Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adipose tissue ageing: implications for metabolic health and lifespan

Subjects

Abstract

Adipose tissue, a pivotal player in whole-body energy homeostasis and insulin sensitivity, undergoes considerable remodelling throughout the ageing process, a facet that has garnered little attention until the past decade. This Review comprehensively summarizes the dynamic metabolic, cellular and functional changes that occur in white and thermogenic adipose tissue during distinct ageing stages, across different adipose tissue depots. We emphasize the influence of ageing on different cell types within adipose tissue, including adipocytes, adipocyte progenitors, immune cells and senescent cells, and their collective effect on adipose tissue function and systemic metabolism. We also decipher the correlation between adipose tissue ageing and prevalent age-related conditions such as metabolic dysfunction-associated fatty liver disease and cardiovascular diseases. Finally, the Review delves into the potential of current anti-ageing interventions to beneficially affect adipose tissue, encompassing caloric restriction, metformin, glucagon-like peptide 1 receptor agonists and senolytics. The discussion extends to the exploration of whether targeting adipose tissue through such interventions could emerge as a prominent therapeutic strategy for mitigating age-related diseases and enhancing the healthspan and lifespan of the ageing population.

Key points

  • Adipose tissue is among the first organs to undergo changes in metabolic responses and endocrine function during early ageing, considerably affecting other metabolically active organs and contributing to systemic ageing and declining metabolic health.

  • White adipose tissue ages differently across anatomical depots and these alterations do not follow a linear trajectory with advancing age.

  • Robust adipogenesis is triggered during the early stages of ageing, particularly in the visceral adipose tissue of male individuals. Age-specific remodelling of adipose progenitor cells unlocks their adipogenic potential.

  • Therapeutic strategies that enhance white adipose tissue function, without necessarily reducing its mass, have shown promising effects in improving metabolic health in older individuals.

  • Reduced thermogenic activity in brown and beige adipocytes contributes to age-related cold sensitivity, diminishing the ability of older individuals to maintain core body temperature in colder environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Age-dependent remodelling of white, brown and beige adipose tissue.
Fig. 2: Cellular alterations in WAT during the early stage of ageing.

Similar content being viewed by others

References

  1. Vaupel, J. W. Biodemography of human ageing. Nature 464, 536–542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Cypess, A. M. Reassessing human adipose tissue. N. Engl. J. Med. 386, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Ou, M. Y., Zhang, H., Tan, P. C., Zhou, S. B. & Li, Q. F. Adipose tissue aging: mechanisms and therapeutic implications. Cell Death Dis. 13, 300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nguyen, T. T. & Corvera, S. Adipose tissue as a linchpin of organismal ageing. Nat. Metab. 6, 793–807 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, Q. et al. A landscape of murine long non-coding RNAs reveals the leading transcriptome alterations in adipose tissue during aging. Cell Rep. 31, 107694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scherer, P. E. The many secret lives of adipocytes: implications for diabetes. Diabetologia 62, 223–232 (2019).

    Article  PubMed  Google Scholar 

  9. Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maniyadath, B., Zhang, Q., Gupta, R. K. & Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 35, 386–413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Auger, C. & Kajimura, S. Adipose tissue remodeling in pathophysiology. Annu. Rev. Pathol. 18, 71–93 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Kuk, J. L., Saunders, T. J., Davidson, L. E. & Ross, R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 8, 339–348 (2009).

    Article  PubMed  Google Scholar 

  13. Cero, C. et al. beta3-adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 6, e139160 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Darcy, J. & Tseng, Y. H. ComBATing aging-does increased brown adipose tissue activity confer longevity? Geroscience 41, 285–296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwartz, R. S. et al. Body fat distribution in healthy young and older men. J. Gerontol. 45, M181–M185 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Baarts, R. B. et al. Age- and sex-specific changes in visceral fat mass throughout the life-span. Obesity 31, 1953–1961 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Y. C. et al. Life-course trajectories of body mass index from adolescence to old age: racial and educational disparities. Proc. Natl Acad. Sci. USA 118, e2020167118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mott, J. W. et al. Relation between body fat and age in 4 ethnic groups. Am. J. Clin. Nutr. 69, 1007–1013 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Ding, J. et al. Effects of birth cohort and age on body composition in a sample of community-based elderly. Am. J. Clin. Nutr. 85, 405–410 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Reinders, I., Visser, M. & Schaap, L. Body weight and body composition in old age and their relationship with frailty. Curr. Opin. Clin. Nutr. Metab. Care 20, 11–15 (2017).

    PubMed  Google Scholar 

  21. Zhang, Z. et al. Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. J. Clin. Invest. 129, 5327–5342 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ezure, T., Amano, S. & Matsuzaki, K. Infiltration of subcutaneous adipose layer into the dermal layer with aging. Skin Res. Technol. 28, 311–316 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ofenheimer, A. et al. Reference values of body composition parameters and visceral adipose tissue (VAT) by DXA in adults aged 18-81 years-results from the LEAD cohort. Eur. J. Clin. Nutr. 74, 1181–1191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Justesen, J. et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2, 165–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Zamboni, M. et al. Body composition changes in stable-weight elderly subjects: the effect of sex. Aging Clin. Exp. Res. 15, 321–327 (2003).

    Article  PubMed  Google Scholar 

  26. Kuhn, J. P. et al. Pancreatic steatosis demonstrated at MR imaging in the general population: clinical relevance. Radiology 276, 129–136 (2015).

    Article  PubMed  Google Scholar 

  27. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Ye, R. et al. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration. eLife 3, e03851 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ryu, J. et al. Adiponectin alleviates diet-induced inflammation in the liver by suppressing MCP-1 expression and macrophage infiltration. Diabetes 70, 1303–1316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coimbra, S., Brandao Proenca, J., Santos-Silva, A. & Neuparth, M. J. Adiponectin, leptin, and chemerin in elderly patients with type 2 diabetes mellitus: a close linkage with obesity and length of the disease. Biomed. Res. Int. 2014, 701915 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Atzmon, G. et al. Adiponectin levels and genotype: a potential regulator of life span in humans. J. Gerontol. A Biol. Sci. Med. Sci. 63, 447–453 (2008).

    Article  PubMed  Google Scholar 

  33. Hotta, K. et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50, 1126–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Li, N. et al. Adiponectin preserves metabolic fitness during aging. eLife 10, e65108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Holland, W. L. et al. Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267–275 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frederich, R. C. et al. Expression of ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J. Clin. Invest. 96, 1658–1663 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Friedman, J. M. Leptin and the regulation of body weight. Keio J. Med. 60, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Ma, X. H. et al. Aging is associated with resistance to effects of leptin on fat distribution and insulin action. J. Gerontol. A Biol. Sci. Med. Sci. 57, B225–B231 (2002).

    Article  PubMed  Google Scholar 

  39. Zhao, S. et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 30, 706–719.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gencer, B. et al. Association between resistin levels and cardiovascular disease events in older adults: the health, aging and body composition study. Atherosclerosis 245, 181–186 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Acquarone, E., Monacelli, F., Borghi, R., Nencioni, A. & Odetti, P. Resistin: a reappraisal. Mech. Ageing Dev. 178, 46–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Bozaoglu, K. et al. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148, 4687–4694 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, Y. et al. The chemerin-CMKLR1 axis limits thermogenesis by controlling a beige adipocyte/IL-33/type 2 innate immunity circuit. Sci. Immunol. 6, eabg9698 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Hart, R. & Greaves, D. R. Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. J. Immunol. 185, 3728–3739 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Parolini, S. et al. The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109, 3625–3632 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Jaworski, K., Sarkadi-Nagy, E., Duncan, R. E., Ahmadian, M. & Sul, H. S. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1–G4 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Li, E. et al. Control of lipolysis by a population of oxytocinergic sympathetic neurons. Nature 625, 175–180 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Palmer, A. K. & Jensen, M. D. Metabolic changes in aging humans: current evidence and therapeutic strategies. J. Clin. Invest. 132, e158451 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao, H. et al. Age-induced reduction in human lipolysis: a potential role for adipocyte noradrenaline degradation. Cell Metab. 32, 1–3 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Lonnqvist, F., Nyberg, B., Wahrenberg, H. & Arner, P. Catecholamine-induced lipolysis in adipose tissue of the elderly. J. Clin. Invest. 85, 1614–1621 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Markussen, L. K. et al. Lipolysis regulates major transcriptional programs in brown adipocytes. Nat. Commun. 13, 3956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Z. et al. Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Exp. Dermatol. 30, 102–111 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Yu, L. et al. IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline. Cell Metab. 36, 793–807.e5 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cushman, S. W. & Wardzala, L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762 (1980).

    Article  CAS  PubMed  Google Scholar 

  58. Scherer, P. E. et al. Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J. Cell Biol. 127, 1233–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Fazakerley, D. J., Krycer, J. R., Kearney, A. L., Hocking, S. L. & James, D. E. Muscle and adipose tissue insulin resistance: malady without mechanism? J. Lipid Res. 60, 1720–1732 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Halberg, N. et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell Biol. 29, 4467–4483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, L. et al. Aging is associated with hypoxia and oxidative stress in adipose tissue: implications for adipose function. Am. J. Physiol. Endocrinol. Metab. 301, E599–E607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Crewe, C., An, Y. A. & Scherer, P. E. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J. Clin. Invest. 127, 74–82 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1alpha ameliorates adipose tissue dysfunction. Mol. Cell Biol. 33, 904–917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miller, K. N. et al. Aging and caloric restriction impact adipose tissue, adiponectin, and circulating lipids. Aging Cell 16, 497–507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laforest, S., Labrecque, J., Michaud, A., Cianflone, K. & Tchernof, A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 52, 301–313 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Weyer, C., Foley, J. E., Bogardus, C., Tataranni, P. A. & Pratley, R. E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43, 1498–1506 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Bluher, M. et al. Role of insulin action and cell size on protein expression patterns in adipocytes. J. Biol. Chem. 279, 31902–31909 (2004).

    Article  PubMed  Google Scholar 

  69. Skurk, T., Alberti-Huber, C., Herder, C. & Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023–1033 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Acosta, J. R. et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia 59, 560–570 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Rajbhandari, P. et al. Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. eLife 8, e49501 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sarvari, A. K. et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 33, 437–453.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Backdahl, J. et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 33, 1869–1882.e6 (2021).

    Article  PubMed  Google Scholar 

  75. Xie, L. et al. Single-nucleus RNA sequencing reveals heterogeneity among multiple white adipose tissue depots. Life Metab. 2, load045 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Holman, C. D. et al. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. eLife 12, RP87756 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hepler, C., Vishvanath, L. & Gupta, R. K. Sorting out adipocyte precursors and their role in physiology and disease. Genes Dev. 31, 127–140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Burl, R. B. et al. Deconstructing adipogenesis induced by beta3-adrenergic receptor activation with single-cell expression profiling. Cell Metab. 28, 300–309 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ferrero, R., Rainer, P. & Deplancke, B. Toward a consensus view of mammalian adipocyte stem and progenitor cell heterogeneity. Trends Cell Biol. 30, 937–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Loft, A. et al. Towards a consensus atlas of human and mouse adipose tissue at single-cell resolution. Nat. Metab. 7, 875–894 (2025).

    Article  PubMed  Google Scholar 

  83. Hepler, C. et al. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. eLife 7, e39636 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schwalie, P. C. et al. A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature 559, 103–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Nguyen, H. P. et al. Aging-dependent regulatory cells emerge in subcutaneous fat to inhibit adipogenesis. Dev. Cell 56, 1437–1451.e3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kotani, K. et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int. J. Obes. Relat. Metab. Disord. 18, 207–202 (1994).

    CAS  PubMed  Google Scholar 

  87. Kirkland, J. L. & Dobson, D. E. Preadipocyte function and aging: links between age-related changes in cell dynamics and altered fat tissue function. J. Am. Geriatr. Soc. 45, 959–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kokai, L. E. et al. Adipose stem cell function maintained with age: an intra-subject study of long-term cryopreserved cells. Aesthet. Surg. J. 37, 454–463 (2017).

    PubMed  Google Scholar 

  90. Wang, G. et al. Distinct adipose progenitor cells emerging with age drive active adipogenesis. Science 388, eadj0430 (2025).

    Article  CAS  PubMed  Google Scholar 

  91. Jacks, R. D. & Lumeng, C. N. Macrophage and T cell networks in adipose tissue. Nat. Rev. Endocrinol. 20, 50–61 (2024).

    Article  PubMed  Google Scholar 

  92. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dahlquist, K. J. V. & Camell, C. D. Aging leukocytes and the inflammatory microenvironment of the adipose tissue. Diabetes 71, 23–30 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Camell, C. D. et al. Aging induces an Nlrp3 inflammasome-dependent expansion of adipose B cells that impairs metabolic homeostasis. Cell Metab. 30, 1024–1039 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carey, A. et al. Age-associated accumulation of B cells promotes macrophage inflammation and inhibits lipolysis in adipose tissue during sepsis. Cell Rep. 43, 113967 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, Z. et al. A panoramic view of cell population dynamics in mammalian aging. Science 387, eadn3949 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bruno, M. E. C. et al. Accumulation of gammadelta T cells in visceral fat with aging promotes chronic inflammation. Geroscience 44, 1761–1778 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brigger, D. et al. Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age. Nat. Metab. 2, 688–702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goldberg, E. L. et al. IL-33 causes thermogenic failure in aging by expanding dysfunctional adipose ILC2. Cell Metab. 33, 2277–2287.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shan, B. et al. Cold-responsive adipocyte progenitors couple adrenergic signaling to immune cell activation to promote beige adipocyte accrual. Genes Dev. 35, 1333–1338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mahlakoiv, T. et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4, eaax0416 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zeyda, M. et al. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int. J. Obes. 37, 658–665 (2013).

    Article  CAS  Google Scholar 

  105. Spallanzani, R. G. et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci. Immunol. 4, eaaw3658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, Y. et al. Insulin signaling establishes a developmental trajectory of adipose regulatory T cells. Nat. Immunol. 22, 1175–1185 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Petrocelli, J. J. et al. Disuse-induced muscle fibrosis, cellular senescence, and senescence-associated secretory phenotype in older adults are alleviated during re-ambulation with metformin pre-treatment. Aging Cell 22, e13936 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Le Pelletier, L. et al. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. eLife 10, e62635 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat. Aging 1, 962–973 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4, e12997 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhou, Z. et al. Type 2 cytokine signaling in macrophages protects from cellular senescence and organismal aging. Immunity 57, 513–527 (2024).

    Article  CAS  PubMed  Google Scholar 

  119. Han, H. S. et al. Impaired BCAA catabolism in adipose tissues promotes age-associated metabolic derangement. Nat. Aging 3, 982–1000 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gasek, N. S., Kuchel, G. A., Kirkland, J. L. & Xu, M. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870–879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Zhang, L. et al. Cellular senescence: a key therapeutic target in aging and diseases. J. Clin. Investig. 132, e158450 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhu, Y. et al. Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. eBioMedicine 77, 103912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. He, Y. et al. PPARγ acetylation in adipocytes exacerbates BAT whitening and worsens age-associated metabolic dysfunction. Cells 12, 1424 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hamaoka, T. et al. Near-infrared time-resolved spectroscopy for assessing brown adipose tissue density in humans: a review. Front. Endocrinol. 11, 261 (2020).

    Article  Google Scholar 

  126. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Harms, M. & Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19, 1252–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Ikeda, K., Maretich, P. & Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 29, 191–200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cypess, A. M. et al. Emerging debates and resolutions in brown adipose tissue research. Cell Metab. 37, 12–33 (2025).

    Article  CAS  PubMed  Google Scholar 

  130. Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 693 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bertholet, A. M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kramarova, T. V. et al. Mitochondrial ATP synthase levels in brown adipose tissue are governed by the c-Fo subunit P1 isoform. FASEB J. 22, 55–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Hanssen, M. J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Morrison, S. F., Madden, C. J. & Tupone, D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cypess, A. M. et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 21, 33–38 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Blondin, D. P. et al. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 32, 287–300.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Rahbani, J. F. et al. ADRA1A-Gα(q) signalling potentiates adipocyte thermogenesis through CKB and TNAP. Nat. Metab. 4, 1459–1473 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chouchani, E. T., Kazak, L. & Spiegelman, B. M. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 29, 27–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Sun, Y. et al. Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature 593, 580–585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kazak, L. et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat. Metab. 1, 360–370 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bunk, J. et al. The futile creatine cycle powers UCP1-independent thermogenesis in classical BAT. Nat. Commun. 16, 3221 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee, P. et al. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab. 23, 602–609 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Yoneshiro, T. et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572, 614–619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Weir, G. et al. Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab. 27, 1348–1355.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mills, E. L. et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560, 102–106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, Z. et al. Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Rep. 21, e50085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, G. X. et al. The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat. Med. 20, 1436–1443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hondares, E. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286, 12983–12990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kong, X. et al. Brown adipose tissue controls skeletal muscle function via the secretion of myostatin. Cell Metab. 28, 631–643.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sugimoto, S. et al. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat. Metab. 4, 775–790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lynes, M. D. et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat. Med. 23, 631–637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tajima, K. et al. Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nat. Metab. 1, 886–898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Becher, T. et al. Brown adipose tissue is associated with cardiometabolic health. Nat. Med. 27, 58–65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bahler, L. et al. Differences in sympathetic nervous stimulation of brown adipose tissue between the young and old, and the lean and obese. J. Nucl. Med. 57, 372–377 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Silva, G. D. N. & Amato, A. A. Thermogenic adipose tissue aging: mechanisms and implications. Front. Cell Dev. Biol. 10, 955612 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yoneshiro, T. et al. Impact of UCP1 and beta3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans. Int. J. Obes. 37, 993–998 (2013).

    Article  CAS  Google Scholar 

  162. Feng, X. et al. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat. Commun. 14, 3208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Song, A. et al. Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. J. Clin. Invest. 130, 247–257 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Sun, W. et al. snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature 587, 98–102 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Sun, W., Modica, S., Dong, H. & Wolfrum, C. Plasticity and heterogeneity of thermogenic adipose tissue. Nat. Metab. 3, 751–761 (2021).

    Article  PubMed  Google Scholar 

  166. Lee, Y. H., Petkova, A. P., Konkar, A. A. & Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Shamsi, F. et al. Vascular smooth muscle-derived Trpv1+ progenitors are a source of cold-induced thermogenic adipocytes. Nat. Metab. 3, 485–495 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gabaldon, A. M., Florez-Duquet, M. L., Hamilton, J. S., McDonald, R. B. & Horwitz, B. A. Effects of age and gender on brown fat and skeletal muscle metabolic responses to cold in F344 rats. Am. J. Physiol. 268, R931–R941 (1995).

    CAS  PubMed  Google Scholar 

  169. Huang, Z. et al. Brown adipose tissue involution associated with progressive restriction in progenitor competence. Cell Rep. 39, 110575 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pan, X. X. et al. Senescent T cell induces brown adipose tissue “whitening” via secreting IFN-γ. Front. Cell Dev. Biol. 9, 637424 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jiang, Y., Berry, D. C. & Graff, J. M. Distinct cellular and molecular mechanisms for beta3 adrenergic receptor-induced beige adipocyte formation. eLife 6, e30329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Rui, L. Brown and beige adipose tissues in health and disease. Compr. Physiol. 7, 1281–1306 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ma, X., Xu, L., Gavrilova, O. & Mueller, E. Role of forkhead box protein A3 in age-associated metabolic decline. Proc. Natl Acad. Sci. USA 111, 14289–14294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang, W. et al. A PRDM16-driven metabolic signal from adipocytes regulates precursor cell fate. Cell Metab. 30, 174–189.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, Q. et al. Post-translational control of beige fat biogenesis by PRDM16 stabilization. Nature 609, 151–158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Duteil, D. et al. Lsd1 prevents age-programed loss of beige adipocytes. Proc. Natl Acad. Sci. USA 114, 5265–5270 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Majeed, Y. et al. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Sci. Rep. 11, 8177 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pardo, P. S. & Boriek, A. M. SIRT1 regulation in ageing and obesity. Mech. Ageing Dev. 188, 111249 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Altshuler-Keylin, S. et al. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab. 24, 402–419 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wu, R. et al. Genetically prolonged beige fat in male mice confers long-lasting metabolic health. Nat. Commun. 14, 2731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Park, J. et al. Estrogen counteracts age-related decline in beige adipogenesis through the NAMPT-regulated ER stress response. Nat. Aging 4, 839–853 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Berry, D. C. et al. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab. 25, 481 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Chen, H. J., Meng, T., Gao, P. J. & Ruan, C. C. The role of brown adipose tissue dysfunction in the development of cardiovascular disease. Front. Endocrinol. 12, 652246 (2021).

    Article  Google Scholar 

  185. Gilani, A., Stoll, L., Homan, E. A. & Lo, J. C. Adipose signals regulating distal organ health and disease. Diabetes 73, 169–177 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Younossi, Z. M. Non-alcoholic fatty liver disease — a global public health perspective. J. Hepatol. 70, 531–544 (2019).

    Article  PubMed  Google Scholar 

  187. Castera, L., Friedrich-Rust, M. & Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 1264–1281.e4 (2019).

    Article  PubMed  Google Scholar 

  188. Mantovani, A. et al. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 111S, 154170 (2020).

    Article  PubMed  Google Scholar 

  189. Loomba, R., Friedman, S. L. & Shulman, G. I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184, 2537–2564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ipsen, D. H., Lykkesfeldt, J. & Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 75, 3313–3327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nassir, F. NAFLD: mechanisms, treatments, and biomarkers. Biomolecules 12, 824 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Saponaro, C. et al. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int. 42, 2418–2427 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Micu, E. S. et al. Systemic and adipose tissue inflammation in NASH: correlations with histopathological aspects. Rom. J. Morphol. Embryol. 62, 509–515 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Yamamuro, T. et al. Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nat. Commun. 11, 4150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Azzu, V., Vacca, M., Virtue, S., Allison, M. & Vidal-Puig, A. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology 158, 1899–1912 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Martinez-Sanchez, C. et al. Therapeutic targeting of adipose tissue macrophages ameliorates liver fibrosis in non-alcoholic fatty liver disease. JHEP Rep. 5, 100830 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Boesch, M. et al. Adipose tissue macrophage dysfunction is associated with a breach of vascular integrity in NASH. J. Hepatol. 80, 397–408 (2024).

    Article  CAS  PubMed  Google Scholar 

  198. Donia, T. & Khamis, A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Env. Sci. Pollut. Res. Int. 28, 34121–34153 (2021).

    Article  CAS  Google Scholar 

  199. Teixeira, T. M. et al. Activation of Nrf2-antioxidant signaling by 1,25-dihydroxycholecalciferol prevents leptin-induced oxidative stress and inflammation in human endothelial cells. J. Nutr. 147, 506–513 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Wang, Z. V. & Scherer, P. E. Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li, R. et al. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am. J. Physiol. Endocrinol. Metab. 293, E1703–E1708 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Dekker, J. M. et al. Prognostic value of adiponectin for cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 93, 1489–1496 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, Y. et al. Adipocyte modulation of high-density lipoprotein cholesterol. Circulation 121, 1347–1355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chui, P. C., Guan, H. P., Lehrke, M. & Lazar, M. A. PPARγ regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J. Clin. Invest. 115, 2244–2256 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Schmidt, A. F. et al. Biomedical consequences of elevated cholesterol-containing lipoproteins and apolipoproteins on cardiovascular and non-cardiovascular outcomes. Commun. Med. 3, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mukama, T., Srour, B., Johnson, T., Katzke, V. & Kaaks, R. IGF-1 and risk of morbidity and mortality from cancer, cardiovascular diseases, and all causes in EPIC-Heidelberg. J. Clin. Endocrinol. Metab. 108, e1092–e1105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    Article  PubMed  Google Scholar 

  208. O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Finlin, B. S. et al. The beta3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Invest. 130, 2319–2331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17, 200–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Berbee, J. F. et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat. Commun. 6, 6356 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Cypess, A. M. et al. Emerging debates and resolutions in brown adipose tissue research. Cell Metab. https://doi.org/10.1016/j.cmet.2024.11.002 (2024).

    Article  PubMed  Google Scholar 

  213. Queiroz, M. & Sena, C. M. Perivascular adipose tissue in age-related vascular disease. Ageing Res. Rev. 59, 101040 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Gong, H. et al. Age-dependent tissue expression patterns of Sirt1 in senescence-accelerated mice. Mol. Med. Rep. 10, 3296–3302 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  217. Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    Article  PubMed  Google Scholar 

  218. Lee, D. J. W., Hodzic Kuerec, A. & Maier, A. B. Targeting ageing with rapamycin and its derivatives in humans: a systematic review. Lancet Healthy Longev. 5, e152–e162 (2024).

    Article  PubMed  Google Scholar 

  219. Houde, V. P. et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59, 1338–1348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 1638–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Johnston, O., Rose, C. L., Webster, A. C. & Gill, J. S. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J. Am. Soc. Nephrol. 19, 1411–1418 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Shan, T. et al. Adipocyte-specific deletion of mTOR inhibits adipose tissue development and causes insulin resistance in mice. Diabetologia 59, 1995–2004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. de Cabo, R., Carmona-Gutierrez, D., Bernier, M., Hall, M. N. & Madeo, F. The search for antiaging interventions: from elixirs to fasting regimens. Cell 157, 1515–1526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Speakman, J. R. & Westerterp, K. R. Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96 y of age. Am. J. Clin. Nutr. 92, 826–834 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Corrales, P. et al. Long-term caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity. Aging Cell 18, e12948 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Corrales, P. et al. microRNAs-mediated regulation of insulin signaling in white adipose tissue during aging: role of caloric restriction. Aging Cell 22, e13919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yu, D. et al. Calorie-restriction-induced insulin sensitivity is mediated by adipose mTORC2 and not required for lifespan extension. Cell Rep. 29, 236–248.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Chinnapaka, S., Malekzadeh, H., Tirmizi, Z. & Ejaz, A. Caloric restriction mitigates age-associated senescence characteristics in subcutaneous adipose tissue-derived stem cells. Aging 16, 7535–7552 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Suchacki, K. J. et al. The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent. eLife 12, e88080 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Panda, S., Maier, G. & Villareal, D. T. Targeting energy intake and circadian biology to engage mechanisms of aging in older adults with obesity: calorie restriction and time-restricted eating. J. Gerontol. Ser. A 78, 79–85 (2023).

    Article  Google Scholar 

  232. Foretz, M., Guigas, B. & Viollet, B. Metformin: update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 19, 460–476 (2023).

    Article  CAS  PubMed  Google Scholar 

  233. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wang, C. P., Lorenzo, C. & Espinoza, S. E. Frailty attenuates the impact of metformin on reducing mortality in older adults with type 2 diabetes. J. Endocrinol. Diabetes Obes. 2, 1031 (2014).

    PubMed  PubMed Central  Google Scholar 

  237. Sundelin, E., Jensen, J. B., Jakobsen, S., Gormsen, L. C. & Jessen, N. Metformin biodistribution: a key to mechanisms of action? J. Clin. Endocrinol. Metab. 105, dgaa332 (2020).

    Article  PubMed  Google Scholar 

  238. Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Grycel, S. et al. Metformin treatment affects adipocytokine secretion and lipid composition in adipose tissues of diet-induced insulin-resistant rats. Nutrition 63-64, 126–133 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Tokubuchi, I. et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS ONE 12, e0171293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Geerling, J. J. et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63, 880–891 (2014).

    Article  CAS  PubMed  Google Scholar 

  242. Holst, J. J. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology 107, 1848–1855 (1994).

    Article  CAS  PubMed  Google Scholar 

  243. Kusminski, C. M. et al. Transforming obesity: the advancement of multi-receptor drugs. Cell 187, 3829–3853 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  245. Bossart, M. et al. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab. 34, 59–74.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  246. Frias, J. P. et al. The sustained effects of a Dual GIP/GLP-1 receptor agonist, NNC0090-2746, in patients with type 2 diabetes. Cell Metab. 26, 343–352.e2 (2017).

    Article  CAS  PubMed  Google Scholar 

  247. Davis, E. M. & Sandoval, D. A. Glucagon-like peptide-1: actions and influence on pancreatic hormone function. Compr. Physiol. 10, 577–595 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Dossat, A. M., Lilly, N., Kay, K. & Williams, D. L. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J. Neurosci. 31, 14453–14457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Nauck, M. A. et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am. J. Physiol. 273, E981–E988 (1997).

    CAS  PubMed  Google Scholar 

  250. Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article  CAS  PubMed  Google Scholar 

  251. Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  253. Samms, R. J. et al. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Investig. 131, e146353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Yu, X. et al. The GIP receptor activates futile calcium cycling in white adipose tissue to increase energy expenditure and drive weight loss in mice. Cell Metab. 37, 187–204.e7 (2025).

    Article  CAS  PubMed  Google Scholar 

  255. Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).

    Article  CAS  PubMed  Google Scholar 

  256. Gutierrez, A. D. et al. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep. Med. 3, 100813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Samms, R. J. et al. Tirzepatide induces a thermogenic-like amino acid signature in brown adipose tissue. Mol. Metab. 64, 101550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Ida, S. et al. Effects of antidiabetic drugs on muscle mass in type 2 diabetes mellitus. Curr. Diabetes Rev. 17, 293–303 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Sodhi, M., Rezaeianzadeh, R., Kezouh, A. & Etminan, M. Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. JAMA 330, 1795–1797 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Chen, W., Cai, P., Zou, W. & Fu, Z. Psychiatric adverse events associated with GLP-1 receptor agonists: a real-world pharmacovigilance study based on the FDA adverse event reporting system database. Front. Endocrinol. 15, 1330936 (2024).

    Article  Google Scholar 

  261. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  262. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. eBioMedicine 36, 18–28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Cohn, R. L., Gasek, N. S., Kuchel, G. A. & Xu, M. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol. 33, 9–17 (2023).

    Article  CAS  PubMed  Google Scholar 

  265. Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Tao, W., Yu, Z. & Han, J. J. Single-cell senescence identification reveals senescence heterogeneity, trajectory, and modulators. Cell Metab. 36, 1126–1143.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  267. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23, 350–359 (2016).

    Article  CAS  PubMed  Google Scholar 

  269. de Paula, F. J. A. & Rosen, C. J. Marrow adipocytes: origin, structure, and function. Annu. Rev. Physiol. 82, 461–484 (2020).

    Article  PubMed  Google Scholar 

  270. Horowitz, M. C. et al. Bone marrow adipocytes. Adipocyte 6, 193–204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. de Araujo, I. M. et al. Marrow adipose tissue spectrum in obesity and type 2 diabetes mellitus. Eur. J. Endocrinol. 176, 21–30 (2017).

    Article  PubMed  Google Scholar 

  272. Fazeli, P. K. et al. The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight 6, e138636 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Cawthorn, W. P. et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20, 368–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Li, Z. et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife 11, e78496 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Tratwal, J., Rojas-Sutterlin, S., Bataclan, C., Blum, S. & Naveiras, O. Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Pract. Res. Clin. Endocrinol. Metab. 35, 101564 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to P. Scherer (University of Texas Southwestern Medical Center), T. McLaughlin (Stanford) and Z. Zhang (Wuhan University) for their insightful suggestions and comments. Q.A.W. is supported by National Institutes of Health grants R56AG063854, R01AG063854, R01HD096152, R01DK128907, California Institute for Regenerative Medicine grant DISC0-15689 and the American Diabetes Association Junior Faculty Development Award 1-19-JDF-023.

Author information

Authors and Affiliations

Authors

Contributions

Q.A.W. and G.W. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Qiong A. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Li Qiang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Song, A. & Wang, Q.A. Adipose tissue ageing: implications for metabolic health and lifespan. Nat Rev Endocrinol 21, 623–637 (2025). https://doi.org/10.1038/s41574-025-01142-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-025-01142-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing