Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination

Abstract

The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physiological and aberrant functions of the AID/APOBEC deaminases.
Fig. 2: The emergence of the AID/APOBEC family and the conserved core cytidine deaminase domain.
Fig. 3: Structural insights from generalists and specialists.
Fig. 4: The consequences of deamination for adaptive evolution.
Fig. 5: APOBEC-derived DNA and RNA base-editing tools.

Similar content being viewed by others

References

  1. Crick, F. H. On protein synthesis. Symposia Soc. Exp. Biol. 12, 138–163 (1958).

    CAS  Google Scholar 

  2. Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 43, 853–866 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ryvkin, P. et al. HAMR: high-throughput annotation of modified ribonucleotides. RNA 19, 1684–1692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Helm, M. & Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 18, 275–291 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Benne, R. et al. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46, 819–826 (1986).

    Article  CAS  PubMed  Google Scholar 

  7. Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Nishikura, K. Functions and Regulation of RNA Editing by ADAR Deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Savva, Y. A., Rieder, L. E. & Reenan, R. A. The ADAR protein family. Genome Biol. 13, 252 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wedekind, J. E., Dance, G. S. C., Sowden, M. P. & Smith, H. C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Lorenzo, J. P. et al. APOBEC2 is a transcriptional repressor required for proper myoblast differentiation. Preprint at bioRxiv https://doi.org/10.1101/2020.07.29.223594 (2021).

    Article  Google Scholar 

  12. Reardon, S. Step aside CRISPR, RNA editing is taking off. Nature 578, 24–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Salter, J. D. & Smith, H. C. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends Biochem. Sci. 43, 606–622 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Salter, J. D., Bennett, R. P. & Smith, H. C. The APOBEC protein family: united by structure, divergent in function. Trends Biochemical Sci. 41, 578–594 (2016).

    Article  CAS  Google Scholar 

  15. Bohn, J. A. et al. APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA. Nat. Commun. 8, 1021 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kouno, T. et al. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat. Commun. 8, 15024 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Matsuoka, T. et al. Structural basis of chimpanzee APOBEC3H dimerization stabilized by double-stranded RNA. Nucleic Acids Res. 46, 10368–10379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rathore, A. et al. The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution. J. Mol. Biol. 425, 4442–4454 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Shaban, N. M. et al. The antiviral and cancer genomic DNA deaminase APOBEC3H is regulated by an RNA-mediated dimerization mechanism. Mol. Cell 69, 75–86.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Shi, K. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat. Struct. Mol. Biol. 24, 131–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Wolfe, A. D., Li, S., Goedderz, C. & Chen, X. S. The structure of APOBEC1 and insights into its RNA and DNA substrate selectivity. NAR Cancer 2, zcaa027 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maiti, A. et al. Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nat. Commun. 9, 2460 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Polevoda, B. et al. DNA mutagenic activity and capacity for HIV-1 restriction of the cytidine deaminase APOBEC3G depend on whether DNA or RNA binds to tyrosine 315. J. Biol. Chem. 292, 8642–8656 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. King, J. J. & Larijani, M. A novel regulator of activation-induced cytidine deaminase/APOBECs in immunity and cancer: Schrödinger’s CATalytic Pocket. Front. Immunol. 8, 351 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Olson, M. E., Harris, R. S. & Harki, D. A. APOBEC enzymes as targets for virus and cancer therapy. Cell Chem. Biol. 25, 36–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Buisson, R. et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 364, eaaw2872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holtz, C. M., Sadler, H. A. & Mansky, L. M. APOBEC3G cytosine deamination hotspots are defined by both sequence context and single-stranded DNA secondary structure. Nucleic Acids Res. 41, 6139–6148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jalili, P. et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat. Commun. 11, 2971 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma, S. & Baysal, B. E. Stem–loop structure preference for site-specific RNA editing by APOBEC3A and APOBEC3G. PeerJ 5, e4136 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Maris, C., Masse, J., Chester, A. N. N., Navaratnam, N. & Allain, F. H. NMR structure of the apoB mRNA stem−loop and its interaction with the C to U editing APOBEC1 complementary factor. RNA 11, 173–186 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richardson, N., Navaratnam, N. & Scott, J. Secondary structure for the apolipoprotein B mRNA editing site. J. Biol. Chem. 273, 31707–31717 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Shah, R. R. et al. Sequence requirements for the editing of apolipoprotein B mRNA. J. Biol. Chem. 266, 16301–16304 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Losey, H. C., Ruthenburg, A. J. & Verdine, G. L. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat. Struct. Mol. Biol. 13, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Ito, F. et al. Understanding the structure, multimerization, subcellular localization and mC selectivity of a genomic mutator and anti-HIV factor APOBEC3H. Sci. Rep. 8, 3763 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mitra, M. et al. Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties. Nucleic Acids Res. 42, 1095–1110 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Tang, G. et al. Creating RNA specific C-to-U editase from APOBEC3A by separation of its activities on DNA and RNA substrates. ACS Synth. Biol. 10, 1106–1115 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Qiao, Q. et al. AID recognizes structured DNA for class switch recombination. Mol. Cell 67, 361–373.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Devos, J. M., Tomanicek, S. J., Jones, C. E., Nossal, N. G. & Mueser, T. C. Crystal structure of bacteriophage T4 5′ nuclease in complex with a branched DNA reveals how flap endonuclease-1 family nucleases bind their substrates. J. Biol. Chem. 282, 31713–31724 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, F. et al. Structures of a CRISPR–Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng, S. et al. Non-coding RNA generated following lariat debranching mediates targeting of AID to DNA. Cell 161, 762–773 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dickerson, S. K., Market, E., Besmer, E. & Papavasiliou, F. N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abdouni, H. S. et al. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID. Mol. Immunol. 93, 94–106 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Fritz, E. L. et al. A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells. Nat. Immunol. 14, 749–755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krzysiak, T. C., Jung, J., Thompson, J., Baker, D. & Gronenborn, A. M. APOBEC2 is a monomer in solution: implications for APOBEC3G models. Biochemistry 51, 2008–2017 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Prochnow, C., Bransteitter, R., Klein, M. G., Goodman, M. F. & Chen, X. S. The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature 445, 447–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Ataie, N. J. et al. Zinc coordination geometry and ligand binding affinity: the structural and kinetic analysis of the second-shell serine 228 residue and the methionine 180 residue of the aminopeptidase from Vibrio proteolyticus. Biochemistry 47, 7673–7683 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Boyaci, H., Chen, J., Jansen, R., Darst, S. A. & Campbell, E. A. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 565, 382–385 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Powell, C., Cornblath, E. & Goldman, D. Zinc-binding domain-dependent, deaminase-independent actions of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 2 (Apobec2), mediate its effect on zebrafish retina regeneration. J. Biol. Chem. 289, 28924–28941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chester, A. et al. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J. 22, 3971–3982 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ito, S. et al. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc. Natl Acad. Sci. USA 101, 1975–1980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Patenaude, A.-M. et al. Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat. Struct. Mol. Biol. 16, 517–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Lackey, L., Law, E. K., Brown, W. L. & Harris, R. S. Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle 12, 762–772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salamango, D. J. et al. APOBEC3H subcellular localization determinants define zipcode for targeting HIV-1 for restriction. Mol. Cell Biol. 38, e00356–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bennett, R. P. et al. APOBEC-1 and AID are nucleo-cytoplasmic trafficking proteins but APOBEC3G cannot traffic. Biochem. Biophys. Res. Commun. 350, 214–219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bennett, R. P., Presnyak, V., Wedekind, J. E. & Smith, H. C. Nuclear exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J. Biol. Chem. 283, 7320–7327 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Navaratnam, N. et al. The p27 catalytic subunit of the apolipoprotein B mRNA editing enzyme is a cytidine deaminase. J. Biol. Chem. 268, 20709–20712 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Teng, B. B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Lellek, H. et al. Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J. Biol. Chem. 275, 19848–19856 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Mehta, A., Kinter, M. T., Sherman, N. E. & Driscoll, D. M. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mol. Cell. Biol. 20, 1846–1854 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fossat, N. et al. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47. EMBO Rep 15, 903–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blanc, V. et al. Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA 25, 70–81 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soleymanjahi, S., Blanc, V. & Davidson, N. APOBEC1 mediated C-to-U RNA editing: target sequence and trans-acting factor contribution to 177 RNA editing events in 119 murine transcripts in-vivo. RNA 27, 876–890 (2021).

    Article  CAS  Google Scholar 

  63. Rayon-Estrada, V. et al. Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proc. Natl Acad. Sci. USA 114, 13296–13301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lerner, T., Papavasiliou, F. N. & Pecori, R. RNA editors, cofactors, and mRNA targets: an overview of the C-to-U RNA editing machinery and its implication in human disease. Genes 10, 13 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  65. Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438, 508–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Chaudhuri, J. & Alt, F. W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat. Rev. Immunol. 4, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Conticello, S. G. et al. Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol. Cell 31, 474–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. McBride, K. M. et al. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Biochem. Soc. Trans. 103, 8798–8803 (2006).

    CAS  Google Scholar 

  69. Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl Acad. Sci. USA 103, 395–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Vuong, B. Q. et al. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10, 420–426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marx, A., Galilee, M. & Alian, A. Zinc enhancement of cytidine deaminase activity highlights a potential allosteric role of loop-3 in regulating APOBEC3 enzymes. Sci. Rep. 5, 18191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, J. & MacCarthy, T. The preferred nucleotide contexts of the AID/APOBEC cytidine deaminases have differential effects when mutating retrotransposon and virus sequences compared to host genes. PLOS Comput. Biol. 13, e1005471 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Eisenberg, E. & Levanon, E. Y. A-to-I RNA editing — immune protector and transcriptome diversifier. Nat. Rev. Genet. 19, 473–490 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Martinez, T., Shapiro, M., Bhaduri-McIntosh, S. & MacCarthy, T. Evolutionary effects of the AID/APOBEC family of mutagenic enzymes on human gamma-herpesviruses. Virus Evol. 5, vey040 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Madani, N. & Kabat, D. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. J. Virol. 72, 10251–10255 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Simon, J. H., Gaddis, N. C., Fouchier, R. A. & Malim, M. H. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat. Med. 4, 1397–1400 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Dang, Y. et al. Human cytidine deaminase APOBEC3H restricts HIV-1 replication. J. Biol. Chem. 283, 11606–11614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harris, R. S. & Dudley, J. P. APOBECs and virus restriction. Virology 479–480, 131–145 (2015).

    Article  PubMed  CAS  Google Scholar 

  82. Hayward, J. A. et al. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity. Mol. Biol. Evol. 35, 1626–1637 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liddament, M. T., Brown, W. L., Schumacher, A. J. & Harris, R. S. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr. Biol. 14, 1385–1391 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Domingo, E., Sheldon, J. & Perales, C. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76, 159–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, E.-Y. et al. Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J. Virol. 84, 10402–10405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wood, N. et al. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC. PLoS Pathog. 5, e1000414 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Venkatesan, S. et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol. 29, 563–572 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bonvin, M. et al. Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication. Hepatology 43, 1364–1374 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Bulliard, Y. et al. Structure–function analyses point to a polynucleotide-accommodating groove essential for APOBEC3A restriction activities. J. Virol. 85, 1765–1776 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Warren, C. J. et al. APOBEC3A functions as a restriction factor of human papillomavirus. J. Virol. 89, 688–702 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Di Giorgio, S., Martignano, F., Torcia, M. G., Mattiuz, G. & Conticello, S. G. Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2. Sci. Adv. 6, eabb5813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Graudenzi, A., Maspero, D., Angaroni, F., Piazza, R. & Ramazzotti, D. Mutational signatures and heterogeneous host response revealed via large-scale characterization of SARS-CoV-2 genomic diversity. iScience 24, 102116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Picardi, E., Mansi, L. & Pesole, G. Detection of A-to-I RNA editing in SARS-COV-2. Genes 13, 41 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Simmonds, P. & Ansari, M. A. Extensive C->U transition biases in the genomes of a wide range of mammalian RNA viruses; potential associations with transcriptional mutations, damage- or host-mediated editing of viral RNA. PLoS Pathog. 17, e1009596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, K. et al. APOBEC-mediated editing of SARS-CoV-2 genomic RNA impacts viral replication and fitness. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2021.12.18.473309v1 (2021).

  96. Klimczak, L. J., Randall, T. A., Saini, N., Li, J.-L. & Gordenin, D. A. Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. PLoS ONE 15, e0237689 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cotroneo, C. E., Mangano, N., Dragani, T. A. & Colombo, F. Lung expression of genes putatively involved in SARS-CoV-2 infection is modulated in cis by germline variants. Eur. J. Hum. Genet. 29, 1019–1026 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Mourier, T. et al. Host-directed editing of the SARS-CoV-2 genome. Biochem. Biophys. Res. Commun. 538, 35–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Ratcliff, J. & Simmonds, P. Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution. Virology 556, 62–72 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. van Dorp, L. et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect. Genet. Evol. 83, 104351 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Matyášek, R. & Kovařík, A. Mutation patterns of human SARS-CoV-2 and Bat RaTG13 coronavirus genomes are strongly biased towards C > U transitions, indicating rapid evolution in their hosts. Genes 11, E761 (2020).

    Article  PubMed  CAS  Google Scholar 

  104. Wang, R., Hozumi, Y., Zheng, Y.-H., Yin, C. & Wei, G.-W. Host immune response driving SARS-CoV-2 evolution. Viruses 12, 1095 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  105. Milewska, A. et al. APOBEC3-mediated restriction of RNA virus replication. Sci. Rep. 8, 5960 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yamanaka, S. et al. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc. Natl Acad. Sci. USA 92, 8483–8487 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Ramiro, A. R. et al. Role of genomic instability and p53 in AID-induced c-myc–Igh translocations. Nature 440, 105–109 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Landry, S., Narvaiza, I., Linfesty, D. C. & Weitzman, M. D. APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep. 12, 444–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roberts, S. A. et al. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46, 424–435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chan, K. & Gordenin, D. A. Clusters of multiple mutations: incidence and molecular mechanisms. Annu. Rev. Genet. 49, 243–267 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  CAS  Google Scholar 

  117. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Klemm, L. et al. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 16, 232–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Law, E. K. et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci. Adv. 2, e1601737 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Venkatesan, S. et al. Induction of APOBEC3 exacerbates DNA replication stress and chromosomal instability in early breast and lung cancer evolution. Cancer Discov. 11, 2456–2473 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Weaver, B. A. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Serebrenik, A. A. et al. The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proc. Natl Acad. Sci. USA 116, 22158–22163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Asaoka, M., Ishikawa, T., Takabe, K. & Patnaik, S. K. APOBEC3-mediated RNA editing in breast cancer is associated with heightened immune activity and improved survival. Int. J. Mol. Sci. 20, 5621 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  127. Ben-Aroya, S. & Levanon, E. Y. A-to-I RNA editing: an overlooked source of cancer mutations. Cancer Cell 33, 789–790 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Christofi, T. & Zaravinos, A. RNA editing in the forefront of epitranscriptomics and human health. J. Transl. Med. 17, 319 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Driscoll, C. B. et al. APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy. Nat. Commun. 11, 790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Paz-Yaacov, N. et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep. 13, 267–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Ramírez-Moya, J., Baker, A. R., Slack, F. J. & Santisteban, P. ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity. Oncogene 39, 3738–3753 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Blanc, V. et al. Deletion of the AU-rich RNA binding protein apobec-1 reduces intestinal tumor burden in Apcmin mice. Cancer Res. 67, 8565–8573 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Nelson, V. R., Heaney, J. D., Tesar, P. J., Davidson, N. O. & Nadeau, J. H. Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability. Proc. Natl Acad. Sci. USA 109, E2766–E2773 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Casati, B., Stamkopoulou, D., Tasakis, R. N. & Pecori, R. in Epitranscriptomics (eds Jurga, S. & Barciszewski, J.) 471–503 (Springer International, 2021).

  135. Khosravi, H. M. & Jantsch, M. F. Site-directed RNA editing: recent advances and open challenges. RNA Biol. 18, 41–50 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Montiel-Gonzalez, M. F., Diaz Quiroz, J. F. & Rosenthal, J. J. C. Current strategies for site-directed RNA editing using ADARs. Methods 156, 16–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Park, S. & Beal, P. A. Off-target editing by CRISPR-guided DNA base editors. Biochemistry 58, 3727–3734 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vogel, P. & Stafforst, T. Critical review on engineering deaminases for site-directed RNA editing. Curr. Opin. Biotechnol. 55, 74–80 (2018).

    Article  PubMed  CAS  Google Scholar 

  140. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Petersen-Mahrt, S. K. & Neuberger, M. S. In vitro deamination of cytosine to uracil in single-stranded DNA by apolipoprotein B editing complex catalytic subunit 1 (APOBEC1). J. Biol. Chem. 278, 19583–19586 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Saraconi, G., Severi, F., Sala, C., Mattiuz, G. & Conticello, S. G. The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. 15, 417 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hersberger, M., Patarroyo-white, S., Arnold, K. S. & Innerarity, T. L. Phylogenetic analysis of the apolipoprotein B mRNA-editing region. J. Biol. Chem. 274, 34590–34597 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Huang, X. et al. Programmable C-to-U RNA editing using the human APOBEC3A deaminase. EMBO J. 40, e108209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bhakta, S., Sakari, M. & Tsukahara, T. RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code. Sci. Rep. 10, 17304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stroppel, A. S. et al. Harnessing self-labeling enzymes for selective and concurrent A-to-I and C-to-U RNA base editing. Nucleic Acids Res. 49, e95 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  152. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Liew, Y. J., Li, Y., Baumgarten, S., Voolstra, C. R. & Aranda, M. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet. 13, e1006619 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Snyder, E. M. et al. APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo. RNA 23, 457–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Conticello, S. G., Thomas, C. J. F., Petersen-Mahrt, S. K. & Neuberger, M. S. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol. Biol. Evol. 22, 367–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Conticello, S. G. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 9, 229 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Krishnan, A., Iyer, L. M., Holland, S. J., Boehm, T. & Aravind, L. Diversification of AID/APOBEC-like deaminases in metazoa: multiplicity of clades and widespread roles in immunity. Proc. Natl Acad. Sci. USA 115, E3201–E3210 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Münk, C., Willemsen, A. & Bravo, I. G. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evolut. Biol. 12, 71 (2012).

    Article  CAS  Google Scholar 

  160. Hirano, K., Min, J., Funahashi, T., Baunoch, D. A. & Davidson, N. O. Characterization of the human apobec-1 gene: expression in gastrointestinal tissues determined by alternative splicing with production of a novel truncated peptide. J. Lipid Res. 38, 847–859 (1997).

    Article  CAS  PubMed  Google Scholar 

  161. Blanc, V. et al. Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol. 15, R79 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Rosenberg, B. R., Hamilton, C. E., Mwangi, M. M., Dewell, S. & Papavasiliou, F. N. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol. 18, 230–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Cole, D. C. et al. Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology. Proc. Natl Acad. Sci. USA 114, 13272–13277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Niavarani, A., Shahrabi Farahani, A., Sharafkhah, M. & Rassoulzadegan, M. Pancancer analysis identifies prognostic high-APOBEC1 expression level implicated in cancer in-frame insertions and deletions. Carcinogenesis 39, 327–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Rogozin, I. B. et al. Nucleotide weight matrices reveal ubiquitous mutational footprints of AID/APOBEC deaminases in human cancer genomes. Cancers 11, E211 (2019).

    Article  PubMed  CAS  Google Scholar 

  166. Nabel, C. S. et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat. Chem. Biol. 8, 751–758 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rogozin, I. B. & Diaz, M. Cutting edge: DGYW/WRCH is a better predictor of mutability at G:C bases in Ig hypermutation than the widely accepted RGYW/WRCY motif and probably reflects a two-step activation-induced cytidine deaminase-triggered process. J. Immunol. 172, 3382–3384 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Rogozin, I. B. & Kolchanov, N. A. Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. Biochim. Biophys. Acta 1171, 11–18 (1992).

    Article  CAS  PubMed  Google Scholar 

  169. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  170. Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Larijani, M. & Martin, A. Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol. Cell. Biol. 27, 8038–8048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Betz, A. G., Rada, C., Pannell, R., Milstein, C. & Neuberger, M. S. Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc. Natl Acad. Sci. USA 90, 2385–2388 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rajewsky, K., Forster, I. & Cumano, A. Evolutionary and somatic selection of the antibody repertoire in the mouse. Science 238, 1088–1094 (1987).

    Article  CAS  PubMed  Google Scholar 

  174. Liao, W. et al. APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. Biochem. Biophys. Res. Commun. 260, 398–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Etard, C., Roostalu, U. & Strähle, U. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. J. Cell Biol. 189, 527–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sato, Y. et al. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy. J. Biol. Chem. 285, 7111–7118 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Sawyer, S. L., Emerman, M. & Malik, H. S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, E275 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. LaRue, R. S. et al. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol. 83, 494–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Bogerd, H. P., Wiegand, H. L., Doehle, B. P., Lueders, K. K. & Cullen, B. R. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res. 34, 89–95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Refsland, E. W. & Harris, R. S. The APOBEC3 family of retroelement restriction factors. Curr. Top. Microbiol. Immunol. 371, 1–27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Yang, B., Chen, K., Zhang, C., Huang, S. & Zhang, H. Virion-associated uracil DNA glycosylase-2 and apurinic/apyrimidinic endonuclease are involved in the degradation of APOBEC3G-edited nascent HIV-1 DNA. J. Biol. Chem. 282, 11667–11675 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. Rogozin, I. B., Basu, M. K., Jordan, I. K., Pavlov, Y. I. & Koonin, E. V. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle 4, 1281–1285 (2005).

    Article  CAS  PubMed  Google Scholar 

  183. Marino, D. et al. APOBEC4 enhances the replication of HIV-1. PLoS ONE 11, e0155422 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Shi, M. et al. Characterization and functional analysis of chicken APOBEC4. Dev. Comp. Immunol. 106, 103631 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on RNA editing and modification in the Papavasiliou laboratory is funded by the European Research Council (ERC) (#649019) and the German Research Foundation (DFG) (TRR319-RMaP and SPP1784). The authors thank all members, past and present, of the Papavasiliou laboratory for discussions, and sincerely apologize to the many colleagues whose work could not be cited for reasons of space.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, and wrote the article. F.N.P. and R.P. edited the manuscript and drafted the final submission.

Corresponding author

Correspondence to F. Nina Papavasiliou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks M. Larijani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Human Protein Atlas: http://www.proteinatlas.org

Glossary

Base modifications

Chemically altered nucleotides within mature RNA molecules.

dCasRx

Catalytically dead RNA-guided RNA-targeting CasRx from Ruminococcus flavefaciens XPD3002. CasRx is another member of the CRISPR family (class 2, VI-D).

dPspCas13b

Catalytically dead RNA-guided RNA-targeting CRISPR–Cas13b from Prevotella sp. P5-125. Cas13b is a member of the CRISPR family (class 2, type VI). Physiologically, Cas13b catalyses site-specific cleavage of single-stranded RNA.

G-quadruplex

A non-canonical four-stranded secondary structure of guanine-rich DNA sequences.

Guide RNAs

(gRNAs). Short RNA sequences used in base-editing technologies to target the base editor to a specific sequence in DNA or RNA. Depending on the tagging system used, the base editor can be recruited by the gRNA using specific scaffolds (for Cas proteins), sequences (MS2 coat protein) or chemical modifications (for SNAP).

Intrinsically disordered region

(IDR). An unstructured domain of proteins that are believed to have roles in intermolecular and intramolecular interactions, such as complex formation and phase separation.

MS2-tagged

Refers to a molecule labelled using a tagging system based on the natural interaction between the MS2 bacteriophage coat protein and a stem–loop structure from the phage genome. The sequence forming the stem–loop can be attached to a guide RNA (gRNA) to target an MS2-tagged base editor.

Nuclear export signal

(NES). A short peptide motif enriched for hydrophobic residues (such as Leu) recognized by exportins (such as XPO1/CRM1) that tags a protein for nuclear exit.

Nuclear localization signal

(NLS). A short peptide motif enriched for positively charged residues that tags a protein for nuclear import.

Pseudotyped HIV

Chimaeric viruses composed of the envelope glycoprotein of vesicular stomatis virus (VSV-G) and the human immunodeficiency virus type 1 (HIV-1) core; these viruses are more infectious than non-pseudotyped HIV-1 viruses.

SNAP-tagged

Refers to a molecule labelled using a tagging system based on the SNAP-tag self-labelling protein derived from the human O6-alkylguanine-DNA alkyltransferase. As a SNAP-tag will form a covalent linkage with benzylguanine (BG)-modified nucleotides, a SNAP-tagged base editor can be directed to specific targets by BG-modified guide RNAs (gRNAs).

Stem–loops

Specific structures that may occur in single-stranded RNA (ssRNA) when complementary sequences base pair to form a double helix that ends in an unpaired (single-stranded) loop. Stem–loops are also known as hairpin structures or hairpin loops.

π-Stacking

Attractive non-covalent interactions between aromatic rings.

Tumour restriction

The limitation of tumour growth and/or tumour suppression or ablation by numerous distinct molecular mechanisms. Here, we specifically refer to the limitation of tumour growth owing to cell death after activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC)-mediated hypermutation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecori, R., Di Giorgio, S., Paulo Lorenzo, J. et al. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat Rev Genet 23, 505–518 (2022). https://doi.org/10.1038/s41576-022-00459-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-022-00459-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing