. β-cell gene expression stress signatures in types 1 and 2 diabetes. J. Diabetes 16, e70026 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hartman, M. G. et al. Role for activating transcription factor 3 in stress-induced β-cell apoptosis. Mol. Cell. Biol. 24, 5721–5732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Engin, F., Nguyen, T., Yermalovich, A. & Hotamisligil, G. S. Aberrant islet unfolded protein response in type 2 diabetes. Sci. Rep. 4, 4054 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Tersey, S. A. et al. Islet β-cell endoplasmic reticulum stress precedes the onset of type 1 diabetes in the nonobese diabetic mouse model. Diabetes 61, 818–827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang, C. et al. Pathological endoplasmic reticulum stress mediated by the IRE1 pathway contributes to pre-insulitic beta cell apoptosis in a virus-induced rat model of type 1 diabetes. Diabetologia 56, 2638–2646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. De Franco, E. et al. Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes 66, 2044–2053 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Delepine, M. et al. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott–Rallison syndrome. Nat. Genet. 25, 406–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Collardeau-Frachon, S. et al. Microscopic and ultrastructural features in Wolcott–Rallison syndrome, a permanent neonatal diabetes mellitus: about two autopsy cases. Pediatr. Diabetes 16, 510–520 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Skopkova, M. et al. EIF2S3 mutations associated with severe X-linked intellectual disability syndrome MEHMO. Hum. Mutat. 38, 409–425 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. De Franco, E. et al. De novo mutations in EIF2B1 affecting eIF2 signaling cause neonatal/early-onset diabetes and transient hepatic dysfunction. Diabetes 69, 477–483 (2020).

    Article  PubMed  Google Scholar 

  181. Lytrivi, M. et al. DNAJC3 deficiency induces β-cell mitochondrial apoptosis and causes syndromic young-onset diabetes. Eur. J. Endocrinol. 184, 455–468 (2021).

    Article  PubMed  Google Scholar 

  182. Abdulkarim, B. et al. A missense mutation in PPP1R15B causes a syndrome including diabetes, short stature, and microcephaly. Diabetes 64, 3951–3962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Al-Fadhli, F. M. et al. Biallelic loss of function variant in the unfolded protein response gene PDIA6 is associated with asphyxiating thoracic dystrophy and neonatal-onset diabetes. Clin. Genet. 99, 694–703 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. De Franco, E. et al. A biallelic loss-of-function PDIA6 variant in a second patient with polycystic kidney disease, infancy-onset diabetes, and microcephaly. Clin. Genet. 102, 457–458 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ansar, M. et al. Mutation of ATF6 causes autosomal recessive achromatopsia. Hum. Genet. 134, 941–950 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kohl, S. et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat. Genet. 47, 757–765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lee, E. J. et al. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J. Clin. Invest. 135, e175562 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Reuschlé, Q. et al. Loss of function of XBP1 splicing activity of IRE1α favors B cell tolerance breakdown. J. Autoimmun. 142, 103152 (2024).

    Article  PubMed  Google Scholar 

  189. Perera, L. A. et al. Infancy-onset diabetes caused by de-regulated AMPylation of the human endoplasmic reticulum chaperone BiP. EMBO Mol. Med. 15, e16491 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rigoli, L. & Di Bella, C. Wolfram syndrome 1 and Wolfram syndrome 2. Curr. Opin. Pediatr. 24, 512–517 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Gorgogietas, V. et al. GLP-1R agonists demonstrate potential to treat Wolfram syndrome in human preclinical models. Diabetologia 66, 1306–1321 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Shen, Z.-Q. et al. CISD2 maintains cellular homeostasis. Biochim. Biophys. Acta 1868, 118954 (2021).

    Article  CAS  Google Scholar 

  193. Montaser, H. et al. Loss of MANF causes childhood-onset syndromic diabetes due to increased endoplasmic reticulum stress. Diabetes 70, 1006–1018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Poulton, C. J. et al. Microcephaly with simplified gyration, epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors. Am. J. Hum. Genet. 89, 265–276 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Anitei, M. et al. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell. Mol. Life Sci. 81, 334 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Montaser, H. et al. IER3IP1 mutations cause neonatal diabetes due to impaired proinsulin trafficking. Diabetes 74, 514–527 (2024).

    Article  PubMed Central  Google Scholar 

  197. De Franco, E. et al. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. J. Clin. Invest. 130, 6338–6353 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Stoy, J. et al. In celebration of a century with insulin — update of insulin gene mutations in diabetes. Mol. Metab. 52, 101280 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Liu, M. et al. Proinsulin misfolding and diabetes: mutant INS gene-induced diabetes of youth. Trends Endocrinol. Metab. 21, 652–659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Liu, M. et al. Impaired cleavage of preproinsulin signal peptide linked to autosomal-dominant diabetes. Diabetes 61, 828–837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Haataja, L. et al. Distinct states of proinsulin misfolding in MIDY. Cell. Mol. Life Sci. 78, 6017–6031 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Stoy, J. et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl Acad. Sci. USA 104, 15040–15044 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Ribeiro, C. M. P. & Hull-Ryde, E. A. Functional role of the ER stress transducer IRE1α in CF airway epithelial inflammation. Curr. Opin. Pharmacol. 65, 102258 (2022).

    Article  CAS  PubMed  Google Scholar 

  204. Hull-Ryde, E. A. et al. IRE1α is a therapeutic target for cystic fibrosis airway inflammation. Int. J. Mol. Sci. 22, 3063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hetz, C. & Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol. 13, 477–491 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Lebeaupin, C. et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J. Hepatol. 69, 927–947 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl. Med. 5, 206ra138 (2013).

    Article  PubMed  Google Scholar 

  208. Kim, M. J. et al. Specific PERK inhibitors enhanced glucose-stimulated insulin secretion in a mouse model of type 2 diabetes. Metabolism 97, 87–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Kim, M. J. et al. Attenuation of PERK enhances glucose-stimulated insulin secretion in islets. J. Endocrinol. 236, 125–136 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Rai, S., Szaruga, M., Pitera, A. P. & Bertolotti, A. Integrated stress response activator halofuginone protects mice from diabetes-like phenotypes. J. Cell Biol. 223, e202405175 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Szaruga, M. et al. Activation of the integrated stress response by inhibitors of its kinases. Nat. Commun. 14, 5535 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cnop, M. et al. Selective inhibition of eukaryotic translation initiation factor 2α dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic β-cell dysfunction and apoptosis. J. Biol. Chem. 282, 3989–3997 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Ladrière, L. et al. Enhanced signaling downstream of ribonucleic acid-activated protein kinase-like endoplasmic reticulum kinase potentiates lipotoxic endoplasmic reticulum stress in human islets. J. Clin. Endocrinol. Metab. 95, 1442–1449 (2010).

    Article  PubMed  Google Scholar 

  214. Abdulkarim, B. et al. Guanabenz sensitizes pancreatic β cells to lipotoxic endoplasmic reticulum stress and apoptosis. Endocrinology 158, 1659–1670 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Muralidharan, C. et al. Inhibition of the eukaryotic initiation factor-2α kinase PERK decreases risk of autoimmune diabetes in mice. J. Clin. Invest. 134, e176136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zyryanova, A. F. et al. Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science 359, 1533–1536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zyryanova, A. F. et al. ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B. Mol. Cell 81, 88–103.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Krukowski, K. et al. Small molecule cognitive enhancer reverses age-related memory decline in mice. eLife 9, e62048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chou, A. et al. Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc. Natl Acad. Sci. USA 114, E6420–E6426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Young-Baird, S. K. et al. Suppression of MEHMO syndrome mutation in eIF2 by small molecule ISRIB. Mol. Cell 77, 875–886.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Tang, X. et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab. 33, 1577–1591.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Sato, H., Shiba, Y., Tsuchiya, Y., Saito, M. & Kohno, K. 4mu8C inhibits insulin secretion independent of IRE1α RNase activity. Cell Struct. Funct. 42, 61–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  223. Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Feldman, H. C. et al. ATP-competitive partial antagonists of the IRE1α RNase segregate outputs of the UPR. Nat. Chem. Biol. 17, 1148–1156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Morita, S. et al. Targeting ABL-IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab. 25, 883–897.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Grandjean, J. M. D. et al. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat. Chem. Biol. 16, 1052–1061 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Madhavan, A. et al. Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity. Nat. Commun. 13, 608 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gallagher, C. M. et al. Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6α branch. eLife 5, e11878 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Gallagher, C. M. & Walter, P. Ceapins inhibit ATF6α signaling by selectively preventing transport of ATF6α to the Golgi apparatus during ER stress. eLife 5, e11880 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Guan, M. et al. Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6. Clin. Cancer Res. 17, 1796–1806 (2011).

    Article  CAS  PubMed  Google Scholar 

  231. Rosarda, J. D. et al. Imbalanced unfolded protein response signaling contributes to 1-deoxysphingolipid retinal toxicity. Nat. Commun. 14, 4119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Sun, S. et al. Capturing the conversion of the pathogenic alpha-1-antitrypsin fold by ATF6 enhanced proteostasis. Cell Chem. Biol. 30, 22–42.e25 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Paxman, R. et al. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 7, e37168 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Wang, M. et al. Pharmacological activation of ATF6 remodels the proteostasis network to rescue pathogenic GABAA receptors. Cell Biosci. 12, 48 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Robinson, C. M., Duggan, A. & Forrester, A. ER exit in physiology and disease. Front. Mol. Biosci. 11, 1352970 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Yonemura, Y. et al. Inhibition of cargo export at ER exit sites and the trans-Golgi network by the secretion inhibitor FLI-06. J. Cell Sci. 129, 3868–3877 (2016).

    Article  CAS  PubMed  Google Scholar 

  237. Stechmann, B. et al. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 141, 231–242 (2010).

    Article  CAS  PubMed  Google Scholar 

  238. Forrester, A. et al. Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2. Nat. Chem. Biol. 16, 327–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Batshaw, M. L., MacArthur, R. B. & Tuchman, M. Alternative pathway therapy for urea cycle disorders: twenty years later. J. Pediatr. 138, S46–S55 (2001).

    Article  CAS  PubMed  Google Scholar 

  240. Ma, W., Goldberg, E. & Goldberg, J. ER retention is imposed by COPII protein sorting and attenuated by 4-phenylbutyrate. eLife 6, e26624 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Gomez-Navarro, N. et al. Selective inhibition of protein secretion by abrogating receptor–coat interactions during ER export. Proc. Natl Acad. Sci. USA 119, e2202080119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Yusta, B. et al. GLP-1 receptor activation improves β cell function and survival following induction of endoplasmic reticulum stress. Cell Metab. 4, 391–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  243. Cunha, D. A. et al. Glucagon-like peptide-1 agonists protect pancreatic β-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58, 2851–2862 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Natalicchio, A. et al. Exendin-4 protects pancreatic beta cells from palmitate-induced apoptosis by interfering with GPR40 and the MKK4/7 stress kinase signalling pathway. Diabetologia 56, 2456–2466 (2013).

    Article  CAS  PubMed  Google Scholar 

  245. Shimoda, M. et al. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia 54, 1098–1108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Kondo, M. et al. Activation of GLP-1 receptor signalling alleviates cellular stresses and improves beta cell function in a mouse model of Wolfram syndrome. Diabetologia 61, 2189–2201 (2018).

    Article  CAS  PubMed  Google Scholar 

  247. Jo, S. & Alejandro, E. U. Imeglimin to the rescue: enhanced CHOP/GADD34/eIF2α signaling axis promotes β-cell survival. Diabetes 71, 376–378 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Li, J. et al. Imeglimin ameliorates β-cell apoptosis by modulating the endoplasmic reticulum homeostasis pathway. Diabetes 71, 424–439 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Hallakou-Bozec, S. et al. Mechanism of action of imeglimin: a novel therapeutic agent for type 2 diabetes. Diabetes Obes. Metab. 23, 664–673 (2021).

    Article  CAS  PubMed  Google Scholar 

  250. Yingyue, Q. et al. Stimulatory effect of imeglimin on incretin secretion. J. Diabetes Investig. 14, 746–755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sanada, J. et al. Imeglimin exerts favorable effects on pancreatic β-cells by improving morphology in mitochondria and increasing the number of insulin granules. Sci. Rep. 12, 13220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Awazawa, M. et al. Imeglimin improves systemic metabolism by targeting brown adipose tissue and gut microbiota in obese model mice. Metabolism 153, 155796 (2024).

    Article  CAS  PubMed  Google Scholar 

  253. Akiyama, M. et al. Increased insulin demand promotes while pioglitazone prevents pancreatic beta cell apoptosis in Wfs1 knockout mice. Diabetologia 52, 653–663 (2009).

    Article  CAS  PubMed  Google Scholar 

  254. Evans-Molina, C. et al. Peroxisome proliferator-activated receptor γ activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol. Cell. Biol. 29, 2053–2067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Kono, T. et al. PPAR-γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyperglycemic and cytokine stress. Mol. Endocrinol. 26, 257–271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Louvet, C. et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105, 18895–18900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wilson, C. S. et al. B lymphocytes protect islet β cells in diabetes prone NOD mice treated with imatinib. JCI Insight 5, e125317 (2019).

    Article  PubMed  Google Scholar 

  258. Hawley, J. A. Exercise as a therapeutic intervention for the prevention and treatment of insulin resistance. Diabetes Metab. Res. Rev. 20, 383–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  259. Paula, F. M. M. et al. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis. FASEB J. 32, 1524–1536 (2018).

    Article  CAS  PubMed  Google Scholar 

  260. Coomans de Brachene, A. et al. Exercise as a non-pharmacological intervention to protect pancreatic beta cells in individuals with type 1 and type 2 diabetes. Diabetologia 66, 450–460 (2023).

    Article  CAS  PubMed  Google Scholar 

  261. Kars, M. et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes 59, 1899–1905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Xiao, C., Giacca, A. & Lewis, G. F. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and β-cell dysfunction in humans. Diabetes 60, 918–924 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Gitelman, S. E. et al. Imatinib therapy for patients with recent-onset type 1 diabetes: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 9, 502–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Wilbon, S. S. & Kolonin, M. G. GLP1 receptor agonists — effects beyond obesity and diabetes. Cells 13, 65 (2024).

    Article  CAS  Google Scholar 

  265. Bedi, B. et al. UPR modulation of host immunity by Pseudomonas aeruginosa in cystic fibrosis. Clin. Sci. 134, 1911–1934 (2020).

    Article  CAS  Google Scholar 

  266. Lee, I. M. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Coomans de Brachene, A. et al. Interferons are key cytokines acting on pancreatic islets in type 1 diabetes. Diabetologia 67, 908–927 (2024).

    Article  CAS  PubMed  Google Scholar 

  268. Sims, E. K., Geyer, S. M., Long, S. A. & Herold, K. C. High proinsulin:C-peptide ratio identifies individuals with stage 2 type 1 diabetes at high risk for progression to clinical diagnosis and responses to teplizumab treatment. Diabetologia 66, 2283–2291 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Sharma, R. B., Landa-Galván, H. V. & Alonso, L. C. Living dangerously: protective and harmful ER stress responses in pancreatic β-cells. Diabetes 70, 2431–2443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Mirmira, R. G., Sims, E. K., Syed, F. & Evans-Molina, C. Biomarkers of β-cell stress and death in type 1 diabetes. Curr. Diabetes Rep. 16, 95 (2016).

    Article  Google Scholar 

  271. Wagner, L. E., Melnyk, O., Duffett, B. E. & Linnemann, A. K. Mouse models and human islet transplantation sites for intravital imaging. Front. Endocrinol. 13, 992540 (2022).

    Article  Google Scholar 

  272. Kracht, M. J. L., de Koning, E. J. P., Hoeben, R. C., Roep, B. O. & Zaldumbide, A. Bioluminescent reporter assay for monitoring ER stress in human beta cells. Sci. Rep. 8, 17738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory of M.C. is supported by the European Union Horizon Health project NEMESIS, the European Foundation for the Study of Diabetes — Boehringer Ingelheim European Research Programme on Multi-System Challenges in Diabetes, The Leona M. and Harry B. Helmsley Charitable Trust, the Belgian Fonds National de la Recherche Scientifique (FNRS), Walloon Region strategic axis Fonds de la Recherche Scientifique (FRFS) — Walloon Excellence in Life Sciences and Biotechnology (WELBIO), and Research Foundation Flanders (FWO) & Fund for Scientific Research (FRS)-FNRS Excellence of Science (EOS) project Pandarome. Y.T. and E.V. are FNRS-Fund for Research Training in Industry and Agriculture (FRIA) fellows. M.L. is supported by FNRS and Erasmus Fund for Medical Research fellowships.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and wrote the manuscript. M.C., M.L., Y.T. and E.V. also contributed substantially to discussions of the article content. M.C. and M.L. also reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Miriam Cnop.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Laura C. Alonso and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

fGSEA: https://github.com/alserglab/fgsea

Human Pancreas Analysis Program: https://hpap.pmacs.upenn.edu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytrivi, M., Tong, Y., Virgilio, E. et al. Diabetes mellitus and the key role of endoplasmic reticulum stress in pancreatic β cells. Nat Rev Endocrinol 21, 546–563 (2025). https://doi.org/10.1038/s41574-025-01129-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-025-01129-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing