Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Body weight regulation models in humans: insights for testing their validity

Abstract

Maintaining a ‘healthy’ body weight is crucial for survival and involves a partially understood regulatory system that adjusts energy intake and energy output (expenditure and losses) for that purpose. Several models of body weight regulation exist, but experiments testing their validity are lacking. This Review elaborates on how to test the validity of body weight regulation models in humans. We begin by highlighting the interaction between the obesogenic environment and the individual’s biological sensitivity to such environment, which triggers obesity in many, but not all, individuals. We discuss the identity of the regulated parameter(s), often considered to be body weight or body adiposity. We then focus on two models: set point and dual-intervention point. Under the set point model, obesity results from a malfunction of the system (leptin resistance) for preventing weight increases above the defended value. Under the dual-intervention point model, obesity occurs because the system tolerates a wide range of weights in some individuals. This key difference predicts different compensatory responses to energy balance perturbations in individuals according to their weight status, thus becoming instrumental in testing the validity of the models. Finally, we discuss the design of proof-of-concept experiments to advance the understanding of body weight regulation in humans.

Key points

  • The biological mechanisms that regulate body weight in humans are incompletely understood, yet their interaction with the environment determines body weight.

  • The nature of the regulated parameter, often considered to be body weight, is indeed unknown. Adiposity, lean mass and glycogen stores, among other parameters, are also potential candidates.

  • Different body weight regulation models have been proposed, which exert their regulation by triggering compensatory responses in energy intake and energy output (energy expenditure and energy losses).

  • The set point model proposes that body weight is defended at a fixed level, whereas the dual-intervention point model proposes that body weight is maintained between two boundaries, that is, the lower and upper intervention points.

  • We discuss key aspects for the design and interpretation of experiments aimed at testing the validity of body weight regulation models in humans, with a focus on comparing the set point and the dual-intervention point models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BMI is a function of the obesogenic environment intensity and biological sensitivity to the obesogenic environment.
Fig. 2: Models of homeostatic regulation.
Fig. 3: Metabolic and compensatory responses to energy deficit.
Fig. 4: Predicted body weight according to the broadness of the zone of indifference in the dual-intervention point model and the intensity of the obesogenic environment.

Similar content being viewed by others

References

  1. Busetto, L. et al. A new framework for the diagnosis, staging and management of obesity in adults. Nat. Med. 30, 2395–2399 (2024).

    CAS  PubMed  Google Scholar 

  2. Rubino, F. et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 13, 221–262 (2025).

    PubMed  Google Scholar 

  3. Farooqi, S. Obesity and thinness: insights from genetics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220205 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Collet, T. H. et al. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol. Metab. 6, 1321–1329 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Farooqi, I. S. et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Funcke, J. B. et al. Rare antagonistic leptin variants and severe, early-onset obesity. N. Engl. J. Med. 388, 2253–2261 (2023).

    CAS  PubMed  Google Scholar 

  7. Licinio, J. et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc. Natl Acad. Sci. USA 101, 4531–4536 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Magkos, F. et al. On the pathogenesis of obesity: causal models and missing pieces of the puzzle. Nat. Metab. 6, 1856–1865 (2024).

    PubMed  Google Scholar 

  9. Speakman, J. R., Sorensen, T. I. A., Hall, K. D. & Allison, D. B. Unanswered questions about the causes of obesity. Science 381, 944–946 (2023).

    CAS  PubMed  Google Scholar 

  10. World Obesity Federation. World Obesity Atlas 2023. https://data.worldobesity.org/publications/?cat=19 (2023).

  11. NCD Risk Factor Collaboration (NCD-RisC) Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

    Google Scholar 

  12. Boutari, C. & Mantzoros, C. S. A. 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 133, 155217 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 403, 1027–1050 (2024).

    Google Scholar 

  14. Pedersen, M. M., Ekstrom, C. T. & Sorensen, T. I. A. Emergence of the obesity epidemic preceding the presumed obesogenic transformation of the society. Sci. Adv. 9, eadg6237 (2023).

    PubMed  PubMed Central  Google Scholar 

  15. Fernandez-Verdejo, R., Sanchez-Delgado, G. & Ravussin, E. Energy expenditure in humans: principles, methods, and changes throughout the life course. Annu. Rev. Nutr. 44, 51–76 (2024).

    CAS  PubMed  Google Scholar 

  16. Frankl, J., Piaggi, P., Foley, J. E., Krakoff, J. & Votruba, S. B. In vitro lipolysis is associated with whole-body lipid oxidation and weight gain in humans. Obesity 25, 207–214 (2017).

    CAS  PubMed  Google Scholar 

  17. Ravussin, E. et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 318, 467–472 (1988).

    CAS  PubMed  Google Scholar 

  18. Swinburn, B. A. et al. Insulin resistance associated with lower rates of weight gain in Pima Indians. J. Clin. Invest. 88, 168–173 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Levitsky, D. A. et al. The rise and fall of physiological theories of the control of human eating behavior. Front. Nutr. 9, 826334 (2022).

    PubMed  PubMed Central  Google Scholar 

  20. Chow, C. C. & Hall, K. D. Short and long-term energy intake patterns and their implications for human body weight regulation. Physiol. Behav. 134, 60–65 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dulloo, A. G. Physiology of weight regain: lessons from the classic Minnesota starvation experiment on human body composition regulation. Obes. Rev. 22, e13189 (2021).

    PubMed  Google Scholar 

  22. Roberts, S. B. et al. Energy expenditure and subsequent nutrient intakes in overfed young men. Am. J. Physiol. 259, R461–R469 (1990).

    CAS  PubMed  Google Scholar 

  23. Roberts, S. B. et al. Control of food intake in older men. JAMA 272, 1601–1606 (1994).

    CAS  PubMed  Google Scholar 

  24. Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ravussin, E., Valencia, M. E., Esparza, J., Bennett, P. H. & Schulz, L. O. Effects of a traditional lifestyle on obesity in Pima Indians. Diabetes Care 17, 1067–1074 (1994).

    CAS  PubMed  Google Scholar 

  26. Speakman, J. R. & Hall, K. D. Models of body weight and fatness regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220231 (2023).

    PubMed  PubMed Central  Google Scholar 

  27. Keesey, R. E. & Powley, T. L. The regulation of body weight. Annu. Rev. Psychol. 37, 109–133 (1986).

    CAS  PubMed  Google Scholar 

  28. Payne, P. R. & Dugdale, A. E. Mechanisms for the control of body-weight. Lancet 309, 583–586 (1977).

    Google Scholar 

  29. Wirtshafter, D. & Davis, J. D. Set points, settling points, and the control of body weight. Physiol. Behav. 19, 75–78 (1977).

    CAS  PubMed  Google Scholar 

  30. Hall, K. D. & Guo, J. Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology 152, 1718–1727.e3 (2017).

    PubMed  Google Scholar 

  31. Bar, A., Karin, O., Mayo, A., Ben-Zvi, D. & Alon, U. Rules for body fat interventions based on an operating point mechanism. iScience 26, 106047 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Speakman, J. R. & Elmquist, J. K. Obesity: an evolutionary context. Life Metab. 1, 10–24 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Levitsky, D. A. Putting behavior back into feeding behavior: a tribute to George Collier. Appetite 38, 143–148 (2002).

    PubMed  Google Scholar 

  34. Adams, C. S., Korytko, A. I. & Blank, J. L. A novel mechanism of body mass regulation. J. Exp. Biol. 204, 1729–1734 (2001).

    CAS  PubMed  Google Scholar 

  35. Jansson, J. O. et al. Body weight homeostat that regulates fat mass independently of leptin in rats and mice. Proc. Natl Acad. Sci. USA 115, 427–432 (2018).

    CAS  PubMed  Google Scholar 

  36. Ohlsson, C. & Jansson, J. O. The gravitostat theory: more data needed. eClinicalMedicine 27, 100530 (2020).

    PubMed  PubMed Central  Google Scholar 

  37. Wiedmer, P., Boschmann, M. & Klaus, S. Gender dimorphism of body mass perception and regulation in mice. J. Exp. Biol. 207, 2859–2866 (2004).

    PubMed  Google Scholar 

  38. Jansson, J. O. et al. The dual hypothesis of homeostatic body weight regulation, including gravity-dependent and leptin-dependent actions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220219 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kennedy, G. C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B Biol. Sci. 140, 578–596 (1953).

    CAS  PubMed  Google Scholar 

  40. Cnop, M. et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments. Diabetes 51, 1005–1015 (2002).

    CAS  PubMed  Google Scholar 

  41. Tan, H. L. et al. Leptin-activated hypothalamic BNC2 neurons acutely suppress food intake. Nature 636, 198–205 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Halaas, J. L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543–546 (1995).

    CAS  PubMed  Google Scholar 

  43. Murgatroyd, P. R. et al. Leptin does not respond to 48 h fat deposition or mobilization in women. Int. J. Obes. Relat. Metab. Disord. 27, 457–462 (2003).

    CAS  PubMed  Google Scholar 

  44. Dulloo, A. G. Collateral fattening: when a deficit in lean body mass drives overeating. Obesity 25, 277–279 (2017).

    PubMed  Google Scholar 

  45. Schwartz, M. W. et al. Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52, 232–238 (2003).

    CAS  PubMed  Google Scholar 

  46. Flatt, J. P. The difference in the storage capacities for carbohydrate and for fat, and its implications in the regulation of body weight. Ann. N. Y. Acad. Sci. 499, 104–123 (1987).

    CAS  PubMed  Google Scholar 

  47. Sonko, B. J. et al. Non-invasive techniques for assessing carbohydrate flux: II. Measurement of deposition using 13C-glucose. Acta Physiol. Scand. 147, 99–108 (1993).

    CAS  PubMed  Google Scholar 

  48. Pannacciulli, N. et al. The 24-h carbohydrate oxidation rate in a human respiratory chamber predicts ad libitum food intake. Am. J. Clin. Nutr. 86, 625–632 (2007).

    CAS  PubMed  Google Scholar 

  49. Stubbs, R. J., Harbron, C. G., Murgatroyd, P. R. & Prentice, A. M. Covert manipulation of dietary fat and energy density: effect on substrate flux and food intake in men eating ad libitum. Am. J. Clin. Nutr. 62, 316–329 (1995).

    CAS  PubMed  Google Scholar 

  50. Shetty, P. S. et al. Alterations in fuel selection and voluntary food intake in response to isoenergetic manipulation of glycogen stores in humans. Am. J. Clin. Nutr. 60, 534–543 (1994).

    CAS  PubMed  Google Scholar 

  51. Stubbs, R. J., Murgatroyd, P. R., Goldberg, G. R. & Prentice, A. M. Carbohydrate balance and the regulation of day-to-day food intake in humans. Am. J. Clin. Nutr. 57, 897–903 (1993).

    CAS  PubMed  Google Scholar 

  52. Snitker, S., Larson, D. E., Tataranni, P. A. & Ravussin, E. Ad libitum food intake in humans after manipulation of glycogen stores. Am. J. Clin. Nutr. 65, 941–946 (1997).

    CAS  PubMed  Google Scholar 

  53. Galgani, J. E., de Jonge, L., Most, M. M., Bray, G. A. & Smith, S. R. Effect of a 3-day high-fat feeding period on carbohydrate balance and ad libitum energy intake in humans. Int. J. Obes. 34, 886–891 (2010).

    CAS  Google Scholar 

  54. Eckel, R. H. et al. Carbohydrate balance predicts weight and fat gain in adults. Am. J. Clin. Nutr. 83, 803–808 (2006).

    CAS  PubMed  Google Scholar 

  55. Hervey, G. R. Regulation of energy balance. Nature 222, 629–631 (1969).

    CAS  PubMed  Google Scholar 

  56. Cabanac, M. & Richard, D. The nature of the ponderostat: Hervey’s hypothesis revived. Appetite 26, 45–54 (1996).

    CAS  PubMed  Google Scholar 

  57. Rivest, S., Deshaies, Y. & Richard, D. Effects of corticotropin-releasing factor on energy balance in rats are sex dependent. Am. J. Physiol. 257, R1417–R1422 (1989).

    CAS  PubMed  Google Scholar 

  58. Perry, R. J. et al. Leptin’s hunger-suppressing effects are mediated by the hypothalamic–pituitary–adrenocortical axis in rodents. Proc. Natl Acad. Sci. USA 116, 13670–13679 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Izzi-Engbeaya, C. et al. Effects of corticosterone within the hypothalamic arcuate nucleus on food intake and body weight in male rats. Mol. Metab. 36, 100972 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rasmussen, M., Almdal, T., Bratholm, P. & Christensen, N. J. Elevated β2-adrenoceptor protein concentration in adipose tissue from obese subjects is closely related to the body mass index and waist/hip ratio. Clin. Sci. 104, 93–102 (2003).

    CAS  Google Scholar 

  61. Asnicar, M. A. et al. Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology 142, 4394–4400 (2001).

    CAS  PubMed  Google Scholar 

  62. Haluzik, M., Matoulek, M., Svacina, S., Hilgertova, J. & Haas, T. The influence of short-term fasting on serum leptin levels, and selected hormonal and metabolic parameters in morbidly obese and lean females. Endocr. Res. 27, 251–260 (2001).

    CAS  PubMed  Google Scholar 

  63. Rojdmark, S. & Rossner, S. Decreased dopaminergic control of prolactin secretion in male obesity: normalization by fasting. Metabolism 40, 191–195 (1991).

    CAS  PubMed  Google Scholar 

  64. Wolfe, R. R. et al. Effect of short-term fasting on lipolytic responsiveness in normal and obese human subjects. Am. J. Physiol. 252, E189–E196 (1987).

    CAS  PubMed  Google Scholar 

  65. Colling, C. et al. Changes in serum cortisol levels after 10 days of overfeeding and fasting. Am. J. Physiol. Endocrinol. Metab. 324, E506–E513 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sorensen, T. I. A. An adiposity force induces obesity in humans independently of a normal energy balance system — a thought experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220203 (2023).

    PubMed  PubMed Central  Google Scholar 

  67. Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Medina-Gomez, G. et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 3, e64 (2007).

    PubMed  PubMed Central  Google Scholar 

  69. Chitraju, C. et al. Mice lacking triglyceride synthesis enzymes in adipose tissue are resistant to diet-induced obesity. Elife 12, RP88049 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Arner, P., Andersson, D. P., Backdahl, J., Dahlman, I. & Ryden, M. Weight gain and impaired glucose metabolism in women are predicted by inefficient subcutaneous fat cell lipolysis. Cell Metab. 28, 45–54.e3 (2018).

    CAS  PubMed  Google Scholar 

  71. Blundell, J. E. et al. The drive to eat in homo sapiens: energy expenditure drives energy intake. Physiol. Behav. 219, 112846 (2020).

    CAS  PubMed  Google Scholar 

  72. Hopkins, M. et al. Modelling the associations between fat-free mass, resting metabolic rate and energy intake in the context of total energy balance. Int. J. Obes. 40, 312–318 (2016).

    CAS  Google Scholar 

  73. Casanova, N. et al. Associations between high-metabolic rate organ masses and fasting hunger: a study using whole-body magnetic resonance imaging in healthy males. Physiol. Behav. 250, 113796 (2022).

    CAS  PubMed  Google Scholar 

  74. Spiering, M. J. The mystery of metformin. J. Biol. Chem. 294, 6689–6691 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444–448 (2020).

    CAS  PubMed  Google Scholar 

  76. Gerstein, H. C. et al. Growth differentiation factor 15 as a novel biomarker for metformin. Diabetes Care 40, 280–283 (2017).

    CAS  PubMed  Google Scholar 

  77. Tsai, V. W. W., Husaini, Y., Sainsbury, A., Brown, D. A. & Breit, S. N. The MIC–1/GDF15–GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 28, 353–368 (2018).

    CAS  PubMed  Google Scholar 

  78. Lund, J. & Clemmensen, C. Physiological protection against weight gain: evidence from overfeeding studies and future directions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220229 (2023).

    PubMed  PubMed Central  Google Scholar 

  79. Ravussin, Y., Leibel, R. L. & Ferrante, A. W. Jr A missing link in body weight homeostasis: the catabolic signal of the overfed state. Cell Metab. 20, 565–572 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Galgani, J. E. & Fernandez-Verdejo, R. Pathophysiological role of metabolic flexibility on metabolic health. Obes. Rev. 22, e13131 (2021).

    CAS  PubMed  Google Scholar 

  81. Maclean, P. S., Bergouignan, A., Cornier, M. A. & Jackman, M. R. Biology’s response to dieting: the impetus for weight regain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R581–R600 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Moran, T. H. & Ladenheim, E. E. Adiposity signaling and meal size control. Physiol. Behav. 103, 21–24 (2011).

    CAS  PubMed  Google Scholar 

  83. Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332, 621–628 (1995).

    CAS  PubMed  Google Scholar 

  84. Goldsmith, R. et al. Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R79–R88 (2010).

    CAS  PubMed  Google Scholar 

  85. Diaz, E. O., Prentice, A. M., Goldberg, G. R., Murgatroyd, P. R. & Coward, W. A. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am. J. Clin. Nutr. 56, 641–655 (1992).

    CAS  PubMed  Google Scholar 

  86. Johannsen, D. L., Marlatt, K. L., Conley, K. E., Smith, S. R. & Ravussin, E. Metabolic adaptation is not observed after 8 weeks of overfeeding but energy expenditure variability is associated with weight recovery. Am. J. Clin. Nutr. 110, 805–813 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. Lundgren, J. R. et al. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 384, 1719–1730 (2021).

    PubMed  Google Scholar 

  88. Martin, C. K. et al. Effect of different doses of supervised exercise on food intake, metabolism, and non-exercise physical activity: the E-MECHANIC randomized controlled trial. Am. J. Clin. Nutr. 110, 583–592 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Popkin, B. M., Duffey, K. & Gordon-Larsen, P. Environmental influences on food choice, physical activity and energy balance. Physiol. Behav. 86, 603–613 (2005).

    CAS  PubMed  Google Scholar 

  90. Ferrannini, G. et al. Energy balance after sodium-glucose cotransporter 2 inhibition. Diabetes Care 38, 1730–1735 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Allison, K. C., Berkowitz, R. I., Brownell, K. D., Foster, G. D. & Wadden, T. A. Albert J. (“Mickey”) Stunkard, M.D.Obesity 22, 1937–1938 (2014).

    PubMed  Google Scholar 

  92. Ranea-Robles, P. et al. Time-resolved effects of short-term overfeeding on energy balance in mice. Diabetes 74, 502–513 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ravussin, Y. et al. Evidence for a non-leptin system that defends against weight gain in overfeeding. Cell Metab. 28, 289–299.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Muller, M. J., Heymsfield, S. B. & Bosy-Westphal, A. Are metabolic adaptations to weight changes an artefact? Am. J. Clin. Nutr. 114, 1386–1395 (2021).

    PubMed  Google Scholar 

  95. Basolo, A. et al. Effects of underfeeding and oral vancomycin on gut microbiome and nutrient absorption in humans. Nat. Med. 26, 589–598 (2020).

    CAS  PubMed  Google Scholar 

  96. Yoshimura, E. et al. Effects of energy loads on energy and nutrient absorption rates and gut microbiome in humans: a randomized crossover trial. Obesity 32, 262–272 (2024).

    CAS  PubMed  Google Scholar 

  97. Speakman, J. R. et al. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis. Model. Mech. 4, 733–745 (2011).

    PubMed  PubMed Central  Google Scholar 

  98. Franz, M. J. et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 107, 1755–1767 (2007).

    PubMed  Google Scholar 

  99. Fothergill, E. et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity 24, 1612–1619 (2016).

    PubMed  Google Scholar 

  100. Sumithran, P. et al. Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365, 1597–1604 (2011).

    CAS  PubMed  Google Scholar 

  101. Bouchard, C. et al. Overfeeding in identical twins: 5-year postoverfeeding results. Metabolism 45, 1042–1050 (1996).

    CAS  PubMed  Google Scholar 

  102. Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    CAS  PubMed  Google Scholar 

  103. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575 (1999).

    CAS  PubMed  Google Scholar 

  104. Flier, J. S. & Maratos-Flier, E. Leptin’s physiologic role: does the emperor of energy balance have no clothes? Cell Metab. 26, 24–26 (2017).

    CAS  PubMed  Google Scholar 

  105. Magkos, F. et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab. 23, 591–601 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Galgani, J. E. et al. Leptin replacement prevents weight loss-induced metabolic adaptation in congenital leptin-deficient patients. J. Clin. Endocrinol. Metab. 95, 851–855 (2010).

    CAS  PubMed  Google Scholar 

  107. Knuth, N. D. et al. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity 22, 2563–2569 (2014).

    PubMed  Google Scholar 

  108. Redman, L. M. et al. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 27, 805–815.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kissileff, H. R. et al. Leptin reverses declines in satiation in weight-reduced obese humans. Am. J. Clin. Nutr. 95, 309–317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ferrannini, E., Rosenbaum, M. & Leibel, R. L. The threshold shift paradigm of obesity: evidence from surgically induced weight loss. Am. J. Clin. Nutr. 100, 996–1002 (2014).

    CAS  PubMed  Google Scholar 

  111. Zelissen, P. M. et al. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial. Diabetes Obes. Metab. 7, 755–761 (2005).

    CAS  PubMed  Google Scholar 

  112. Zhao, S. et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 30, 706–719.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Speakman, J. R. A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis. Cell Metab. 6, 5–12 (2007).

    CAS  PubMed  Google Scholar 

  114. Speakman, J. R. The evolution of body fatness: trading off disease and predation risk. J. Exp. Biol. 221, jeb167254 (2018).

    PubMed  Google Scholar 

  115. Yanovski, J. A. et al. A prospective study of holiday weight gain. N. Engl. J. Med. 342, 861–867 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zheng, Y. et al. Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA 318, 255–269 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Murthy, V. L. et al. Metabolic liability for weight gain in early adulthood. Cell Rep. Med. 5, 101548 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lund, C. et al. Protection against overfeeding-induced weight gain is preserved in obesity but does not require FGF21 or MC4R. Nat. Commun. 15, 1192 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Welt, C. K. et al. Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997 (2004).

    CAS  PubMed  Google Scholar 

  120. Pickering, T. R., Clarke, R. J. & Moggi-Cecchi, J. Role of carnivores in the accumulation of the Sterkfontein Member 4 hominid assemblage: a taphonomic reassessment of the complete hominid fossil sample (1936–1999). Am. J. Phys. Anthropol. 125, 1–15 (2004).

    PubMed  Google Scholar 

  121. Shultz, S., Nelson, E. & Dunbar, R. I. Hominin cognitive evolution: identifying patterns and processes in the fossil and archaeological record. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2130–2140 (2012).

    PubMed  PubMed Central  Google Scholar 

  122. van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).

    PubMed  Google Scholar 

  123. Levine, J. A. et al. Interindividual variation in posture allocation: possible role in human obesity. Science 307, 584–586 (2005).

    CAS  PubMed  Google Scholar 

  124. Wardle, J. & Boniface, D. Changes in the distributions of body mass index and waist circumference in English adults, 1993/1994 to 2002/2003. Int. J. Obes. 32, 527–532 (2008).

    CAS  Google Scholar 

  125. Flegal, K. M. & Troiano, R. P. Changes in the distribution of body mass index of adults and children in the US population. Int. J. Obes. Relat. Metab. Disord. 24, 807–818 (2000).

    CAS  PubMed  Google Scholar 

  126. Nymo, S. et al. Physiological predictors of weight regain at 1-year follow-up in weight-reduced adults with obesity. Obesity 27, 925–931 (2019).

    CAS  PubMed  Google Scholar 

  127. Adam, T. C., Lejeune, M. P. & Westerterp-Plantenga, M. S. Nutrient-stimulated glucagon-like peptide 1 release after body-weight loss and weight maintenance in human subjects. Br. J. Nutr. 95, 160–167 (2006).

    CAS  PubMed  Google Scholar 

  128. Buso, M. E. C. et al. Can a higher protein/low glycemic index vs. a conventional diet attenuate changes in appetite and gut hormones following weight loss? A 3-year PREVIEW sub-study. Front. Nutr. 8, 640538 (2021).

    PubMed  PubMed Central  Google Scholar 

  129. DeBenedictis, J. N. et al. Changes in the homeostatic appetite system after weight loss reflect a normalization toward a lower body weight. J. Clin. Endocrinol. Metab. 105, e2538–e2546 (2020).

    PubMed  PubMed Central  Google Scholar 

  130. Rosenbaum, M., Hirsch, J., Gallagher, D. A. & Leibel, R. L. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am. J. Clin. Nutr. 88, 906–912 (2008).

    CAS  PubMed  Google Scholar 

  131. Hall, K. D. et al. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nat. Med. 27, 344–353 (2021).

    CAS  PubMed  Google Scholar 

  132. Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission Report. Lancet 393, 791–846 (2019).

    PubMed  Google Scholar 

  133. Finch, G. M., Day, J. E., Razak, Welch, D. A. & Rogers, P. J. Appetite changes under free-living conditions during Ramadan fasting. Appetite 31, 159–170 (1998).

    CAS  PubMed  Google Scholar 

  134. Suarez-Reyes, M. & Fernandez-Verdejo, R. Work/household, transport, and leisure domains account for the sex gap in physical activity in Chile. Front. Public. Health 10, 1011790 (2022).

    PubMed  PubMed Central  Google Scholar 

  135. Murakami, H. et al. Accuracy of wearable devices for estimating total energy expenditure: comparison with metabolic chamber and doubly labeled water method. JAMA Intern. Med. 176, 702–703 (2016).

    PubMed  Google Scholar 

  136. Fernandez-Verdejo, R., Aguirre, C. & Galgani, J. E. Issues in measuring and interpreting energy balance and its contribution to obesity. Curr. Obes. Rep. 8, 88–97 (2019).

    PubMed  Google Scholar 

  137. Jeran, S., Steinbrecher, A. & Pischon, T. Prediction of activity-related energy expenditure using accelerometer-derived physical activity under free-living conditions: a systematic review. Int. J. Obes. 40, 1187–1197 (2016).

    CAS  Google Scholar 

  138. Speakman, J. R. & Pontzer, H. Quantifying physical activity energy expenditure based on doubly labelled water and basal metabolism calorimetry: what are we actually measuring? Curr. Opin. Clin. Nutr. Metab. Care 26, 401–408 (2023).

    PubMed  Google Scholar 

  139. Basolo, A. et al. Procedures for measuring excreted and ingested calories to assess nutrient absorption using bomb calorimetry. Obesity 28, 2315–2322 (2020).

    CAS  PubMed  Google Scholar 

  140. Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211–2219 (2010).

    CAS  PubMed  Google Scholar 

  141. Bhaskaran, K., Dos-Santos-Silva, I., Leon, D. A., Douglas, I. J. & Smeeth, L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK. Lancet Diabetes Endocrinol. 6, 944–953 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Hall, K. D. et al. Quantification of the effect of energy imbalance on bodyweight. Lancet 378, 826–837 (2011).

    PubMed  Google Scholar 

  143. Bray, G. A. & Bouchard, C. The biology of human overfeeding: a systematic review. Obes. Rev. 21, e13040 (2020).

    CAS  PubMed  Google Scholar 

  144. Unlu, Y. et al. Impaired metabolic flexibility to fasting is associated with increased ad libitum energy intake in healthy adults. Obesity 32, 949–958 (2024).

    CAS  PubMed  Google Scholar 

  145. Goldberg, G. R., Murgatroyd, P. R., McKenna, A. P., Heavey, P. M. & Prentice, A. M. Dietary compensation in response to covert imposition of negative energy balance by removal of fat or carbohydrate. Br. J. Nutr. 80, 141–147 (1998).

    CAS  PubMed  Google Scholar 

  146. Reinhardt, M. et al. A human thrifty phenotype associated with less weight loss during caloric restriction. Diabetes 64, 2859–2867 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Pontzer, H. The energetics of movement, from exercise to ecology and evolution. J. Exp. Biol. 228, JEB247988 (2025).

    PubMed  Google Scholar 

  148. Bailly, M. et al. Definition and diagnosis of constitutional thinness: a systematic review. Br. J. Nutr. 124, 531–547 (2020).

    CAS  PubMed  Google Scholar 

  149. Dulloo, A. G. & Jacquet, J. The control of partitioning between protein and fat during human starvation: its internal determinants and biological significance. Br. J. Nutr. 82, 339–356 (1999).

    CAS  PubMed  Google Scholar 

  150. Clayton, D. J., Creese, M., Skidmore, N., Stensel, D. J. & James, L. J. No effect of 24 h severe energy restriction on appetite regulation and ad libitum energy intake in overweight and obese males. Int. J. Obes. 40, 1662–1670 (2016).

    CAS  Google Scholar 

  151. Jandacek, R. J. Review of the effects of dilution of dietary energy with olestra on energy intake. Physiol. Behav. 105, 1124–1131 (2012).

    CAS  PubMed  Google Scholar 

  152. Porikos, K. P. & Pi-Sunyer, F. X. Regulation of food intake in human obesity: studies with caloric dilution and exercise. Clin. Endocrinol. Metab. 13, 547–561 (1984).

    CAS  PubMed  Google Scholar 

  153. Karl, J. P. et al. Altered metabolic homeostasis is associated with appetite regulation during and following 48-h of severe energy deprivation in adults. Metabolism 65, 416–427 (2016).

    CAS  PubMed  Google Scholar 

  154. O’Leary, T. J. et al. Sex differences in energy balance, body composition, and metabolic and endocrine markers during prolonged arduous military training. J. Appl. Physiol. 136, 938–948 (2024).

    PubMed  PubMed Central  Google Scholar 

  155. Colman, E. Dinitrophenol and obesity: an early twentieth-century regulatory dilemma. Regul. Toxicol. Pharmacol. 48, 115–117 (2007).

    CAS  PubMed  Google Scholar 

  156. Lebon, V. et al. Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. J. Clin. Invest. 108, 733–737 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    PubMed  PubMed Central  Google Scholar 

  158. Sjostrom, L. et al. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet 352, 167–172 (1998).

    CAS  PubMed  Google Scholar 

  159. Cameron, J. D. et al. Energy depletion by diet or aerobic exercise alone: impact of energy deficit modality on appetite parameters. Am. J. Clin. Nutr. 103, 1008–1016 (2016).

    CAS  PubMed  Google Scholar 

  160. Thivel, D. et al. Energy depletion by 24-h fast leads to compensatory appetite responses compared with matched energy depletion by exercise in healthy young males. Br. J. Nutr. 120, 583–592 (2018).

    CAS  PubMed  Google Scholar 

  161. Hagele, F. A. et al. Appetite control is improved by acute increases in energy turnover at different levels of energy balance. J. Clin. Endocrinol. Metab. 104, 4481–4491 (2019).

    PubMed  Google Scholar 

  162. Elia, M., Stubbs, R. J. & Henry, C. J. Differences in fat, carbohydrate, and protein metabolism between lean and obese subjects undergoing total starvation. Obes. Res. 7, 597–604 (1999).

    CAS  PubMed  Google Scholar 

  163. Bloom, W. L., Azar, G., Clark, J. & MacKay, J. H. Comparison of metabolic changes in fasting obese and lean patients. Ann. N. Y. Acad. Sci. 131, 623–631 (1965).

    CAS  PubMed  Google Scholar 

  164. Rising, R. et al. Food intake measured by an automated food-selection system: relationship to energy expenditure. Am. J. Clin. Nutr. 55, 343–349 (1992).

    CAS  PubMed  Google Scholar 

  165. Uribe-Cerda, S., Morselli, E. & Perez-Leighton, C. Updates on the neurobiology of food reward and their relation to the obesogenic environment. Curr. Opin. Endocrinol. Diabetes Obes. 25, 292–297 (2018).

    PubMed  Google Scholar 

  166. Klein, S. et al. Leptin production during early starvation in lean and obese women. Am. J. Physiol. Endocrinol. Metab. 278, E280–E284 (2000).

    CAS  PubMed  Google Scholar 

  167. Chin-Chance, C., Polonsky, K. S. & Schoeller, D. A. Twenty-four-hour leptin levels respond to cumulative short-term energy imbalance and predict subsequent intake. J. Clin. Endocrinol. Metab. 85, 2685–2691 (2000).

    CAS  PubMed  Google Scholar 

  168. Mars, M., de Graaf, C., de Groot, C. P., van Rossum, C. T. & Kok, F. J. Fasting leptin and appetite responses induced by a 4-day 65%-energy-restricted diet. Int. J. Obes. 30, 122–128 (2006).

    CAS  Google Scholar 

  169. Chan, J. L. et al. Regulation of circulating soluble leptin receptor levels by gender, adiposity, sex steroids, and leptin: observational and interventional studies in humans. Diabetes 51, 2105–2112 (2002).

    CAS  PubMed  Google Scholar 

  170. Bak, A. M. et al. Prolonged fasting-induced metabolic signatures in human skeletal muscle of lean and obese men. PLoS ONE 13, e0200817 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Bergman, B. C., Cornier, M. A., Horton, T. J. & Bessesen, D. H. Effects of fasting on insulin action and glucose kinetics in lean and obese men and women. Am. J. Physiol. Endocrinol. Metab. 293, E1103–E1111 (2007).

    CAS  PubMed  Google Scholar 

  172. Obici, S. et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51, 271–275 (2002).

    CAS  PubMed  Google Scholar 

  173. Ludwig, D. S. et al. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 114, 1873–1885 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. MacLean, P. S., Higgins, J. A., Giles, E. D., Sherk, V. D. & Jackman, M. R. The role for adipose tissue in weight regain after weight loss. Obes. Rev. 16, 45–54 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Stubbs, B. J. et al. A ketone ester drink lowers human ghrelin and appetite. Obesity 26, 269–273 (2018).

    CAS  PubMed  Google Scholar 

  176. Fernandez-Verdejo, R., Mey, J. T. & Ravussin, E. Effects of ketone bodies on energy expenditure, substrate utilization, and energy intake in humans. J. Lipid Res. 64, 100442 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Fisler, J. S., Egawa, M. & Bray, G. A. Peripheral 3-hydroxybutyrate and food intake in a model of dietary-fat induced obesity: effect of vagotomy. Physiol. Behav. 58, 1–7 (1995).

    CAS  PubMed  Google Scholar 

  178. Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl Acad. Sci. USA 108, 8030–8035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Hochsmann, C. et al. Effect of 8 weeks of supervised overfeeding on eating attitudes and behaviors, eating disorder symptoms, and body image: results from the PROOF and EAT studies. Eat. Behav. 43, 101570 (2021).

    PubMed  PubMed Central  Google Scholar 

  180. Forbes, G. B., Brown, M. R., Welle, S. L. & Lipinski, B. A. Deliberate overfeeding in women and men: energy cost and composition of the weight gain. Br. J. Nutr. 56, 1–9 (1986).

    CAS  PubMed  Google Scholar 

  181. Katzeff, H. L. et al. Metabolic studies in human obesity during overnutrition and undernutrition: thermogenic and hormonal responses to norepinephrine. Metabolism 35, 166–175 (1986).

    CAS  PubMed  Google Scholar 

  182. Passmore, R., Strong, J. A., Swindells, Y. E. & Eldin, N. The effect of overfeeding on two fat young women. Br. J. Nutr. 17, 373–383 (1963).

    CAS  PubMed  Google Scholar 

  183. Roser, M., Ritchie, H. & Rosado, P. Food supply. Our World in Data https://ourworldindata.org/food-supply (2023).

  184. Hollstein, T. et al. Recharacterizing the metabolic state of energy balance in thrifty and spendthrift phenotypes. J. Clin. Endocrinol. Metab. 105, 1375–1392 (2020).

    PubMed  PubMed Central  Google Scholar 

  185. Lund, J., Gerhart-Hines, Z. & Clemmensen, C. Role of energy excretion in human body weight regulation. Trends Endocrinol. Metab. 31, 705–708 (2020).

    CAS  PubMed  Google Scholar 

  186. Galgani, J. E. et al. Baseline body fat percentage is associated to weight and fat mass gain from high-fat overfeeding over 8 weeks. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgaf247 (2025).

    Article  PubMed  Google Scholar 

  187. Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Sexual dimorphism in cardiometabolic health: the role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 17, 47–66 (2021).

    PubMed  Google Scholar 

  188. Mauvais-Jarvis, F. Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nat. Rev. Nephrol. 20, 56–69 (2024).

    PubMed  Google Scholar 

  189. Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity — a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).

    CAS  PubMed  Google Scholar 

  190. Wilding, J. P., Overgaard, R. V., Jacobsen, L. V., Jensen, C. B. & le Roux, C. W. Exposure-response analyses of liraglutide 3.0 mg for weight management. Diabetes Obes. Metab. 18, 491–499 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Swinburn, B., Egger, G. & Raza, F. Dissecting obesogenic environments: the development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev. Med. 29, 563–570 (1999).

    CAS  PubMed  Google Scholar 

  192. Handy, S. L., Boarnet, M. G., Ewing, R. & Killingsworth, R. E. How the built environment affects physical activity: views from urban planning. Am. J. Prev. Med. 23, 64–73 (2002).

    PubMed  Google Scholar 

  193. Lake, A. & Townshend, T. Obesogenic environments: exploring the built and food environments. J. R. Soc. Promot. Health 126, 262–267 (2006).

    PubMed  Google Scholar 

  194. Kerns, J. C. et al. Increased physical activity associated with less weight regain six years after “The biggest loser” competition. Obesity 25, 1838–1843 (2017).

    PubMed  Google Scholar 

  195. Bejarano, C. M. et al. Neighborhood built environment associations with adolescents’ location-specific sedentary and screen time. Health Place. 56, 147–154 (2019).

    PubMed  PubMed Central  Google Scholar 

  196. Frank, L. D. et al. Objective assessment of obesogenic environments in youth: geographic information system methods and spatial findings from the Neighborhood Impact on Kids study. Am. J. Prev. Med. 42, e47–e55 (2012).

    PubMed  Google Scholar 

  197. Sallis, J. F. et al. Evaluating a brief self-report measure of neighborhood environments for physical activity research and surveillance: Physical Activity Neighborhood Environment Scale (PANES). J. Phys. Act. Health 7, 533–540 (2010).

    PubMed  Google Scholar 

  198. Gallagher, D. et al. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 72, 694–701 (2000).

    CAS  PubMed  Google Scholar 

  199. Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Johnstone, A. M., Murison, S. D., Duncan, J. S., Rance, K. A. & Speakman, J. R. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am. J. Clin. Nutr. 82, 941–948 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank V. Cortés for critical reading and recommendations to improve the manuscript. The authors are grateful to M. Heaner for her assistance with proofreading the manuscript. The authors acknowledge support from ANID/CONICYT FONDECYT Regular 1220551 (J.E.G.) and a NORC Center Grant #P30DK072476 titled ‘Nutrition and Metabolic Health Through the Lifespan’ sponsored by NIDDK.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Rodrigo Fernández-Verdejo or Jose E. Galgani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Mark Hopkins, David Levitsky, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Verdejo, R., Ravussin, E. & Galgani, J.E. Body weight regulation models in humans: insights for testing their validity. Nat Rev Endocrinol 21, 703–717 (2025). https://doi.org/10.1038/s41574-025-01149-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-025-01149-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing