Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating cellular senescence research into clinical practice for metabolic disease

Abstract

Translational research on cellular senescence has led to numerous early-phase clinical trials targeting senescent cells to treat, prevent or alleviate multiple disorders and diseases, including metabolic diseases and their comorbidities. Cellular senescence is a cell fate that occurs in response to stressors, including metabolic disruptions, and is one of the hallmarks (or pillars) of ageing. In their senescent state, cells cease proliferation and can develop a senescence-associated secretory and metabolic phenotype that contributes to the pathogenesis of metabolic dysfunction associated with obesity and ageing. Metabolic stress, which is central to the development of metabolic diseases, can trigger cellular senescence, thereby enabling a vicious cycle that exacerbates metabolic dysfunction. Therapies targeting senescent cells (senotherapeutics), either alone or in combination with other gerotherapies or lifestyle interventions, hold great promise for addressing the ongoing obesity epidemic and the need for improved therapies to prevent and treat metabolic diseases and their complications and comorbidities. In this Review, we discuss novel senotherapeutics, including challenges related to the translation of these therapies and the need to establish gerodiagnostic biomarkers to track the elimination of senescent cells, define eligibility and measure efficacy, as well as considerations for clinical trial design and execution.

Key points

  • Cellular senescence is a fundamental ageing process that seems to contribute to the pathogenesis of many chronic diseases, including metabolic diseases.

  • Lifestyle and pharmacological interventions that affect metabolic disorders can prevent senescent cell accumulation or modulate their secretory phenotype.

  • Elimination of senescent cells with senolytic drugs or inhibition of the senescence-associated secretory phenotype have shown promise for preventing, alleviating or delaying metabolic diseases and associated comorbidities in preclinical models.

  • Senotherapies are a potentially viable intervention for treatment of metabolic diseases.

  • Early-phase clinical trials are evaluating the safety and tolerability of senolytic drugs, along with monitoring target engagement (the clearance of senescent cells) across multiple age-related diseases.

  • The development of gerodiagnostic biomarkers that target fundamental ageing processes will be critical for identifying individuals who will benefit the most from senolytic therapies and facilitate individualized approaches for treatment of metabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenic loop of metabolic insults and cellular senescence.
Fig. 2: Senotherapeutic strategies and their targets.

Similar content being viewed by others

References

  1. Tchkonia, T., Palmer, A. K. & Kirkland, J. L. New horizons: novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms. J. Clin. Endocrinol. Metab. 106, e1481–e1487 (2021).

    Article  PubMed  Google Scholar 

  2. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tchkonia, T. et al. Fat tissue, aging, and cellular senescence. Aging Cell 9, 667–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Palmer, A. K. et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64, 2289–2298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gasek, N. S. et al. Clearance of p21 highly expressing senescent cells accelerates cutaneous wound healing. Nat. Aging 5, 21–27 (2025).

    Article  CAS  PubMed  Google Scholar 

  10. Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17, 644–656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Munoz-Espin, D. et al. Programmed cell senescence during mammalian embryonic development. Cell 155, 1104–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Menon, R. et al. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging 8, 216–230 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu, Y. et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9, 955–963 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Prata, L., Ovsyannikova, I. G., Tchkonia, T. & Kirkland, J. L. Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin. Immunol. 40, 101275 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaib, S. et al. The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat. Cancer 5, 448–462 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pereira, B. I. et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10, 2387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Egashira, M. et al. F4/80+ macrophages contribute to clearance of senescent cells in the mouse postpartum uterus. Endocrinology 158, 2344–2353 (2017).

    Article  PubMed  Google Scholar 

  26. Wang, T. W. et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature 611, 358–364 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jeyapalan, J. C. & Sedivy, J. M. Cellular senescence and organismal aging. Mech. Ageing Dev. 129, 467–474 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tchkonia, T. & Kirkland, J. L. Aging, cell senescence, and chronic disease: emerging therapeutic strategies. JAMA 320, 1319–1320 (2018).

    Article  PubMed  Google Scholar 

  31. Yousefzadeh, M. J. et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19, e13094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Niemann, B. et al. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J. Am. Coll. Cardiol. 57, 577–585 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Field, A. E. et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch. Intern. Med. 161, 1581–1586 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Zhu, S. et al. Aging- and obesity-related peri-muscular adipose tissue accelerates muscle atrophy. PLoS ONE 14, e0221366 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chaib, S., Tchkonia, T. & Kirkland, J. L. Obesity, senescence, and senolytics. Handb. Exp. Pharmacol. 274, 165–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Firoz, A. & Haris, M. Metabolic syndrome in childhood cancer survivors. EXCLI J. 21, 380–386 (2022).

    PubMed  PubMed Central  Google Scholar 

  38. Suvakov, S. et al. Women with a history of preeclampsia exhibit accelerated aging and unfavorable profiles of senescence markers. Hypertension 81, 1550–1560 (2024).

    Article  CAS  PubMed  Google Scholar 

  39. Smith, W. A. et al. Lifestyle and metabolic syndrome in adult survivors of childhood cancer: a report from the St. Jude Lifetime Cohort study. Cancer 120, 2742–2750 (2014).

    Article  PubMed  Google Scholar 

  40. Friedman, D. N., Tonorezos, E. S. & Cohen, P. Diabetes and metabolic syndrome in survivors of childhood cancer. Horm. Res. Paediatr. 91, 118–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Rosen, G. P., Nguyen, H. T. & Shaibi, G. Q. Metabolic syndrome in pediatric cancer survivors: a mechanistic review. Pediatr. Blood Cancer 60, 1922–1928 (2013).

    Article  PubMed  Google Scholar 

  42. Suvakov, S. et al. Epigenetic and senescence markers indicate an accelerated ageing-like state in women with preeclamptic pregnancies. EBioMedicine 70, 103536 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirkland, J. L. & Tchkonia, T. Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kirkland, J. L. & Tchkonia, T. Senolytic drugs: from discovery to translation. J. Intern. Med. 288, 518–536 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Palmer, A. K., Gustafson, B., Kirkland, J. L. & Smith, U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 62, 1835–1841 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fohr, T. et al. Metabolic syndrome and epigenetic aging: a twin study. Int. J. Obes. 48, 778–787 (2024).

    Article  CAS  Google Scholar 

  48. Nannini, D. R. et al. Epigenetic age acceleration and metabolic syndrome in the coronary artery risk development in young adults study. Clin. Epigenetics 11, 160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Revesz, D., Milaneschi, Y., Verhoeven, J. E., Lin, J. & Penninx, B. W. Longitudinal associations between metabolic syndrome components and telomere shortening. J. Clin. Endocrinol. Metab. 100, 3050–3059 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Morley, J. E. Diabetes, sarcopenia, and frailty. Clin. Geriatr. Med. 24, 455–469 (2008).

    Article  PubMed  Google Scholar 

  51. Aronson, D. & Edelman, E. R. Coronary artery disease and diabetes mellitus. Cardiol. Clin. 32, 439–455 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Eckel, R. H., Alberti, K. G., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 375, 181–183 (2010).

    Article  PubMed  Google Scholar 

  53. Lusis, A. J., Attie, A. D. & Reue, K. Metabolic syndrome: from epidemiology to systems biology. Nat. Rev. Genet. 9, 819–830 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moon, J. H. et al. Increased risk of metabolic disorders in healthy young adults with family history of diabetes: from the Korea National Health and Nutrition Survey. Diabetol. Metab. Syndr. 9, 16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spinelli, R. et al. Increased cell senescence in human metabolic disorders. J. Clin. Invest. 133, e169922 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murphy, S. Understanding childhood and adolescent obesity. Clin. Integr. Care 13, 100114 (2022).

    Article  Google Scholar 

  57. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Nerstedt, A. & Smith, U. The impact of cellular senescence in human adipose tissue. J. Cell Commun. Signal. 17, 563–573 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, L. et al. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab. 34, 75–89 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Ogrodnik, M. et al. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8, 15691 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bianchi, A. et al. Moderate exercise inhibits age-related inflammation, liver steatosis, senescence, and tumorigenesis. J. Immunol. 206, 904–916 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meijnikman, A. S. et al. Hyperinsulinemia is highly associated with markers of hepatocytic senescence in two independent cohorts. Diabetes 71, 1929–1936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aguayo-Mazzucato, C. Functional changes in beta cells during ageing and senescence. Diabetologia 63, 2022–2029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rubin de Celis, M. F. et al. PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53. Proc. Natl Acad. Sci. USA 119, e2206923119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cha, J., Aguayo-Mazzucato, C. & Thompson, P. J. Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies. Front. Endocrinol. (Lausanne) 14, 1212716 (2023).

    Article  PubMed  Google Scholar 

  66. Palmer, A. K., Tchkonia, T. & Kirkland, J. L. Targeting cellular senescence in metabolic disease. Mol. Metab. 66, 101601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, J. et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation 132, 1909–1919 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Minamino, T. & Komuro, I. Vascular cell senescence: contribution to atherosclerosis. Circ. Res. 100, 15–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Katakami, N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J. Atheroscler. Thromb. 25, 27–39 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gardner, S. E., Humphry, M., Bennett, M. R. & Clarke, M. C. Senescent Vascular smooth muscle cells drive inflammation through an interleukin-1α-dependent senescence-associated secretory phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 1963–1974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaistha, A. et al. Premature cell senescence promotes vascular smooth muscle cell phenotypic modulation and resistance to re-differentiation. Cardiovasc. Res. 121, 1448–1463 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Katsuumi, G., Shimizu, I., Yoshida, Y. & Minamino, T. Vascular senescence in cardiovascular and metabolic diseases. Front. Cardiovasc. Med. 5, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Suda, M. et al. Senescent cells: a therapeutic target in cardiovascular diseases. Cells 12, 1296 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bian, X. et al. Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open. Diabetes Res. Care 7, e000720 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gonzales, M. M. et al. Senolytic therapy in mild Alzheimer’s disease: a phase 1 feasibility trial. Nat. Med. 29, 2481–2488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal. Transduct. Target. Ther. 8, 200 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang, K. et al. Metabolic diseases and healthy aging: identifying environmental and behavioral risk factors and promoting public health. Front. Public. Health 11, 1253506 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sun, J. K. et al. Chronic alcohol metabolism results in DNA repair infidelity and cell cycle-induced senescence in neurons. Aging Cell 22, e13772 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jin, H. et al. Oroxylin A inhibits ethanol-induced hepatocyte senescence via YAP pathway. Cell Prolif. 51, e12431 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nyunoya, T. et al. Cigarette smoke induces cellular senescence. Am. J. Respir. Cell Mol. Biol. 35, 681–688 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cottage, C. T. et al. Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. Commun. Biol. 2, 307 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kaur, G., Muthumalage, T. & Rahman, I. Clearance of senescent cells reverts the cigarette smoke-induced lung senescence and airspace enlargement in p16-3MR mice. Aging Cell 22, e13850 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hohensinner, P. J. et al. Reduction of premature aging markers after gastric bypass surgery in morbidly obese patients. Obes. Surg. 28, 2804–2810 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Fontana, L. & Klein, S. Aging, adiposity, and calorie restriction. JAMA 297, 986–994 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Green, C. L., Lamming, D. W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23, 56–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Longo, V. D. & Anderson, R. M. Nutrition, longevity and disease: from molecular mechanisms to interventions. Cell 185, 1455–1470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fontana, L. et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell 17, e12746 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fontana, L., Partridge, L. & Longo, V. D. Extending healthy life span — from yeast to humans. Science 328, 321–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, C. et al. Adult-onset, short-term dietary restriction reduces cell senescence in mice. Aging 2, 555–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Justice, J. N. et al. Caloric restriction intervention alters specific circulating biomarkers of the senescence-associated secretome in middle-aged and older adults with obesity and prediabetes in an 18-week randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 79, glad214 (2024).

    Article  PubMed  Google Scholar 

  99. Aversa, Z. et al. Calorie restriction reduces biomarkers of cellular senescence in humans. Aging Cell 23, e14038 (2024).

    Article  CAS  PubMed  Google Scholar 

  100. Schafer, M. J. et al. Exercise prevents diet-induced cellular senescence in adipose tissue. Diabetes 65, 1606–1615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Englund, D. A. et al. Exercise reduces circulating biomarkers of cellular senescence in humans. Aging Cell 20, e13415 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Demaria, M. et al. Long-term intensive endurance exercise training is associated to reduced markers of cellular senescence in the colon mucosa of older adults. NPJ Aging 9, 3 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Justice, J. N. et al. Cellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older women. J. Gerontol. A Biol. Sci. Med. Sci. 73, 939–945 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Moiseeva, O. et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 12, 489–498 (2013) .

    Article  CAS  PubMed  Google Scholar 

  105. Kulkarni, A. S., Gubbi, S. & Barzilai, N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 32, 15–30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a tool to target aging. Cell Metab. 23, 1060–1065 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, M. N., Moon, J. H. & Cho, Y. M. Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes Obes. Metab. 23, 2561–2571 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Madonna, R. et al. Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. J. Cell Mol. Med. 24, 12331–12340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Katsuumi, G. et al. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. Nat. Aging 4, 926–938 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shah, M. & Vella, A. Effects of GLP-1 on appetite and weight. Rev. Endocr. Metab. Disord. 15, 181–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oeseburg, H. et al. Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler. Thromb. Vasc. Biol. 30, 1407–1414 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Meloni, A. R., DeYoung, M. B., Lowe, C. & Parkes, D. G. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes. Metab. 15, 15–27 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Baboota, R. K. et al. Chronic hyperinsulinemia promotes human hepatocyte senescence. Mol. Metab. 64, 101558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Westhoff, J. H. et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. Hypertension 52, 123–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Liu, S. et al. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci. Rep. 5, 17895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Belakova, B. et al. Lipophilic statins eliminate senescent endothelial cells by inducing anoikis-related cell death. Cells 12, 2836 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Klein, S. et al. Atorvastatin inhibits proliferation and apoptosis, but induces senescence in hepatic myofibroblasts and thereby attenuates hepatic fibrosis in rats. Lab. Invest. 92, 1440–1450 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Sierra-Ramirez, A. et al. Transient metabolic improvement in obese mice treated with navitoclax or dasatinib/quercetin. Aging 12, 11337–11348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hense, J. D. et al. MASLD does not affect fertility and senolytics fail to prevent MASLD progression in male mice. Sci. Rep. 14, 17332 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Raffaele, M. et al. Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell Commun. Signal. 19, 44 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hense, J. D. et al. Senolytic treatment reverses obesity-mediated senescent cell accumulation in the ovary. Geroscience 44, 1747–1759 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Avila, B. M. et al. Effect of senolytic drugs in young female mice chemically induced to estropause. Life Sci. 357, 123073 (2024).

    Article  CAS  PubMed  Google Scholar 

  123. Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Wilson, W. H. et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 11, 1149–1159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Afreen, S. et al. BCL-XL expression is essential for human erythropoiesis and engraftment of hematopoietic stem cells. Cell Death Dis. 11, 8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Josefsson, E. C., Vainchenker, W. & James, C. Regulation of platelet production and life span: role of Bcl-xL and potential implications for human platelet diseases. Int. J. Mol. Sci. 21, 7591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Farr, J. N. et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23, 1072–1079 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Naqvi, K. et al. Long-term follow-up of lower dose dasatinib (50 mg daily) as frontline therapy in newly diagnosed chronic-phase chronic myeloid leukemia. Cancer 126, 67–75 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Ottmann, O. et al. Long-term efficacy and safety of dasatinib in patients with chronic myeloid leukemia in accelerated phase who are resistant to or intolerant of imatinib. Blood Cancer J. 8, 88 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Christopher, L. J. et al. Metabolism and disposition of dasatinib after oral administration to humans. Drug. Metab. Dispos. 36, 1357–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Graefe, E. U. et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 41, 492–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Touil, Y. S. et al. Fisetin disposition and metabolism in mice: Identification of geraldol as an active metabolite. Biochem. Pharmacol. 82, 1731–1739 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Grosse, L. et al. Defined p16high senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Born, E. et al. Eliminating senescent cells can promote pulmonary hypertension development and progression. Circulation 147, 650–666 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl. Med. 10, eaaq1564 (2018).

    Article  PubMed  Google Scholar 

  136. Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife 5, e16351 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lazaro, I. et al. Targeting HSP90 ameliorates nephropathy and atherosclerosis through suppression of NF-κB and STAT signaling pathways in diabetic mice. Diabetes 64, 3600–3613 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Lee, J. H. et al. Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochem. Biophys. Res. Commun. 430, 1109–1113 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Samakkarnthai, P. et al. In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers. Aging 15, 3331–3355 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xu, Q. et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 3, 1706–1726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu, Y. et al. Senolytic and senomorphic agent procyanidin C1 alleviates structural and functional decline in the aged retina. Proc. Natl Acad. Sci. USA 121, e2311028121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shao, M. et al. Procyanidin C1 inhibits bleomycin-induced pulmonary fibrosis in mice by selective clearance of senescent myofibroblasts. FASEB J. 38, e23749 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Gonzalez-Gualda, E. et al. Galacto-conjugation of navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell 19, e13142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Munoz-Espin, D. et al. A versatile drug delivery system targeting senescent cells. EMBO Mol. Med. 10, e9355 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Guerrero, A. et al. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell 19, e13133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat. Metab. 2, 1284–1304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chini, C. et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochem. Biophys. Res. Commun. 513, 486–493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ren, C. et al. Nicotinamide mononucleotide ameliorates cellular senescence and inflammation caused by sodium iodate in RPE. Oxid. Med. Cell Longev. 2022, 5961123 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lu, Z. et al. Nicotinamide mononucleotide alleviates osteoblast senescence induction and promotes bone healing in osteoporotic mice. J. Gerontol. A Biol. Sci. Med. Sci. 78, 186–194 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Rajman, L., Chwalek, K. & Sinclair, D. A. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 27, 529–547 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Amor, C. et al. Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat. Aging 4, 336–349 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117–1126 (2021).

    Article  PubMed  Google Scholar 

  156. Marin, I. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 13, 410–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  157. Chen, H. A. et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov. 13, 432–453 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Eskiocak, O. et al. Senolytic CAR T cells reverse aging-associated defects in intestinal regeneration and fitness. Preprint at bioRxiv https://doi.org/10.1101/2024.03.19.585779v1 (2024).

  159. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wiley, C. D. & Campisi, J. From ancient pathways to aging cells-connecting metabolism and cellular senescence. Cell Metab. 23, 1013–1021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Onorati, A. et al. Upregulation of PD-L1 in senescence and aging. Mol. Cell Biol. 42, e0017122 (2022).

    Article  PubMed  Google Scholar 

  162. Quandt, Z., Young, A. & Anderson, M. Immune checkpoint inhibitor diabetes mellitus: a novel form of autoimmune diabetes. Clin. Exp. Immunol. 200, 131–140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Hansen, E., Sahasrabudhe, D. & Sievert, L. A case report of insulin-dependent diabetes as immune-related toxicity of pembrolizumab: presentation, management and outcome. Cancer Immunol. Immunother. 65, 765–767 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Schwartz, C. et al. Innate PD-L1 limits T cell-mediated adipose tissue inflammation and ameliorates diet-induced obesity. Sci. Transl. Med. 14, eabj6879 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Nambiar, A. et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. EBioMedicine 90, 104481 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Millar, C. L. et al. A pilot study of senolytics to improve cognition and mobility in older adults at risk for Alzheimer’s disease. EBioMedicine 113, 105612 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Farr, J. N. et al. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: a phase 2 randomized controlled trial. Nat. Med. 30, 2605–2612 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wyles, S. P. et al. Cellular senescence in human skin aging: leveraging senotherapeutics. Gerontology 70, 7–14 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Yu, G. T. et al. Mapping cellular senescence networks in human diabetic foot ulcers. Geroscience 46, 1071–1082 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Yu, G. T. et al. Mapping epidermal and dermal cellular senescence in human skin aging. Aging Cell 24, e14358 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xu, M. et al. Transplanted senescent cells induce an osteoarthritis-like condition in mice. J. Gerontol. A Biol. Sci. Med. Sci. 72, 780–785 (2017).

    CAS  PubMed  Google Scholar 

  174. Weigl, M. et al. Profiling microRNA expression during senescence and aging: mining for a diagnostic tool of senescent-cell burden. Preprint at bioRxiv https://doi.org/10.1101/2024.04.10.588794v2 (2024).

  175. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Fohr, T. et al. Does the epigenetic clock GrimAge predict mortality independent of genetic influences: an 18 year follow-up study in older female twin pairs. Clin. Epigenetics 13, 128 (2021).

    Article  PubMed  Google Scholar 

  177. McCrory, C. et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J. Gerontol. A Biol. Sci. Med. Sci. 76, 741–749 (2021).

    Article  PubMed  Google Scholar 

  178. Lu, A. T. et al. DNA methylation GrimAge version 2. Aging (Albany NY) 14, 9484–9549 (2022).

    CAS  PubMed  Google Scholar 

  179. Vaughan, D. E., Rai, R., Khan, S. S., Eren, M. & Ghosh, A. K. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler. Thromb. Vasc. Biol. 37, 1446–1452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Evans, D. S. et al. Proteomic analysis of the senescence-associated secretory phenotype: GDF-15, IGFBP-2, and cystatin-C are associated with multiple aging traits. J. Gerontol. A Biol. Sci. Med. Sci. 79, glad265 (2024).

    Article  PubMed  Google Scholar 

  181. Islam, M. T. et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell 22, e13767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Aguayo-Mazzucato, C. et al. Acceleration of beta cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 30, 129–142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xu, M. et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife 4, e12997 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Kim, S. R. et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy. J. Am. Soc. Nephrol. 32, 1987–2004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim, S. R. et al. Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Transl. Res. 213, 112–123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mylonas, K. J. et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci. Transl. Med. 13, eabb0203 (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2−/−) mice. Hepatology 67, 247–259 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Yu, S. et al. Quercetin reverses cardiac systolic dysfunction in mice fed with a high-fat diet: role of angiogenesis. Oxid. Med. Cell Longev. 2021, 8875729 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Dookun, E. et al. Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery. Aging Cell 19, e13249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Walaszczyk, A. et al. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell 18, e12945 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Lewis-McDougall, F. C. et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Nath, K. A. et al. The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. Am. J. Physiol. Ren. Physiol. 315, F1493–F1499 (2018).

    Article  CAS  Google Scholar 

  195. Sugihara, H. et al. Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy. Sci. Rep. 10, 16385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Dungan, C. M. et al. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience 44, 1925–1940 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Saccon, T. D. et al. Senolytic combination of dasatinib and quercetin alleviates intestinal senescence and inflammation and modulates the gut microbiome in aged mice. J. Gerontol. A Biol. Sci. Med. Sci. 76, 1895–1905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang, B. et al. An inducible p21-Cre mouse model to monitor and manipulate p21-highly-expressing senescent cells in vivo. Nat. Aging 1, 962–973 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Klier, S. et al. Safety and efficacy of senolytic UBX1325 in diabetic macular edema. NEJM Evid. 4, EVIDoa2400009 (2025).

    Article  PubMed  Google Scholar 

  201. Tchkonia, T., Kritchevsky, S. B., Kuchel, G. A. & Kirkland, J. L. NIA Translational Geroscience Network: an infrastructure to facilitate geroscience-guided clinical trials. J. Am. Geriatr. Soc. 72, 1605–1607 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Institutes of Health (grants R37AG13925, R33AG61456, R01AG72301, R01AG61414, R01AG69690, U54AG75941, R01AG89711 and R01AG75684), the Hevolution Foundation (HF-GRO-23-1199148-3), the Connor Fund, Robert J. and Theresa W. Ryan, and the Noaber Foundation. The authors are grateful to T. Evans, senior program coordinator of the Translational Geoscience Network, for contributing to clinical trials of senolytics.

Author information

Authors and Affiliations

Authors

Contributions

S.C. and A.K.P. contributed to all aspects of the article. S.P.W. and N.M. contributed to writing the article and to reviewing and/or editing the manuscript before submission. J.L.K. and T.T. contributed to discussion of the content, writing the article and to reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Tamara Tchkonia.

Ethics declarations

Competing interests

T.T., A.K.P. and J.L.K. have a financial interest related to this article, including patents and pending patents covering senolytic drugs and their uses. S.C. holds patents or pending patents on PDL2 at Mayo Clinic and Spanish National Cancer Research Center, some of which have been licensed to Rejuveron Senescence Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Cristina Aguayo-Mazzucato, Ippei Shimizu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaib, S., Palmer, A.K., Wyles, S.P. et al. Translating cellular senescence research into clinical practice for metabolic disease. Nat Rev Endocrinol (2025). https://doi.org/10.1038/s41574-025-01187-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41574-025-01187-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research