Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HDL metabolism and function in diabetes mellitus

Abstract

Epidemiological studies have identified an inverse association of high-density lipoprotein (HDL) cholesterol with cardiovascular risk. Preclinical studies have shown that HDLs also exhibit cardioprotective functions in cultured cells and animal models. However, large, randomized, placebo-controlled clinical trials of HDL-raising agents have failed to reduce cardiovascular events in humans. Despite this negative outcome, glycaemic control was considerably improved in the patients with type 2 diabetes mellitus who were recruited into these trials. This finding indicated that HDLs might have anti-diabetic functions. This was shown to be the case in cell studies and animal studies, which have established that HDLs and apolipoprotein A1, the main HDL apolipoprotein, improve pancreatic β-cell function and increase insulin sensitivity. On the other hand, diabetes mellitus adversely affects the structure, anti-diabetic functions and cardioprotective functions of HDLs. These complex, closely linked relationships, which are undoubtedly worthy of further investigation, form the focus of this Review.

Key points

  • High-density lipoproteins (HDLs) improve glycaemic control in vitro and in vivo by increasing insulin sensitivity and improving β-cell function.

  • Diabetes mellitus appears to have a minimal effect on the reverse cholesterol transport pathway.

  • Improving glycaemic control might enhance the antioxidant function of HDLs.

  • Diabetes mellitus impairs the ability of HDLs to improve endothelial dysfunction.

  • Non-enzymatic glycation of HDL apolipoproteins reduces their anti-inflammatory function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HDL metabolism under physiological conditions and diabetic conditions.
Fig. 2: APOA1 and HDLs increase insulin sensitivity.
Fig. 3: APOA1 and HDLs improve β-cell function.

Similar content being viewed by others

References

  1. Miller, N. E. & Miller, G. J. Letter: high-density lipoprotein and atherosclerosis. Lancet 1, 1033 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Bowman, L. et al. HPS3/TIMI55–REVEAL Collaborative Group. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).

    Article  PubMed  Google Scholar 

  3. Davidson, W. S., Shah, A. S., Sexmith, H. & Gordon, S. M. The HDL proteome watch: compilation of studies leads to new insights on HDL function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867, 159072 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Fryirs, M. A. et al. Effects of high-density lipoproteins on pancreatic β-cell insulin secretion. Arterioscler. Thromb. Vasc. Biol. 30, 1642–1648 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, F. et al. Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc. Natl Acad. Sci. USA 109, 9641–9646 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jonas, A. Regulation of lecithin cholesterol acyltransferase activity. Prog. Lipid Res. 37, 209–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Rye, K. A., Hime, N. J. & Barter, P. J. The influence of cholesteryl ester transfer protein on the composition, size, and structure of spherical, reconstituted high density lipoproteins. J. Biol. Chem. 270, 189–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Rye, K. A., Hime, N. J. & Barter, P. J. Evidence that cholesteryl ester transfer protein-mediated reductions in reconstituted high density lipoprotein size involve particle fusion. J. Biol. Chem. 272, 3953–3960 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Settasatian, N. et al. The mechanism of the remodeling of high density lipoproteins by phospholipid transfer protein. J. Biol. Chem. 276, 26898–26905 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Clay, M. A., Rye, K. A. & Barter, P. J. Evidence in vitro that hepatic lipase reduces the concentration of apolipoprotein A-I in rabbit high-density lipoproteins. Biochim. Biophys. Acta 1044, 50–56 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Jaye, M. et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat. Genet. 21, 424–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Jahangiri, A. et al. Evidence that endothelial lipase remodels high density lipoproteins without mediating the dissociation of apolipoprotein A-I. J. Lipid Res. 46, 896–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed, M. O. et al. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 64, 656–667 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Cardner, M. et al. Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight 5, e131491 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mora, S. et al. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 59, 1153–1160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garvey, W. T. et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 52, 453–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Verges, B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 58, 886–899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Tilly-Kiesi, M., Knudsen, P., Groop, L. & Taskinen, M. R. Hyperinsulinemia and insulin resistance are associated with multiple abnormalities of lipoprotein subclasses in glucose-tolerant relatives of NIDDM patients. Botnia Study Group. J. Lipid Res. 37, 1569–1578 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Ganjali, S. et al. HDL functionality in type 1 diabetes. Atherosclerosis 267, 99–109 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Valabhji, J. et al. High-density lipoprotein composition and paraoxonase activity in Type I diabetes. Clin. Sci. 101, 659–670 (2001).

    Article  CAS  Google Scholar 

  22. Rawshani, A. et al. Range of risk factor levels: control, mortality, and cardiovascular outcomes in type 1 diabetes mellitus. Circulation 135, 1522–1531 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Du, X. M. et al. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ. Res. 116, 1133–1142 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Glomset, J. A. The plasma lecithins:cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).

    Article  CAS  PubMed  Google Scholar 

  25. Mineo, C., Yuhanna, I. S., Quon, M. J. & Shaul, P. W. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J. Biol. Chem. 278, 9142–9149 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Cockerill, G. W., Rye, K. A., Gamble, J. R., Vadas, M. A. & Barter, P. J. High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler. Thromb. Vasc. Biol. 15, 1987–1994 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Brites, F., Martin, M., Guillas, I. & Kontush, A. Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin. 8, 66–77 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rohatgi, A. et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 371, 2383–2393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khera, A. V. et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 364, 127–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X. M. et al. Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks. Arterioscler. Thromb. Vasc. Biol. 33, 1696–1705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kennedy, M. A. et al. ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 1, 121–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Mauldin, J. P. et al. Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus. Circulation 117, 2785–2792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shiu, S. W., Wong, Y. & Tan, K. C. Pre-β1 HDL in type 2 diabetes mellitus. Atherosclerosis 263, 24–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. He, Y. et al. Diabetes impairs cellular cholesterol efflux from ABCA1 to small HDL particles. Circ. Res. 127, 1198–1210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Apro, J. et al. Impaired cholesterol efflux capacity of high-density lipoprotein isolated from interstitial fluid in type 2 diabetes mellitus-brief report. Arterioscler. Thromb. Vasc. Biol. 36, 787–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mauldin, J. P. et al. Reduction in ABCG1 in type 2 diabetic mice increases macrophage foam cell formation. J. Biol. Chem. 281, 21216–21224 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Denimal, D. et al. Normal HDL cholesterol efflux and anti-inflammatory capacities in type 2 diabetes despite lipidomic abnormalities. J. Clin. Endocrinol. Metab. 107, e3816–e3823 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yassine, H. N. et al. Enhanced cholesterol efflux to HDL through the ABCA1 transporter in hypertriglyceridemia of type 2 diabetes. Metabolism 63, 727–734 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Low, H. et al. Advanced glycation end-products (AGEs) and functionality of reverse cholesterol transport in patients with type 2 diabetes and in mouse models. Diabetologia 55, 2513–2521 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Gomes Kjerulf, D. et al. Glycation of HDL blunts its anti-inflammatory and cholesterol efflux capacities in vitro, but has no effect in poorly controlled type 1 diabetes subjects. J. Diabetes Complicat. 34, 107693 (2020).

    Article  Google Scholar 

  41. Kashyap, S. R. et al. Glycation reduces the stability of ApoAI and increases HDL dysfunction in diet-controlled type 2 diabetes. J. Clin. Endocrinol. Metab. 103, 388–396 (2018).

    Article  PubMed  Google Scholar 

  42. Manjunatha, S. et al. Functional and proteomic alterations of plasma high density lipoproteins in type 1 diabetes mellitus. Metabolism 65, 1421–1431 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Brown, B. E. et al. Apolipoprotein A-I glycation by glucose and reactive aldehydes alters phospholipid affinity but not cholesterol export from lipid-laden macrophages. PLoS ONE 8, e65430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rashduni, D. L., Rifici, V. A., Schneider, S. H. & Khachadurian, A. K. Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity. Metabolism 48, 139–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Domingo-Espin, J., Nilsson, O., Bernfur, K., Del Giudice, R. & Lagerstedt, J. O. Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 2822–2834 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Duell, P. B., Oram, J. F. & Bierman, E. L. Nonenzymatic glycosylation of HDL and impaired HDL-receptor-mediated cholesterol efflux. Diabetes 40, 377–384 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Hoang, A. et al. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia 50, 1770–1779 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Tan, H. C. et al. Relationships between cholesterol efflux and high-density lipoprotein particles in patients with type 2 diabetes mellitus. J. Clin. Lipidol. 5, 467–473 (2011).

    Article  PubMed  Google Scholar 

  49. Gantman, A., Fuhrman, B., Aviram, M. & Hayek, T. High glucose stimulates macrophage SR-BI expression and induces a switch in its activity from cholesterol efflux to cholesterol influx. Biochem. Biophys. Res. Commun. 391, 523–528 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Nobecourt, E. et al. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 48, 529–538 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Boemi, M. et al. Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives; influence on the ability of HDL to protect LDL from oxidation. Atherosclerosis 155, 229–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Brinck, J. W. et al. Diabetes mellitus is associated with reduced high-density lipoprotein sphingosine-1-phosphate content and impaired high-density lipoprotein cardiac cell protection. Arterioscler. Thromb. Vasc. Biol. 36, 817–824 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Sanguinetti, S. M. et al. HDL oxidability and its protective effect against LDL oxidation in type 2 diabetic patients. Diabetes Nutr. Metab. 14, 27–36 (2001).

    CAS  PubMed  Google Scholar 

  54. Maxwell, S., Holm, G., Bondjers, G. & Wiklund, O. Comparison of antioxidant activity in lipoprotein fractions from insulin-dependent diabetics and healthy controls. Atherosclerosis 129, 89–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Gowri, M. S., Van der Westhuyzen, D. R., Bridges, S. R. & Anderson, J. W. Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may be due to the abnormal composition of HDL. Arterioscler. Thromb. Vasc. Biol. 19, 2226–2233 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Morgantini, C. et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 60, 2617–2623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feng, J. et al. High levels of oxidized fatty acids in HDL impair the antioxidant function of HDL in patients with diabetes. Front. Endocrinol. 13, 993193 (2022).

    Article  Google Scholar 

  58. Sanda, G. M. et al. Clusterin, paraoxonase 1, and myeloperoxidase alterations induce high-density lipoproteins dysfunction and contribute to peripheral artery disease; aggravation by type 2 diabetes mellitus. Biofactors 48, 454–468 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Kheniser, K. G. et al. Temporal dynamics of high-density lipoprotein proteome in diet-controlled subjects with type 2 diabetes. Biomolecules 10, 520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vaisar, T. et al. High concentration of medium-sized HDL particles and enrichment in HDL paraoxonase 1 associate with protection from vascular complications in people with long-standing type 1 diabetes. Diabetes Care 43, 178–186 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Chiesa, S. T. et al. Elevated high-density lipoprotein in adolescents with type 1 diabetes is associated with endothelial dysfunction in the presence of systemic inflammation. Eur. Heart J. 40, 3559–3566 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bacchetti, T., Masciangelo, S., Armeni, T., Bicchiega, V. & Ferretti, G. Glycation of human high density lipoprotein by methylglyoxal: effect on HDL-paraoxonase activity. Metabolism 63, 307–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Ebtehaj, S., Gruppen, E. G., Parvizi, M., Tietge, U. J. F. & Dullaart, R. P. F. The anti-inflammatory function of HDL is impaired in type 2 diabetes: role of hyperglycemia, paraoxonase-1 and low grade inflammation. Cardiovasc. Diabetol. 16, 132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hedrick, C. C. et al. Glycation impairs high-density lipoprotein function. Diabetologia 43, 312–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Ferretti, G., Bacchetti, T., Marchionni, C., Caldarelli, L. & Curatola, G. Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity. Acta Diabetol. 38, 163–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Holzer, M. et al. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein. Antioxid. Redox Signal. 17, 1043–1052 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Huang, Y. et al. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest. 123, 3815–3828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nessler, K. et al. Associations between myeloperoxidase and paraoxonase-1 and type 2 diabetes in patients with ischemic heart disease. BMC Cardiovasc. Disord. 22, 521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Heilman, K. et al. Arterial stiffness, carotid artery intima-media thickness and plasma myeloperoxidase level in children with type 1 diabetes. Diabetes Res. Clin. Pract. 84, 168–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Sorrentino, S. A. et al. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation 121, 110–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Williams, S. B. et al. Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97, 1695–1701 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404, 787–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Shenouda, S. M. et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124, 444–453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tessari, P. et al. Nitric oxide synthesis is reduced in subjects with type 2 diabetes and nephropathy. Diabetes 59, 2152–2159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smolock, A. R., Mishra, G., Eguchi, K., Eguchi, S. & Scalia, R. Protein kinase C upregulates intercellular adhesion molecule-1 and leukocyte-endothelium interactions in hyperglycemia via activation of endothelial expressed calpain. Arterioscler. Thromb. Vasc. Biol. 31, 289–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Egana-Gorrono, L. et al. Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: insights from human subjects and animal models. Front. Cardiovasc. Med. 7, 37 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nieuwdorp, M. et al. Reconstituted HDL infusion restores endothelial function in patients with type 2 diabetes mellitus. Diabetologia 51, 1081–1084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nofer, J. R. et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Invest. 113, 569–581 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tong, X. et al. The compensatory enrichment of sphingosine-1-phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. Cardiovasc. Diabetol. 13, 82 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vaisar, T. et al. Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS ONE 13, e0192616 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Denimal, D. et al. Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration. Atherosclerosis 241, 752–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Frej, C. et al. A shift in ApoM/S1P between HDL-particles in women with type 1 diabetes mellitus is associated with impaired anti-inflammatory effects of the ApoM/S1P complex. Arterioscler. Thromb. Vasc. Biol. 37, 1194–1205 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Kobayashi, T. et al. Glycation of HDL polymerizes apolipoprotein M and attenuates its capacity to bind to sphingosine 1-phosphate. J. Atheroscler. Thromb. 28, 730–741 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Christoffersen, C. et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc. Natl Acad. Sci. USA 108, 9613–9618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tso, C. et al. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler. Thromb. Vasc. Biol. 26, 1144–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Persegol, L. et al. HDL particles from type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 50, 2384–2387 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Brindisi, M. C., Duvillard, L., Monier, S., Verges, B. & Persegol, L. Deleterious effect of glycation on the ability of HDL to counteract the inhibitory effect of oxidized LDL on endothelium-dependent vasorelaxation. Diabetes Metab. Res. Rev. 29, 618–623 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Matsunaga, T. et al. Glycated high-density lipoprotein regulates reactive oxygen species and reactive nitrogen species in endothelial cells. Metabolism 52, 42–49 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Yu, C. H. et al. High glucose induced endothelial to mesenchymal transition in human umbilical vein endothelial cell. Exp. Mol. Pathol. 102, 377–383 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Spillmann, F., Miteva, K., Pieske, B., Tschope, C. & Van Linthout, S. High-density lipoproteins reduce endothelial-to-mesenchymal transition. Arterioscler. Thromb. Vasc. Biol. 35, 1774–1777 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Schaumberg, D. A. et al. Effect of intensive glycemic control on levels of markers of inflammation in type 1 diabetes mellitus in the diabetes control and complications trial. Circulation 111, 2446–2453 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Marfella, R. et al. Circulating adhesion molecules in humans: role of hyperglycemia and hyperinsulinemia. Circulation 101, 2247–2251 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Devaraj, S. et al. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 55, 774–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. McGrath, K. C. et al. Role of 3β-hydroxysteroid-Δ24 reductase in mediating antiinflammatory effects of high-density lipoproteins in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 29, 877–882 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, M. K. et al. High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br. J. Pharmacol. 173, 741–751 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Nobecourt, E. et al. Nonenzymatic glycation impairs the antiinflammatory properties of apolipoprotein A-I. Arterioscler. Thromb. Vasc. Biol. 30, 766–772 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, Z. et al. Association of carbamylated high-density lipoprotein with coronary artery disease in type 2 diabetes mellitus: carbamylated high-density lipoprotein of patients promotes monocyte adhesion. J. Transl. Med. 18, 460 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Patel, S. et al. Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. J. Am. Coll. Cardiol. 53, 962–971 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, D. et al. Lysine glycation of apolipoprotein A-I impairs its anti-inflammatory function in type 2 diabetes mellitus. J. Mol. Cell Cardiol. 122, 47–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Godfrey, L., Yamada-Fowler, N., Smith, J., Thornalley, P. J. & Rabbani, N. Arginine-directed glycation and decreased HDL plasma concentration and functionality. Nutr. Diabetes 4, e134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nobecourt, E. et al. The impact of glycation on apolipoprotein A-I structure and its ability to activate lecithin:cholesterol acyltransferase. Diabetologia 50, 643–653 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Calvo, C., Ulloa, N., Del Pozo, R. & Verdugo, C. Decreased activation of lecithin:cholesterol acyltransferase by glycated apolipoprotein A-I. Eur. J. Clin. Chem. Clin. Biochem. 31, 217–220 (1993).

    CAS  PubMed  Google Scholar 

  103. Fournier, N., Myara, I., Atger, V. & Moatti, N. Reactivity of lecithin-cholesterol acyl transferase (LCAT) towards glycated high-density lipoproteins (HDL). Clin. Chim. Acta 234, 47–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, D. et al. Nonenzymatic glycation of high-density lipoprotein impairs its anti-inflammatory effects in innate immunity. Diabetes Metab. Res. Rev. 28, 186–195 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Curtiss, L. K. & Witztum, J. L. Plasma apolipoproteins AI, AII, B, CI, and E are glucosylated in hyperglycemic diabetic subjects. Diabetes 34, 452–461 (1985).

    Article  CAS  PubMed  Google Scholar 

  106. Shuvaev, V. V. et al. Glycation of apolipoprotein E impairs its binding to heparin: identification of the major glycation site. Biochim. Biophys. Acta 1454, 296–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Li, X., Wang, F., Xu, M., Howles, P. & Tso, P. ApoA-IV improves insulin sensitivity and glucose uptake in mouse adipocytes via PI3K-Akt signaling. Sci. Rep. 7, 41289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dai, Y. et al. Glycated apolipoprotein A-IV induces atherogenesis in patients with CAD in type 2 diabetes. J. Am. Coll. Cardiol. 70, 2006–2019 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Shimabukuro Okuda, L. et al. Advanced glycated apoA-IV loses its ability to prevent the LPS-induced reduction in cholesterol efflux-related gene expression in macrophages. Mediators Inflamm. 2020, 6515401 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gautier, T. et al. Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. J. Biol. Chem. 275, 37504–37509 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Bouillet, B. et al. Glycation of apolipoprotein C1 impairs its CETP inhibitory property: pathophysiological relevance in patients with type 1 and type 2 diabetes. Diabetes Care 37, 1148–1156 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Rouland, A. et al. The endogenous inhibitor of CETP, apoC1, remains ineffective in vivo after correction of hyperglycemia in people with type 1 diabetes. Metabolites 14, 487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, L. et al. Structural basis of transfer between lipoproteins by cholesteryl ester transfer protein. Nat. Chem. Biol. 8, 342–349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schmidt, M. I. et al. Identifying individuals at high risk for diabetes: the atherosclerosis risk in communities study. Diabetes Care 28, 2013–2018 (2005).

    Article  PubMed  Google Scholar 

  115. Wilson, P. W. et al. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring study. Arch. Intern. Med. 167, 1068–1074 (2007).

    Article  PubMed  Google Scholar 

  116. Barter, P. J. et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the Investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial. Circulation 124, 555–562 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Menon, V. et al. Effect of CETP inhibition with evacetrapib in patients with diabetes mellitus enrolled in the ACCELERATE trial. BMJ Open Diabet. Res. Care 8, e000943 (2020).

    Article  Google Scholar 

  118. Schwartz, G. G. et al. Dalcetrapib reduces risk of new-onset diabetes in patients with coronary heart disease. Diabetes Care 43, 1077–1084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Haase, C. L., Tybjaerg-Hansen, A., Nordestgaard, B. G. & Frikke-Schmidt, R. HDL cholesterol and risk of type 2 diabetes: a mendelian randomization study. Diabetes 64, 3328–3333 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Tang, S. et al. Apolipoprotein A-I enhances insulin-dependent and insulin-independent glucose uptake by skeletal muscle. Sci. Rep. 9, 1350 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Han, R. et al. Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia 50, 1960–1968 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Domingo-Espin, J. et al. Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal. Diabetes 65, 1838–1848 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Dalla-Riva, J., Stenkula, K. G., Petrlova, J. & Lagerstedt, J. O. Discoidal HDL and apoA-I-derived peptides improve glucose uptake in skeletal muscle. J. Lipid Res. 54, 1275–1282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cochran, B. J. et al. In vivo PET imaging with [18F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia 59, 1977–1984 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Stenkula, K. G. et al. Single injections of apoA-I acutely improve in vivo glucose tolerance in insulin-resistant mice. Diabetologia 57, 797–800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fritzen, A. M. et al. ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2. Mol. Metab. 35, 100949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McGrath, K. C. et al. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation. J. Lipid Res. 55, 421–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xepapadaki, E. et al. Impact of apolipoprotein A1- or lecithin:cholesterol acyltransferase-deficiency on white adipose tissue metabolic activity and glucose homeostasis in mice. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1351–1360 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Drew, B. G. et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation 119, 2103–2111 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Briand, F. et al. Raising HDL with CETP inhibitor torcetrapib improves glucose homeostasis in dyslipidemic and insulin resistant hamsters. Atherosclerosis 233, 359–362 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Cochran, B. J. et al. Apolipoprotein A-I increases insulin secretion and production from pancreatic β-cells via a G-protein-cAMP-PKA-FoxO1-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 34, 2261–2267 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Nilsson, O. et al. Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165613 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Manandhar, B. et al. ApoA-I protects pancreatic β-cells from cholesterol-induced mitochondrial damage and restores their ability to secrete insulin. Arterioscler. Thromb. Vasc. Biol. 44, e20–e38 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. Matsumura, K., Tamasawa, N. & Daimon, M. Possible insulinotropic action of apolipoprotein A-I through the ABCA1/Cdc42/cAMP/PKA pathway in MIN6 cells. Front. Endocrinol. 9, 645 (2018).

    Article  Google Scholar 

  137. Rutti, S. et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic β-cells. Endocrinology 150, 4521–4530 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Yalcinkaya, M. et al. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic β-cells in vitro by activation of smoothened. J. Lipid Res. 61, 492–504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Puyal, J., Petremand, J., Dubuis, G., Rummel, C. & Widmann, C. HDLs protect the MIN6 insulinoma cell line against tunicamycin-induced apoptosis without inhibiting ER stress and without restoring ER functionality. Mol. Cell Endocrinol. 381, 291–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Petremand, J. et al. HDLs protect pancreatic β-cells against ER stress by restoring protein folding and trafficking. Diabetes 61, 1100–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dangas, K., Navar, A. M. & Kastelein, J. J. P. The effect of CETP inhibitors on new-onset diabetes: a systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Pharmacother. 8, 622–632 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Maron, D. J., Fazio, S. & Linton, M. F. Current perspectives on statins. Circulation 101, 207–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Barter, P. J., Brandrup-Wognsen, G., Palmer, M. K. & Nicholls, S. J. Effect of statins on HDL-C: a complex process unrelated to changes in LDL-C: analysis of the VOYAGER database. J. Lipid Res. 51, 1546–1553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mansi, I. A. et al. Association of statin therapy initiation with diabetes progression: a retrospective matched-cohort study. JAMA Intern. Med. 181, 1562–1574 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Kearney, P. M. et al. Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 371, 117–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Casula, M. et al. Statin use and risk of new-onset diabetes: a meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis. 27, 396–406 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Altmann, S. W. et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303, 1201–1204 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Morrone, D. et al. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: a pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis 223, 251–261 (2012).

    Article  CAS  PubMed  Google Scholar 

  149. Giugliano, R. P. et al. Benefit of adding ezetimibe to statin therapy on cardiovascular outcomes and safety in patients with versus without diabetes mellitus: results from IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 137, 1571–1582 (2018).

    Article  CAS  PubMed  Google Scholar 

  150. Katzmann, J. L. et al. Trends in ezetimibe prescriptions as monotherapy or fixed-dose combination in Germany 2012-2021. Front. Cardiovasc. Med. 9, 912785 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Saito, I. et al. A randomized, double-blind, placebo-controlled study of the effect of ezetimibe on glucose metabolism in subjects with type 2 diabetes mellitus and hypercholesterolemia. Lipids Health Dis. 14, 40 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Yang, S. J. et al. Chronic administration of ezetimibe increases active glucagon-like peptide-1 and improves glycemic control and pancreatic beta cell mass in a rat model of type 2 diabetes. Biochem. Biophys. Res. Commun. 407, 153–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Chang, E. et al. Ezetimibe stimulates intestinal glucagon-like peptide 1 secretion via the MEK/ERK pathway rather than dipeptidyl peptidase 4 inhibition. Metabolism 64, 633–641 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Nissen, S. E. et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N. Engl. J. Med. 388, 1353–1364 (2023).

    Article  PubMed  Google Scholar 

  155. Vu-Dac, N. et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J. Clin. Invest. 96, 741–750 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Staels, B. & Auwerx, J. Regulation of apo A-I gene expression by fibrates. Atherosclerosis 137, S19–S23 (1998).

    Article  CAS  PubMed  Google Scholar 

  157. Tsunoda, F. et al. Fenofibrate, HDL, and cardiovascular disease in type-2 diabetes: the DAIS trial. Atherosclerosis 247, 35–39 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bezafibrate Infarction Prevention (BIP) Study. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Circulation 102, 21–27 (2000).

    Article  Google Scholar 

  159. Simental-Mendia, L. E. et al. Effect of fibrates on glycemic parameters: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol. Res. 132, 232–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Seidah, N. G. & Prat, A. The multifaceted biology of PCSK9. Endocr. Rev. 43, 558–582 (2022).

    Article  PubMed  Google Scholar 

  161. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Schwartz, G. G. et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N. Engl. J. Med. 379, 2097–2107 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Deedwania, P. et al. Efficacy and safety of PCSK9 inhibition with evolocumab in reducing cardiovascular events in patients with metabolic syndrome receiving statin therapy: secondary analysis from the FOURIER randomized clinical trial. JAMA Cardiol. 6, 139–147 (2021).

    Article  PubMed  Google Scholar 

  165. Leiter, L. A. et al. Inclisiran lowers LDL-C and PCSK9 irrespective of diabetes status: the ORION-1 randomized clinical trial. Diabetes Care 42, 173–176 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).

    Article  PubMed  Google Scholar 

  167. Landray, M. J. et al. HPS2-THRIVE Collaborative Group. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 371, 203–212 (2014).

    Article  PubMed  Google Scholar 

  168. Xiang, D., Zhang, Q. & Wang, Y. T. Effectiveness of niacin supplementation for patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Medicine 99, e21235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Goldie, C. et al. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart 102, 198–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Hovingh, G. K. et al. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 386, 452–460 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Lincoff, A. M. et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N. Engl. J. Med. 376, 1933–1942 (2017).

    Article  PubMed  Google Scholar 

  172. Wilhelm, A. J. et al. Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity. Arterioscler. Thromb. Vasc. Biol. 29, 843–849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. McGrath, K. C., Li, X., Twigg, S. M. & Heather, A. K. Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice. PLoS ONE 15, e0226931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pinkosky, S. L. et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat. Commun. 7, 13457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nissen, S. E. et al. Bempedoic acid for primary prevention of cardiovascular events in statin-intolerant patients. JAMA 330, 131–140 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Leiter, L. A. et al. Bempedoic acid in patients with type 2 diabetes mellitus, prediabetes, and normoglycaemia: a post hoc analysis of efficacy and glycaemic control using pooled data from phase 3 clinical trials. Diabetes Obes. Metab. 24, 868–880 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Staels, B. et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 98, 2088–2093 (1998).

    Article  CAS  PubMed  Google Scholar 

  178. Kamanna, V. S., Ganji, S. H. & Kashyap, M. L. Recent advances in niacin and lipid metabolism. Curr. Opin. Lipidol. 24, 239–245 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Elam, M. B. et al. Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. arterial disease multiple intervention trial. JAMA 284, 1263–1270 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Barter, P. J. & Rye, K. A. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J. Lipid Res. 53, 1755–1766 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Nicholls, S. J. et al. Lipid lowering effects of the CETP inhibitor obicetrapib in combination with high-intensity statins: a randomized phase 2 trial. Nat. Med. 28, 1672–1678 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, P. et al. Effects of hyperlipidaemia on plasma apolipoprotein M levels in patients with type 2 diabetes mellitus: an independent case-control study. Lipids Health Dis. 15, 158 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Plomgaard, P. et al. Apolipoprotein M predicts pre-β-HDL formation: studies in type 2 diabetic and nondiabetic subjects. J. Intern. Med. 266, 258–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Xu, N., Nilsson-Ehle, P. & Ahren, B. Suppression of apolipoprotein M expression and secretion in alloxan-diabetic mouse: Partial reversal by insulin. Biochem. Biophys. Res. Commun. 342, 1174–1177 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Nojiri, T. et al. Modulation of sphingosine-1-phosphate and apolipoprotein M levels in the plasma, liver and kidneys in streptozotocin-induced diabetic mice. J. Diabetes Investig. 5, 639–648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tan, K. C., Shiu, S. W., Wong, Y., Wong, W. K. & Tam, S. Plasma apolipoprotein E concentration is an important determinant of phospholipid transfer protein activity in type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 22, 307–312 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Bach-Ngohou, K. et al. Apolipoprotein E kinetics: influence of insulin resistance and type 2 diabetes. Int. J. Obes. Relat. Metab. Disord. 26, 1451–1458 (2002).

    Article  CAS  PubMed  Google Scholar 

  190. Gordon, S. M. et al. The effects of type 2 diabetes on lipoprotein composition and arterial stiffness in male youth. Diabetes 62, 2958–2967 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Croyal, M. et al. Plasma apolipoprotein concentrations and incident diabetes in subjects with prediabetes. Cardiovasc. Diabetol. 21, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Paz-Barba, M. et al. Apolipoprotein L genes are novel mediators of inflammation in beta cells. Diabetologia 67, 124–136 (2024).

    Article  CAS  PubMed  Google Scholar 

  193. Castro, A. et al. APOH is increased in the plasma and liver of type 2 diabetic patients with metabolic syndrome. Atherosclerosis 209, 201–205 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Hsu, C. C., Kanter, J. E., Kothari, V. & Bornfeldt, K. E. Quartet of APOCs and the different roles they play in diabetes. Arterioscler. Thromb. Vasc. Biol. 43, 1124–1133 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Beliard, S. et al. Parallel increase of plasma apoproteins C-II and C-III in type 2 diabetic patients. Diabet. Med. 26, 736–739 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Aroner, S. A. et al. Apolipoprotein C-III and high-density lipoprotein subspecies defined by apolipoprotein C-III in relation to diabetes risk. Am. J. Epidemiol. 186, 736–744 (2017).

    Article  PubMed  Google Scholar 

  197. Li, J. et al. Association of apolipoprotein Cs with new-onset type 2 diabetes mellitus: findings from the Chinese multi-provincial cohort study. BMJ Open 11, e052388 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Yamamoto, R. et al. HDL containing apolipoprotein C-III is associated with insulin sensitivity: a multicenter cohort study. J. Clin. Endocrinol. Metab. 106, e2928–e2940 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Azizkhanian, I. et al. Posttranslational modifications of apolipoprotein A-II proteoforms in type 2 diabetes. J. Clin. Lipidol. 10, 808–815 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Health and Medical Research Council of Australia (APPP2004064 to K.A.R. and B.J.C.).

Author information

Authors and Affiliations

Authors

Contributions

K.A.R., B.J.C., T.W.K. and S.R.T. researched data for the article. K.A.R., B.J.C., T.W.K. and S.R.T. wrote the article. K.A.R. and K.C. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kerry-Anne Rye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Takhar Kasumov and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cochran, B.J., King, T.W., Chemello, K. et al. HDL metabolism and function in diabetes mellitus. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01176-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-025-01176-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing