Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medical nutrition therapy for the management of type 2 diabetes mellitus

Abstract

Type 2 diabetes mellitus (T2DM) is a major global health concern. Medical nutrition therapy has a key role in T2DM management, with dietary interventions being central to improving glycaemic control and overall metabolic health. Growing evidence suggests that certain dietary strategies can exert direct metabolic benefits independent of weight reduction. The Mediterranean diet has consistently demonstrated metabolic and cardiovascular benefits, along with improved glycaemic control, even in the absence of substantial weight reduction. Low-energy and very-low-energy diets, characterized by moderate to severe caloric restriction, respectively, have also been associated with improvements in cardiometabolic markers and glycaemic regulation. Ketogenic diets promote nutritional ketosis and have shown benefits on glycaemic control, insulin sensitivity and other metabolic outcomes, often preceding substantial weight loss. Intermittent fasting strategies, such as alternate-day fasting or the 5:2 model, and time-restricted eating, have likewise been linked to enhanced glycaemic control and favourable metabolic and cardiovascular effects, although their long-term efficacy and safety require further investigation. This Review aims to provide an evidence-based synthesis of the main nutritional strategies used in the treatment of T2DM, with a focus on their underlying mechanisms, clinical efficacy and potential for sustainable long-term implementation.

Key points

  • Personalized medical nutrition therapy is a cornerstone of type 2 diabetes mellitus (T2DM) management, with evidence supporting its role in improving glycaemic control and insulin sensitivity and in reducing diabetes mellitus-related complications in individuals both with and without obesity.

  • The Mediterranean diet exerts beneficial effects on glycaemic control, systemic inflammation and oxidative stress via several bioactive compounds such as polyphenols and omega-3 fatty acids as well as by promoting gut microbiota health and diversity.

  • Low-energy and very-low-energy diets can induce substantial weight loss and lead to T2DM remission, particularly when implemented early in the disease course.

  • Ketogenic diets, including very-low-energy ketogenic therapies, improve glycaemic outcomes and reduce insulin resistance by inducing nutritional ketosis; however, they vary in composition and require individualized use due to potential safety concerns.

  • Intermittent fasting approaches, such as 5:2 fasting and alternate-day fasting, and time-restricted eating, show promising results for weight loss, glycaemic control and medication reduction in T2DM. Their effectiveness can be enhanced when aligned with circadian rhythms.

  • Research on integrating medical nutrition therapy with pharmacological treatments such as incretin-based therapies could provide comprehensive solutions for T2DM management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the Mediterranean diet, low-energy diets and ketogenic diets across multiple parameters.
Fig. 2: Overview of the main intermittent fasting strategies.
Fig. 3: Schematic representation of the molecular mechanisms through which the Mediterranean diet exerts beneficial effects in the management of type 2 diabetes mellitus.
Fig. 4: Schematic representation of the molecular mechanisms through which LEDs, VLEDs and ketogenic diets exert beneficial effects in the management of T2DM.
Fig. 5: Schematic representation of the molecular mechanisms through which intermittent fasting protocols exert beneficial effects in the management of type 2 diabetes mellitus.

Similar content being viewed by others

References

  1. Standl, E., Khunti, K., Hansen, T. B. & Schnell, O. The global epidemics of diabetes in the 21st century: current situation and perspectives. Eur. J. Prev. Cardiol. 26, 7–14 (2019).

    Article  PubMed  Google Scholar 

  2. Davies, M. J. et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 65, 1925–1966 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Powers, M. A. et al. Diabetes self-management education and support in adults with type 2 diabetes: a consensus report of the American Diabetes Association, the Association of Diabetes Care and Education Specialists, the Academy of Nutrition and Dietetics, the American Academy of Family Physicians, the American Academy of PAs, the American Association of Nurse Practitioners, and the American Pharmacists Association. J. Acad. Nutr. Diet. 121, 773–788.e9 (2021).

    Article  PubMed  Google Scholar 

  4. Lingvay, I., Sumithran, P., Cohen, R. V. & le Roux, C. W. Obesity management as a primary treatment goal for type 2 diabetes: time to reframe the conversation. Lancet 399, 394–405 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Guasch-Ferre, M. & Willett, W. C. The Mediterranean diet and health: a comprehensive overview. J. Intern. Med. 290, 549–566 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Estruch, R. & Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 21, 315–327 (2020).

    Article  PubMed  Google Scholar 

  7. Billingsley, H. E. & Carbone, S. The antioxidant potential of the Mediterranean diet in patients at high cardiovascular risk: an in-depth review of the PREDIMED. Nutr. Diabetes 8, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sellahewa, L., Khan, C., Lakkunarajah, S. & Idris, I. A systematic review of evidence on the use of very low calorie diets in people with diabetes. Curr. Diabetes Rev. 13, 35–46 (2017).

    Article  PubMed  Google Scholar 

  9. Juray, S., Axen, K. V. & Trasino, S. E. Remission of type 2 diabetes with very low-calorie diets — a narrative review. Nutrients 13, 2086 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Casanueva, F. F. et al. Ketogenic diets as treatment of obesity and type 2 diabetes mellitus. Rev. Endocr. Metab. Disord. 21, 381–397 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Barrea, L. et al. A new nomenclature for the very low-calorie ketogenic diet (VLCKD): very low-energy ketogenic therapy (VLEKT). Ketodiets and nutraceuticals expert panels: “KetoNut”, Italian society of nutraceuticals (SINut) and the Italian association of dietetics and clinical nutrition (ADI). Curr. Nutr. Rep. 13, 552–556 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Trimboli, P., Castellana, M., Bellido, D. & Casanueva, F. F. Confusion in the nomenclature of ketogenic diets blurs evidence. Rev. Endocr. Metab. Disord. 21, 1–3 (2020).

    Article  PubMed  Google Scholar 

  13. Castellana, M. et al. Efficacy and safety of very low calorie ketogenic diet (VLCKD) in patients with overweight and obesity: a systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 21, 5–16 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Muscogiuri, G. et al. European guidelines for obesity management in adults with a very low-calorie ketogenic diet: a systematic review and meta-analysis. Obes. Facts 14, 222–245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, E. R. et al. Short term isocaloric ketogenic diet modulates NLRP3 inflammasome via B-hydroxybutyrate and fibroblast growth factor 21. Front. Immunol. 13, 843520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenbaum, M. et al. Glucose and lipid homeostasis and inflammation in humans following an isocaloric ketogenic diet. Obesity 27, 971–981 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Borgundvaag, E., Mak, J. & Kramer, C. K. Metabolic impact of intermittent fasting in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of interventional studies. J. Clin. Endocrinol. Metab. 106, 902–911 (2021).

    Article  PubMed  Google Scholar 

  18. Esposito, K. et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open 5, e008222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schwingshackl, L., Missbach, B., Konig, J. & Hoffmann, G. Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Public Health Nutr. 18, 1292–1299 (2015).

    Article  PubMed  Google Scholar 

  20. Esposito, K. et al. Which diet for prevention of type 2 diabetes? A meta-analysis of prospective studies. Endocrine 47, 107–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Huo, R. et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur. J. Clin. Nutr. 69, 1200–1208 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Panagiotakos, D. B. et al. The association between adherence to the Mediterranean diet and fasting indices of glucose homoeostasis: the ATTICA Study. J. Am. Coll. Nutr. 26, 32–38 (2007).

    Article  PubMed  Google Scholar 

  23. Estruch, R. et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann. Intern. Med. 145, 1–11 (2006).

    Article  PubMed  Google Scholar 

  24. Toobert, D. J. et al. Biologic and quality-of-life outcomes from the Mediterranean lifestyle program: a randomized clinical trial. Diabetes Care 26, 2288–2293 (2003).

    Article  PubMed  Google Scholar 

  25. Elhayany, A., Lustman, A., Abel, R., Attal-Singer, J. & Vinker, S. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1-year prospective randomized intervention study. Diabetes Obes. Metab. 12, 204–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Rathmann, W., Kostev, K. & Haastert, B. Glycemic durability of monotherapy for diabetes. N. Engl. J. Med. 356, 1378–1379 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Esposito, K. et al. Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann. Intern. Med. 151, 306–314 (2009).

    Article  PubMed  Google Scholar 

  28. Song, Y., Cook, N. R., Albert, C. M., Van Denburgh, M. & Manson, J. E. Effects of vitamins C and E and β-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: a randomized controlled trial. Am. J. Clin. Nutr. 90, 429–437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Itsiopoulos, C. et al. Can the Mediterranean diet lower HbA1c in type 2 diabetes? Results from a randomized cross-over study. Nutr. Metab. Cardiovasc. Dis. 21, 740–747 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Zamora-Ros, R. et al. Mediterranean diet and non enzymatic antioxidant capacity in the PREDIMED study: evidence for a mechanism of antioxidant tuning. Nutr. Metab. Cardiovasc. Dis. 23, 1167–1174 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Maiorino, M. I. et al. Mediterranean diet cools down the inflammatory milieu in type 2 diabetes: the MEDITA randomized controlled trial. Endocrine 54, 634–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Ceriello, A. et al. The protective effect of the Mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: a preliminary report. Cardiovasc. Diabetol. 13, 140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eid, H. M. et al. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol. Nutr. Food Res. 54, 991–1003 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Dhanya, R., Arya, A. D., Nisha, P. & Jayamurthy, P. Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Front. Pharmacol. 8, 336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tuck, K. L. & Hayball, P. J. Major phenolic compounds in olive oil: metabolism and health effects. J. Nutr. Biochem. 13, 636–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Torres-Pena, J. D. et al. Mediterranean diet improves endothelial function in patients with diabetes and prediabetes: a report from the CORDIOPREV study. Atherosclerosis 269, 50–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Berger, M. M. et al. Three short perioperative infusions of n-3 PUFAs reduce systemic inflammation induced by cardiopulmonary bypass surgery: a randomized controlled trial. Am. J. Clin. Nutr. 97, 246–254 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Maedler, K., Oberholzer, J., Bucher, P., Spinas, G. A. & Donath, M. Y. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes 52, 726–733 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Carpentier, Y. A., Portois, L. & Malaisse, W. J. n-3 fatty acids and the metabolic syndrome. Am. J. Clin. Nutr. 83, 1499S–1504S (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Beauchamp, G. K. et al. Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437, 45–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan, Y. et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38, 1154–1163 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Di Mauro, A. et al. The Mediterranean diet increases glucagon-like peptide 1 and oxyntomodulin compared with a vegetarian diet in patients with type 2 diabetes: a randomized controlled cross-over trial. Diabetes Metab. Res. Rev. 37, e3406 (2021).

    Article  PubMed  Google Scholar 

  44. Huber, H., Schieren, A., Holst, J. J. & Simon, M. C. Dietary impact on fasting and stimulated GLP-1 secretion in different metabolic conditions — a narrative review. Am. J. Clin. Nutr. 119, 599–627 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rodriguez, P. J. et al. Semaglutide vs tirzepatide for weight loss in adults with overweight or obesity. JAMA Intern. Med. 184, 1056–1064 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nie, C., He, T., Zhang, W., Zhang, G. & Ma, X. Branched chain amino acids: beyond nutrition metabolism. Int. J. Mol. Sci. 19, 954 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Guasch-Ferre, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39, 833–846 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ruiz-Canela, M. et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia 61, 1560–1571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Sato, J. et al. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes. Diabetes Care 37, 2343–2350 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Florkowski, M., Abiona, E., Frank, K. M. & Brichacek, A. L. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front. Nutr. 11, 1392666 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sanz, Y. et al. The gut microbiome connects nutrition and human health. Nat. Rev. Gastroenterol. Hepatol. 22, 534–555 (2025).

    Article  PubMed  Google Scholar 

  55. Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. McCreight, L. J., Bailey, C. J. & Pearson, E. R. Metformin and the gastrointestinal tract. Diabetologia 59, 426–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, C. et al. Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: a pilot study. Nutr. Res. 77, 62–72 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Churuangsuk, C. et al. Diets for weight management in adults with type 2 diabetes: an umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 65, 14–36 (2022).

    Article  PubMed  Google Scholar 

  59. Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    Article  PubMed  Google Scholar 

  60. Lean, M. E. J. et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 7, 344–355 (2019).

    Article  PubMed  Google Scholar 

  61. Lim, E. L. et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 54, 2506–2514 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mraz, M. et al. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 96, E606–E613 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Lean, M. E. et al. 5-year follow-up of the randomised diabetes remission clinical trial (DiRECT) of continued support for weight loss maintenance in the UK: an extension study. Lancet Diabetes Endocrinol. 12, 233–246 (2024).

    Article  PubMed  Google Scholar 

  64. Caprio, M. et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Invest. 42, 1365–1386 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Ghasemi, P. et al. Impact of very low carbohydrate ketogenic diets on cardiovascular risk factors among patients with type 2 diabetes; GRADE-assessed systematic review and meta-analysis of clinical trials. Nutr. Metab. 21, 50 (2024).

    Article  CAS  Google Scholar 

  66. Barrea, L. et al. Very low-calorie ketogenic diet (VLCKD): an antihypertensive nutritional approach. J. Transl. Med. 21, 128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Barrea, L. et al. VLCKD: a real time safety study in obesity. J. Transl. Med. 20, 23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Moriconi, E., Camajani, E., Fabbri, A., Lenzi, A. & Caprio, M. Very-low-calorie ketogenic diet as a safe and valuable tool for long-term glycemic management in patients with obesity and type 2 diabetes. Nutrients 13, 758 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Muscogiuri, G. et al. Weight loss, changes in body composition and inflammatory status after a very low-energy ketogenic therapy (VLEKT): does gender matter? J. Transl. Med. 22, 949 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Correa, L. L. et al. Severe type 2 diabetes (T2D) remission using a very low-calorie ketogenic diet (VLCKD). Endocrinol. Diabetes Metab. Case Rep. 2022, 22-0295 (2022).

    PubMed  PubMed Central  Google Scholar 

  71. Yuan, X. et al. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: a systematic review and meta-analysis. Nutr. Diabetes 10, 38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abdul-Ghani, M. A., Jayyousi, A., DeFronzo, R. A., Asaad, N. & Al-Suwaidi, J. Insulin resistance the link between T2DM and CVD: basic mechanisms and clinical implications. Curr. Vasc. Pharmacol. 17, 153–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Farres, J. et al. Revealing the molecular relationship between type 2 diabetes and the metabolic changes induced by a very-low-carbohydrate low-fat ketogenic diet. Nutr. Metab. 7, 88 (2010).

    Article  CAS  Google Scholar 

  74. Okuda, T., Fukui, A. & Morita, N. Altered expression of O-GlcNAc-modified proteins in a mouse model whose glycemic status is controlled by a low carbohydrate ketogenic diet. Glycoconj. J. 30, 781–789 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Yang, Z. et al. Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition 89, 111230 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Q. et al. Treatment of diabetic mice with a combination of ketogenic diet and aerobic exercise via modulations of PPARs gene programs. PPAR Res. 2018, 4827643 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Youm, Y. H. et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Patel, S. & Santani, D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol. Rep. 61, 595–603 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Jamshed, H. et al. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients 11, 1234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. American Diabetes Association. Lifestyle management: standards of medical care in diabetes–2019. Diabetes Care 42, S46–S60 (2019).

    Article  Google Scholar 

  81. Blau, J. E., Tella, S. H., Taylor, S. I. & Rother, K. I. Ketoacidosis associated with SGLT2 inhibitor treatment: analysis of FAERS data. Diabetes Metab. Res. Rev. 33, e2924 (2017).

    Article  Google Scholar 

  82. Parry-Strong, A. et al. Very low carbohydrate (ketogenic) diets in type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 24, 2431–2442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Albosta, M. & Bakke, J. Intermittent fasting: is there a role in the treatment of diabetes? A review of the literature and guide for primary care physicians. Clin. Diabetes Endocrinol. 7, 3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Carter, S., Clifton, P. M. & Keogh, J. B. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw. Open 1, e180756 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Corley, B. T. et al. Intermittent fasting in type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet. Med. 35, 588–594 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Li, C. et al. Effects of a one-week fasting therapy in patients with type-2 diabetes mellitus and metabolic syndrome — a randomized controlled explorative study. Exp. Clin. Endocrinol. Diabetes 125, 618–624 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Arnason, T. G., Bowen, M. W. & Mansell, K. D. Effects of intermittent fasting on health markers in those with type 2 diabetes: a pilot study. World J. Diabetes 8, 154–164 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kahleova, H. et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia 57, 1552–1560 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pavlou, V. et al. Effect of time-restricted eating on weight loss in adults with type 2 diabetes: a randomized clinical trial. JAMA Netw. Open 6, e2339337 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lowe, D. A. et al. Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern. Med. 180, 1491–1499 (2020).

    Article  PubMed  Google Scholar 

  91. Rebello, C. J. et al. From starvation to time-restricted eating: a review of fasting physiology. Int. J. Obes. 49, 43–48 (2024).

    Article  Google Scholar 

  92. Storoschuk, K. L. et al. Impact of fasting on the AMPK and PGC-1α axis in rodent and human skeletal muscle: a systematic review. Metabolism 152, 155768 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Vendelbo, M. H. et al. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling. PLoS ONE 9, e102031 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liu, Z. et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 11, 855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Perez-Gerdel, T., Camargo, M., Alvarado, M. & Ramirez, J. D. Impact of intermittent fasting on the gut microbiota: a systematic review. Adv. Biol. 7, e2200337 (2023).

    Article  Google Scholar 

  96. Palmnas-Bedard, M. S. A. et al. The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am. J. Clin. Nutr. 116, 862–874 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stratton, M. T. et al. Physiological responses to acute fasting: implications for intermittent fasting programs. Nutr. Rev. 80, 439–452 (2022).

    Article  PubMed  Google Scholar 

  98. Zauner, C. et al. Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine. Am. J. Clin. Nutr. 71, 1511–1515 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Longo, V. D. & Panda, S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 23, 1048–1059 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chamorro, R. et al. Meal timing across the day modulates daily energy intake in adult patients with type 2 diabetes. Eur. J. Clin. Nutr. 76, 1470–1477 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Jakubowicz, D. et al. Reduction in glycated hemoglobin and daily insulin dose alongside circadian clock upregulation in patients with type 2 diabetes consuming a three-meal diet: a randomized clinical trial. Diabetes Care 42, 2171–2180 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Jakubowicz, D. et al. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia 58, 912–919 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Cross, L. V. & Thomas, J. R. Safety and efficacy of dietary supplements for diabetes. Diabetes Spectr. 34, 67–72 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ansar, H., Mazloom, Z., Kazemi, F. & Hejazi, N. Effect of alpha-lipoic acid on blood glucose, insulin resistance and glutathione peroxidase of type 2 diabetic patients. Saudi Med. J. 32, 584–588 (2011).

    PubMed  Google Scholar 

  105. Ziegler, D. et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care 34, 2054–2060 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Segermann, J., Hotze, A., Ulrich, H. & Rao, G. S. Effect of alpha-lipoic acid on the peripheral conversion of thyroxine to triiodothyronine and on serum lipid-, protein- and glucose levels. Arzneimittelforschung 41, 1294–1298 (1991).

    CAS  PubMed  Google Scholar 

  107. Yin, R. V., Lee, N. C., Hirpara, H. & Phung, O. J. The effect of bitter melon (Mormordica charantia) in patients with diabetes mellitus: a systematic review and meta-analysis. Nutr. Diabetes 4, e145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dans, A. M. et al. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J. Clin. Epidemiol. 60, 554–559 (2007).

    Article  PubMed  Google Scholar 

  109. Lan, J. et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J. Ethnopharmacol. 161, 69–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Guo, Y., Chen, Y., Tan, Z. R., Klaassen, C. D. & Zhou, H. H. Repeated administration of berberine inhibits cytochromes P450 in humans. Eur. J. Clin. Pharmacol. 68, 213–217 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Rad, S. Z. K., Rameshrad, M. & Hosseinzadeh, H. Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review. Iran. J. Basic Med. Sci. 20, 516–529 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Balk, E. M., Tatsioni, A., Lichtenstein, A. H., Lau, J. & Pittas, A. G. Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes Care 30, 2154–2163 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Cerulli, J., Grabe, D. W., Gauthier, I., Malone, M. & McGoldrick, M. D. Chromium picolinate toxicity. Ann. Pharmacother. 32, 428–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Allen, R. W., Schwartzman, E., Baker, W. L., Coleman, C. I. & Phung, O. J. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann. Fam. Med. 11, 452–459 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gong, J. et al. Effect of fenugreek on hyperglycaemia and hyperlipidemia in diabetes and prediabetes: a meta-analysis. J. Ethnopharmacol. 194, 260–268 (2016).

    Article  PubMed  Google Scholar 

  116. Talukdar, J. R. et al. Effects of inulin-type fructans supplementation on cardiovascular disease risk factors: a protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 12, e058875 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Choi, S., Oh, D. S. & Jerng, U. M. A systematic review of the pharmacokinetic and pharmacodynamic interactions of herbal medicine with warfarin. PLoS ONE 12, e0182794 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Palinkas, L. A., Wingard, D. L. & Barrett-Connor, E. Chronic illness and depressive symptoms in the elderly: a population-based study. J. Clin. Epidemiol. 43, 1131–1141 (1990).

    Article  CAS  PubMed  Google Scholar 

  119. Bacardi-Gascon, M., Duenas-Mena, D. & Jimenez-Cruz, A. Lowering effect on postprandial glycemic response of nopales added to Mexican breakfasts. Diabetes Care 30, 1264–1265 (2007).

    Article  PubMed  Google Scholar 

  120. Onakpoya, I. J., O’Sullivan, J. & Heneghan, C. J. The effect of cactus pear (Opuntia ficus-indica) on body weight and cardiovascular risk factors: a systematic review and meta-analysis of randomized clinical trials. Nutrition 31, 640–646 (2015).

    Article  PubMed  Google Scholar 

  121. U.S. Food & Drug Administration. Information for Consumers on Using Dietary Supplements https://www.fda.gov/food/information-consumers-using-dietary-supplements/questions-and-answers-dietary-supplements (2024).

  122. Petroni, M. L. et al. Nutrition in patients with type 2 diabetes: present knowledge and remaining challenges. Nutrients 13, 2748 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Grosso, G. et al. Anti-inflammatory nutrients and obesity-associated metabolic-inflammation: state of the art and future direction. Nutrients 14, 1137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gill, L. E., Bartels, S. J. & Batsis, J. A. Weight management in older adults. Curr. Obes. Rep. 4, 379–388 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lewgood, J. et al. Efficacy of dietary and supplementation interventions for individuals with type 2 diabetes. Nutrients 13, 2378 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Norris, S. L. et al. Long-term effectiveness of lifestyle and behavioral weight loss interventions in adults with type 2 diabetes: a meta-analysis. Am. J. Med. 117, 762–774 (2004).

    Article  PubMed  Google Scholar 

  127. Evert, A. B. et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42, 731–754 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Nauck, M. A., Quast, D. R., Wefers, J. & Meier, J. J. GLP-1 receptor agonists in the treatment of type 2 diabetes — state-of-the-art. Mol. Metab. 46, 101102 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Mather, K. J. et al. Effects of tirzepatide vs semaglutide on β-cell function, insulin sensitivity, and glucose control during a meal test. J. Clin. Endocrinol. Metab. 109, 3046–3054 (2024).

    Article  CAS  PubMed  Google Scholar 

  130. Heise, T. et al. Tirzepatide reduces appetite, energy intake, and fat mass in people with type 2 diabetes. Diabetes Care 46, 998–1004 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brown, A. et al. “From evidence to practice” — insights from the multidisciplinary team on the optimal integration of GLP-1 receptor agonists in obesity management services. Nutr. Bull. 49, 257–263 (2024).

    Article  PubMed  Google Scholar 

  132. Anyiam, O. et al. Metabolic effects of very-low calorie diet, semaglutide, or combination of the two, in individuals with type 2 diabetes mellitus. Clin. Nutr. 43, 1907–1913 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Schiavo, L. et al. Preliminary evidence suggests that a 12-week treatment with tirzepatide plus low-energy ketogenic therapy is more effective than its combination with a low-calorie diet in preserving fat-free mass, muscle strength, and resting metabolic rate in patients with obesity. Nutrients 17, 1216 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article. L.V. researched data for the article. L.B. and L.V. wrote the article. L.B., A.C., L.J.M. and G.M. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Giovanna Muscogiuri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrea, L., Verde, L., Colao, A. et al. Medical nutrition therapy for the management of type 2 diabetes mellitus. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01161-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-025-01161-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing