Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the management of hyperglycaemia and diabetes mellitus during hospitalization

This article has been updated

Abstract

Diabetes mellitus, which affects over 537 million people worldwide, considerably increases the risk of emergency room visits and admissions to hospital. Inpatient hyperglycaemia in patients with or without diabetes mellitus is associated with higher rates of complications, extended hospital stays and increased mortality when compared with patients with normoglycaemia. The American Diabetes Association recommends a target range of 5.6–10.0 mmol/l (100–180 mg/dl) for levels of glucose in the blood of patients in intensive care units (ICUs), as well as in general medicine and surgery. Insulin therapy remains the cornerstone of managing inpatient hyperglycaemia, with intravenous insulin preferred in ICU and basal–bolus regimens favoured in non-ICU settings. While bedside capillary blood glucose monitoring is standard for adjusting insulin doses, continuous glucose monitoring provides a more comprehensive glycaemic assessment and enhances the prevention of hypoglycaemia in high-risk hospitalized patients. This Review outlines the latest evidence in managing diabetes mellitus and hyperglycaemia within hospitals.

Key points

  • Dysglycaemia is common in intensive care unit (ICU) and non-ICU settings; both hyperglycaemia and hypoglycaemia are associated with poor outcomes.

  • Glycaemic targets vary according to hospital settings, but maintaining tight control (5.6–10.0 mmol/l (100–180 mg/dl)) of blood levels of glucose in general wards and less strict control (<10 mmol/l (180 mg/dl)) in ICU settings is recommended.

  • In the ICU setting, a variable rate intravenous insulin infusion is the preferred approach to achieve and maintain glycaemic targets.

  • Glucose management in general wards can be achieved using basal–bolus or basal-plus insulin regimens, or by oral anti-diabetes medications.

  • It is important that the transition from intravenous insulin infusion to a scheduled subcutaneous insulin regimen is effectively managed to prevent rebound hyperglycaemia.

  • Continuous glucose monitoring in hospitals provides accurate readings and has the potential to enhance glycaemic metrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Perioperative algorithm.
Fig. 2: Basal-plus and basal–bolus insulin regimens for the management of general medicine and surgery patients with type 2 diabetes mellitus.
Fig. 3: The use of advanced technology for managing diabetes mellitus in the hospital setting.

Similar content being viewed by others

Change history

  • 13 August 2025

    In the version of the article initially published, in Table 1, in the “AACE–ADA” row, both instances of “target glucose level of 7.8–10.0 mmol/l (100–180 mg/dl)” should have read “target glucose level of 7.8–10.0 mmol/l (140–180 mg/dl)” and have now been corrected in the HTML and PDF versions of the article.

References

  1. Umpierrez, G. E. et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 16–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Dhatariya, K. et al. Diabetes at the front door. A guideline for dealing with glucose related emergencies at the time of acute hospital admission from the Joint British Diabetes Society (JBDS) for Inpatient Care Group. Diabet. Med. 37, 1578–1589 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. American Diabetes Association Professional Practice Committee 16. Diabetes care in the hospital: standards of care in diabetes — 2025. Diabetes Care 48, S321–S334 (2024).

    Article  Google Scholar 

  4. Umpierrez, G. E. et al. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J. Clin. Endocrinol. Metab. 87, 978–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Farrokhi, F., Smiley, D. & Umpierrez, G. E. Glycemic control in non-diabetic critically ill patients. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 813–824 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Falciglia, M., Freyberg, R. W., Almenoff, P. L., D’Alessio, D. A. & Render, M. L. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit. Care Med. 37, 3001–3009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frisch, A. et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care 33, 1783–1788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kotagal, M. et al. Perioperative hyperglycemia and risk of adverse events among patients with and without diabetes. Ann. Surg. 261, 97–103 (2015).

    Article  PubMed  Google Scholar 

  9. Haddadin, F., Clark, A., Evans, N. & Dhatariya, K. Admission blood glucose helps predict 1 year, but not 2 years, mortality in an unselected cohort of acute general medical admissions. Int. J. Clin. Pract. 69, 643–648 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Levy, N. & Dhatariya, K. Pre-operative optimisation of the surgical patient with diagnosed and undiagnosed diabetes: a practical review. Anaesthesia 74, 58–66 (2019).

    Article  PubMed  Google Scholar 

  11. McAlister, F. A. et al. The relation between hyperglycemia and outcomes in 2,471 patients admitted to the hospital with community-acquired pneumonia. Diabetes Care 28, 810–815 (2005).

    Article  PubMed  Google Scholar 

  12. Ramos, M. et al. Relationship of perioperative hyperglycemia and postoperative infections in patients who undergo general and vascular surgery. Ann. Surg. 248, 585–591 (2008).

    Article  PubMed  Google Scholar 

  13. Kyi, M. et al. Early intervention for diabetes in medical and surgical inpatients decreases hyperglycemia and hospital-acquired infections: a cluster randomized trial. Diabetes Care 42, 832–840 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Barmanray, R. D. et al. The specialist treatment of inpatients: caring for diabetes in surgery (STOIC-D Surgery) trial: a randomized controlled trial of early intervention with an electronic specialist-led model of diabetes care. Diabetes Care 47, 948–955 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Kwon, S. et al. Importance of perioperative glycemic control in general surgery: a report from the surgical care and outcomes assessment program. Ann. Surg. 257, 8–14 (2013).

    Article  PubMed  Google Scholar 

  16. Shiffermiller, J., Anderson, M. & Thompson, R. Postoperative length of stay in patients with stress hyperglycemia compared to patients with diabetic hyperglycemia: a retrospective cohort study. J. Diabetes Sci. Technol. 18, 556–561 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada, T., Shojima, N., Noma, H., Yamauchi, T. & Kadowaki, T. Glycemic control, mortality, and hypoglycemia in critically ill patients: a systematic review and network meta-analysis of randomized controlled trials. Intensive Care Med. 43, 1–15 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Akirov, A., Grossman, A., Shochat, T. & Shimon, I. Mortality among hospitalized patients with hypoglycemia: insulin related and noninsulin related. J. Clin. Endocrinol. Metab. 102, 416–424 (2017).

    Article  PubMed  Google Scholar 

  19. Kagansky, N. et al. Hypoglycemia as a predictor of mortality in hospitalized elderly patients. Arch. Intern. Med. 163, 1825–1829 (2003).

    Article  PubMed  Google Scholar 

  20. Mendez, C. E. et al. Increased glycemic variability is independently associated with length of stay and mortality in noncritically ill hospitalized patients. Diabetes Care 36, 4091–4097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van den Berghe, G. et al. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 345, 1359–1367 (2001).

    Article  PubMed  Google Scholar 

  22. Adigbli, D. et al. A patient-level meta-analysis of intensive glucose control in critically ill adults. NEJM Evid. https://doi.org/10.1056/EVIDoa2400082 (2024).

    Article  PubMed  Google Scholar 

  23. NICE-SUGAR Study Investigators Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 360, 1283–1297 (2009).

    Article  Google Scholar 

  24. Gunst, J. et al. Tight blood-glucose control without early parenteral nutrition in the ICU. N. Engl. J. Med. 389, 1180–1190 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Umpierrez, G. E. Glucose control in the ICU. N. Engl. J. Med. 389, 1234–1237 (2023).

    Article  PubMed  Google Scholar 

  26. Moghissi, E. S. et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care 32, 1119–1131 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. American Diabetes Association Professional Practice Committee 16. Diabetes care in the hospital: standards of care in diabetes — 2024. Diabetes Care 47, S295–S306 (2023).

    Article  Google Scholar 

  28. Korytkowski, M. T. et al. Management of hyperglycemia in hospitalized adult patients in non-critical care settings: an Endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 107, 2101–2128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Joint British Diabetes Societies for Inpatient Care Group. Association of Britich Clinical Diabetologists http://abcd.care/joint-british-diabetes-societies-jbds-inpatient-care-group (2022).

  30. Levy, N. & Hall, G. M. National guidance contributes to the high incidence of inpatient hypoglycaemia. Diabet. Med. 36, 120–121 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. American Diabetes Association Professional Practice Committee 6. Glycemic goals and hypoglycemia: standards of care in diabetes — 2024. Diabetes Care 47, S111–S125 (2023).

    Article  Google Scholar 

  32. Pasquel, F. J., Lansang, M. C., Dhatariya, K. & Umpierrez, G. E. Management of diabetes and hyperglycaemia in the hospital. Lancet Diabetes Endocrinol. 9, 174–188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pasquel, F. J. & Umpierrez, G. E. Annals for hospitalists inpatient notes — How we treat hyperglycemia in the hospital. Ann. Intern. Med. 174, HO2–HO4 (2021).

    Article  PubMed  Google Scholar 

  34. George, S., Dale, J. & Stanisstreet, D. Joint British Diabetes Societies for Inpatient Care; JBDS Medical VRIII Writing Group A guideline for the use of variable rate intravenous insulin infusion in medical inpatients. Diabet. Med. 32, 706–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Krikorian, A., Ismail-Beigi, F. & Moghissi, E. S. Comparisons of different insulin infusion protocols: a review of recent literature. Curr. Opin. Clin. Nutr. Metab. Care 13, 198–204 (2010).

    CAS  PubMed  Google Scholar 

  36. Ullal, J. et al. Comparison of computer-guided versus standard insulin infusion regimens in patients with diabetic ketoacidosis. J. Diabetes Sci. Technol. 12, 39–46 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marvin, M. R., Inzucchi, S. E. & Besterman, B. J. Computerization of the Yale insulin infusion protocol and potential insights into causes of hypoglycemia with intravenous insulin. Diabetes Technol. Ther. 15, 246–252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Juneja, R. et al. Utilization of a computerized intravenous insulin infusion program to control blood glucose in the intensive care unit. Diabetes Technol. Ther. 9, 232–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Newton, C. A. et al. A comparison study of continuous insulin infusion protocols in the medical intensive care unit: computer-guided vs. standard column-based algorithms. J. Hosp. Med. 5, 432–437 (2010).

    Article  PubMed  Google Scholar 

  40. Kalfon, P. et al. Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial. Intensive Care Med. 40, 171–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Duggan, E. W., Klopman, M. A., Berry, A. J. & Umpierrez, G. The Emory University perioperative algorithm for the management of hyperglycemia and diabetes in non-cardiac surgery patients. Curr. Diab Rep. 16, 34 (2016).

    Article  PubMed  Google Scholar 

  42. Duggan, E. W., Carlson, K. & Umpierrez, G. E. Perioperative hyperglycemia management: an update. Anesthesiology 126, 547–560 (2017).

    Article  PubMed  Google Scholar 

  43. Tran, K. K., Kibert, J. L. 2nd, Telford, E. D. & Franck, A. J. Intravenous insulin infusion protocol compared with subcutaneous insulin for the management of hyperglycemia in critically ill adults. Ann. Pharmacother. 53, 894–898 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Rao, P. et al. Evaluation of outcomes following hospital-wide implementation of a subcutaneous insulin protocol for diabetic ketoacidosis. JAMA Netw. Open. 5, e226417 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Umpierrez, G. et al. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care 38, 1665–1672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou, K., Buehler, L. A., Zaw, T., Bena, J. & Lansang, M. C. Weight-based insulin during and after intravenous insulin infusion reduces rates of rebound hyperglycemia when transitioning to subcutaneous insulin in the medical intensive care unit. Endocr. Pract. 28, 173–178 (2022).

    Article  PubMed  Google Scholar 

  47. Galindo, R. J., Dhatariya, K., Gomez-Peralta, F. & Umpierrez, G. E. Safety and efficacy of inpatient diabetes management with non-insulin agents: an overview of international practices. Curr. Diab Rep. 22, 237–246 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pasquel, F. J. et al. Efficacy of sitagliptin for the hospital management of general medicine and surgery patients with type 2 diabetes (Sita-Hospital): a multicentre, prospective, open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 5, 125–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Umpierrez, G. E. et al. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study. Diabetes Care 36, 3430–3435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fushimi, N. et al. Dulaglutide-combined basal plus correction insulin therapy contributes to ideal glycemic control in non-critical hospitalized patients. J. Diabetes Investig. 11, 125–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Fayfman, M. et al. A randomized controlled trial on the safety and efficacy of exenatide therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes. Diabetes Care 42, 450–456 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kosiborod, M. N. et al. Effects of empagliflozin on symptoms, physical limitations, and quality of life in patients hospitalized for acute heart failure: results from the EMPULSE trial. Circulation 146, 279–288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tamaki, S. et al. Effect of empagliflozin as an add-on therapy on decongestion and renal function in patients with diabetes hospitalized for acute decompensated heart failure: a prospective randomized controlled study. Circ. Heart Fail. 14, e007048 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Centre for Perioperative Care. Perioperative care for people with diabetes undergoing surgery. Centre for Perioperative Care https://cpoc.org.uk/guidelines-resources-guidelines-resources/guideline-diabetes (2023).

  55. Migdal, A. L. et al. Inpatient glycemic control with sliding scale insulin in noncritical patients with type 2 diabetes: who can slide? J. Hosp. Med. 16, 462–468 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Christensen, M. B., Gotfredsen, A. & Norgaard, A. Efficacy of basal-bolus insulin regimens in the inpatient management of non-critically ill patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. Res. Rev. https://doi.org/10.1002/dmrr.2885 (2017).

    Article  PubMed  Google Scholar 

  57. Lee, Y. Y. et al. Sliding-scale insulin used for blood glucose control: a meta-analysis of randomized controlled trials. Metabolism 64, 1183–1192 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Umpierrez, G. E. et al. Randomized study of basal-bolus insulin therapy in the inpatient management of patients with type 2 diabetes undergoing general surgery (RABBIT 2 Surgery). Diabetes Care 34, 256–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Umpierrez, G. E. et al. Randomized study comparing a basal-bolus with a basal plus correction insulin regimen for the hospital management of medical and surgical patients with type 2 diabetes: basal plus trial. Diabetes Care 36, 2169–2174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pasquel, F. J. et al. A randomized controlled trial comparing glargine U300 and glargine U100 for the inpatient management of medicine and surgery patients with type 2 diabetes: Glargine U300 Hospital Trial. Diabetes Care 43, 1242–1248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bueno, E. et al. Basal-bolus regimen with insulin analogues versus human insulin in medical patients with type 2 diabetes: a randomized controlled trial in Latin America. Endocr. Pract. 21, 807–813 (2015).

    Article  PubMed  Google Scholar 

  62. Bellido, V. et al. Comparison of basal-bolus and premixed insulin regimens in hospitalized patients with type 2 diabetes. Diabetes Care 38, 2211–2216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galindo, R. J. et al. Degludec hospital trial: a randomized controlled trial comparing insulin degludec U100 and glargine U100 for the inpatient management of patients with type 2 diabetes. Diabetes Obes. Metab. 24, 42–49 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Galindo, R. J. et al. Comparison of efficacy and safety of glargine and detemir insulin in the management of inpatient hyperglycemia and diabetes. Endocr. Pract. 23, 1059–1066 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rajendran, R., Kerry, C. & Rayman, G. Temporal patterns of hypoglycaemia and burden of sulfonylurea-related hypoglycaemia in UK hospitals: a retrospective multicentre audit of hospitalised patients with diabetes. BMJ Open. 4, e005165 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Khalam, A., Dilip, C. & Shinu, C. Drug use evaluation of diabetes mellitus in hospitalized patients of a tertiary care referral hospital. J. Basic. Clin. Physiol. Pharmacol. 23, 173–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Koufakis, T., Mustafa, O. G., Zebekakis, P. & Kotsa, K. Oral antidiabetes agents for the management of inpatient hyperglycaemia: so far, yet so close. Diabet. Med. 37, 1418–1426 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Sultana, G., Kapur, P., Aqil, M., Alam, M. S. & Pillai, K. K. Drug utilization of oral hypoglycemic agents in a university teaching hospital in India. J. Clin. Pharm. Ther. 35, 267–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Gómez, H. et al. Association of metformin use during hospitalization and mortality in critically ill adults with type 2 diabetes mellitus and sepsis. Crit. Care Med. 50, 935–944 (2022).

    Article  PubMed  Google Scholar 

  70. Lorenzo-Gonzalez, C. et al. Safety and efficacy of Ddp4-inhibitors for management of hospitalized general medicine and surgery patients with type 2 diabetes. Endocr. Pract. https://doi.org/10.4158/EP-2019-0481 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kosiborod, M. N. et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 9, 586–594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Romo, K. G. & Gianchandani, R. Pros of inpatient sodium glucose cotransporter-2 inhibitor use. Endocr. Pract. 30, 398–401 (2024).

    Article  CAS  PubMed  Google Scholar 

  73. RECOVERY Collaborative Group Empagliflozin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Diabetes Endocrinol. 11, 905–914 (2023).

    Article  Google Scholar 

  74. Voors, A. A. et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat. Med. 28, 568–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dhatariya, K. Initiation and continuation of sodium–glucose cotransporter 2 inhibitors in hospital inpatients: ready for prime time? Diabetes Care 45, 2806–2807 (2022).

    Article  PubMed  Google Scholar 

  76. Salah, H. M. et al. Effect of sodium-glucose cotransporter 2 inhibitors on cardiovascular and kidney outcomes — systematic review and meta-analysis of randomized placebo-controlled trials. Am. Heart J. 232, 10–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Rao, V. N. et al. In-hospital initiation of sodium-glucose cotransporter-2 inhibitors for heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 78, 2004–2012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roberts, C. G. P., Athinarayanan, S. J., Ratner, R. E. & Umpierrez, G. E. Illnesses associated with ketosis including diabetic ketoacidosis during very low carbohydrate and ketogenic diets. Diabetes, Obes. Metab. 27, 2531–2539 (2025).

    Article  CAS  PubMed  Google Scholar 

  79. Joshi, G. P. et al. American Society of Anesthesiologists consensus-based guidance on preoperative management of patients (adults and children) on glucagon-like peptide-1 (GLP-1) receptor agonists. American Society of Anesthesiologists http://www.asahq.org/about-asa/newsroom/news-releases/2023/06/american-society-of-anesthesiologists-consensus-based-guidance-on-preoperative (2023).

  80. Chen, Y.-H. et al. Postoperative aspiration pneumonia among adults using GLP-1 receptor agonists. JAMA Netw. Open. 8, e250081 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Oprea, A. D. et al. Perioperative management of adult patients with diabetes wearing devices: a Society for Perioperative Assessment and Quality Improvement (SPAQI) expert consensus statement. J. Clin. Anesth. 99, 111627 (2024).

    Article  PubMed  Google Scholar 

  82. Drincic, A. T., Knezevich, J. T. & Akkireddy, P. Nutrition and hyperglycemia management in the inpatient setting (meals on demand, parenteral, or enteral nutrition). Curr. Diab Rep. 17, 59 (2017).

    Article  PubMed  Google Scholar 

  83. Polavarapu, P., Pachigolla, S. & Drincic, A. Glycemic management of hospitalized patients receiving nutrition support. Diabetes Spectr. 35, 427–439 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pasquel, F. J. et al. Hyperglycemia during total parenteral nutrition: an important marker of poor outcome and mortality in hospitalized patients. Diabetes Care 33, 739–741 (2010).

    Article  PubMed  Google Scholar 

  85. Schönenberger, K. A. et al. Management of hyperglycemia in hospitalized patients receiving parenteral nutrition. Front. Clin. Diabetes Healthc. 3, 829412 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Olveira, G. et al. Regular insulin added to total parenteral nutrition vs subcutaneous glargine in non-critically ill diabetic inpatients, a multicenter randomized clinical trial: INSUPAR trial. Clin. Nutr. 39, 388–394 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Fatati, G. et al. Use of insulin glargine in patients with hyperglycaemia receiving artificial nutrition. Acta Diabetol. 42, 182–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Bajaj, M. A., Zale, A. D., Morgenlander, W. R., Abusamaan, M. S. & Mathioudakis, N. Insulin dosing and glycemic outcomes among steroid-treated hospitalized patients. Endocr. Pract. 28, 774–779 (2022).

    Article  PubMed  Google Scholar 

  89. Kim, H. N. & Mathioudakis, N. in Endocrine and Metabolic Medical Emergencies 2nd edn Ch. 38 (ed. Matfin, G.) 616–631 (Wiley, 2018).

  90. Geer, E. B., Islam, J. & Buettner, C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol. Metab. Clin. North. Am. 43, 75–102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khowaja, A., Alkhaddo, J. B., Rana, Z. & Fish, L. Glycemic control in hospitalized patients with diabetes receiving corticosteroids using a neutral protamine hagedorn insulin protocol: a randomized clinical trial. Diabetes Ther. 9, 1647–1655 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brady, V. et al. Safe and effective dosing of basal-bolus insulin in patients receiving high-dose steroids for hyper-cyclophosphamide, doxorubicin, vincristine, and dexamethasone chemotherapy. Diabetes Technol. Ther. 16, 874–879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. American Diabetes Association Professional Practice Committee 7. Diabetes technology: standards of care in diabetes — 2024. Diabetes Care 47, S126–S144 (2024).

    Article  Google Scholar 

  94. Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Battelino, T. et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care 42, 1593–1603 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Davis, G. M. et al. Accuracy of dexcom G6 continuous glucose monitoring in non-critically ill hospitalized patients with diabetes. Diabetes Care 44, 1641–1646 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Galindo, R. J. et al. Comparison of the freestyle libre pro flash continuous glucose monitoring (CGM) system and point-of-care capillary glucose testing (POC) in hospitalized patients with type 2 diabetes (T2D) treated with basal-bolus insulin regimen. Diabetes Care https://doi.org/10.2337/dc19-2073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nielsen, C. G. et al. Accuracy of continuous glucose monitoring systems in intensive care unit patients: a scoping review. Intensive Care Med. 50, 2005–2018 (2024).

    Article  PubMed  Google Scholar 

  99. Holzinger, U. et al. Real-time continuous glucose monitoring in critically ill patients: a prospective randomized trial. Diabetes Care 33, 467–472 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Davis, G. M. et al. Remote continuous glucose monitoring with a computerized insulin infusion protocol for critically ill patients in a COVID-19 medical ICU: proof of concept. Diabetes Care 44, 1055–1058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Agarwal, S. et al. Continuous glucose monitoring in the intensive care unit during the COVID-19 pandemic. Diabetes Care 44, 847–849 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Kopecký, P. et al. The use of continuous glucose monitoring combined with computer-based eMPC algorithm for tight glucose control in cardiosurgical ICU. Biomed. Res. Int. 2013, 186439 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Klarskov, C. K. et al. Telemetric continuous glucose monitoring during the COVID-19 pandemic in isolated hospitalized patients in Denmark: a randomized controlled exploratory trial. Diabetes Technol. Ther. 24, 102–112 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Thabit, H. et al. Use of real-time continuous glucose monitoring in non-critical care insulin-treated inpatients under non-diabetes speciality teams in hospital: a pilot randomized controlled study. Diabetes, Obes. Metab. 26, 5483–5487 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Gómez, A. M. et al. Continuous glucose monitoring versus capillary point-of-care testing for inpatient glycemic control in type 2 diabetes patients hospitalized in the general ward and treated with a basal bolus insulin regimen. J. Diabetes Sci. Technol. 10, 325–329 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Spanakis, E. K. et al. Continuous glucose monitoring-guided insulin administration in hospitalized patients with diabetes: a randomized clinical trial. Diabetes Care 45, 2369–2375 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. American Diabetes Association Professional Practice Committee 7. Diabetes technology: standards of care in diabetes — 2025. Diabetes Care 48, S146–S166 (2025).

    Article  Google Scholar 

  108. Galindo, R. J. et al. Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline. J. Diabetes Sci. Technol. 14, 1035–1064 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shaw, J. L. V. et al. Consensus considerations and good practice points for use of continuous glucose monitoring systems in hospital settings. Diabetes Care 47, 2062–2075 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Thabit, H. et al. Closed-loop insulin delivery in inpatients with type 2 diabetes: a randomised, parallel-group trial. Lancet Diabetes Endocrinol. 5, 117–124 (2020).

    Article  Google Scholar 

  111. Bally, L. et al. Closed-loop insulin delivery for glycemic control in noncritical care. N. Engl. J. Med. 379, 547–556 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Boughton, C. K. et al. Day-to-day variability of insulin requirements in the inpatient setting: observations during fully closed-loop insulin delivery. Diabetes, Obes. Metab. 23, 1978–1982 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Davis, G. M. et al. Automated insulin delivery with remote real-time continuous glucose monitoring for hospitalized patients with diabetes: a multicenter, single-arm, feasibility trial. Diabetes Technol. Ther. 25, 677–688 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Qaseem, A., Humphrey, L. L., Chou, R., Snow, V. & Shekelle, P. Use of intensive insulin therapy for the management of glycemic control in hospitalized patients: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 154, 260–267 (2011).

    Article  PubMed  Google Scholar 

  115. Jacobi, J. et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit. Care Med. 40, 3251–3276 (2012).

    Article  PubMed  Google Scholar 

  116. Lazar, H. L. et al. The Society of Thoracic Surgeons Practice Guideline Series: blood glucose management during adult cardiac surgery. Ann. Thorac. Surg. 87, 663–669 (2009).

    Article  PubMed  Google Scholar 

  117. McMahon, M. M. et al. A.S.P.E.N. clinical guidelines: nutrition support of adult patients with hyperglycemia. JPEN J. Parenter. Enter. Nutr. 37, 23–36 (2013).

    Article  CAS  Google Scholar 

  118. Joshi, G. P. et al. Society for Ambulatory Anesthesia consensus statement on perioperative blood glucose management in diabetic patients undergoing ambulatory surgery. Anesth. Analg. 111, 1378–1387 (2010).

    Article  PubMed  Google Scholar 

  119. Evans, L. et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock 2021. Crit. Care Med. 49, e1063–e1143 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

G.E.U. acknowledges the support of research grants from the US National Institutes of Health (NATS UL 3UL1TR002378-05S2), from the Clinical and Translational Science Award Program and the NIH and National Center for Research Resources (NIH/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 2P30DK111024-06).

Author information

Authors and Affiliations

Authors

Contributions

T.I., I.C.-R., K.K.D. and G.E.U. researched data for the article, contributed substantially to discussion of the content and wrote the article. T.I., K.K.D., L.H. and G.E.U. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Thaer Idrees or Guillermo E. Umpierrez.

Ethics declarations

Competing interests

T.I. has received research support (paid to Emory University) from AbbVie. G.E.U. has received research support (paid to Emory University) from Bayer, Abbott, Dexcom and Corcept, and has served as a member of advisory boards for Dexcom, Mankind, Glucotrack, Corcept and GlyCare. K.K.D. has received honoraria for travel, advisory boards and speaker fees from Abbott Diabetes, AstraZeneca, Boehringer Ingelheim, Novo Nordisk, Eli Lilly, Menarini and Sanofi Diabetes. I.C.-R. and L.H. declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Mikkel B. Christensen, who co-reviewed with Iben Rix; Peter Lommer Kristensen; and Mervyn Kyi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrees, T., Castro-Revoredo, I., Dhatariya, K.K. et al. Advances in the management of hyperglycaemia and diabetes mellitus during hospitalization. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01157-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-025-01157-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing