Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic landscape of cancer in racially and ethnically diverse populations

Abstract

Cancer incidence and mortality rates can vary widely among different racial and ethnic groups, attributed to a complex interplay of genetic, environmental and social factors. Recently, substantial progress has been made in investigating hereditary genetic risk factors and in characterizing tumour genomes. However, most research has been conducted in individuals of European ancestries and, increasingly, in individuals of Asian ancestries. The study of germline and somatic genetics in cancer across racial and ethnic groups using omics technologies offers opportunities to identify similarities and differences in both heritable traits and the molecular features of cancer genomes. An improved understanding of population-specific cancer genomics, as well as translation of those findings across populations, will help reduce cancer disparities and ensure that personalized medicine and public health approaches are equitable across racial and ethnic groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A multi-omics approach to assess cancer disparities for germline and somatic tumour investigations.
Fig. 2: Linkage disequilibrium differences between ancestries can affect the identification of causal germline variants.
Fig. 3: Mutational signatures.

Similar content being viewed by others

References

  1. Ahmad, F. B. & Anderson, R. N. The leading causes of death in the US for 2020. JAMA 325, 1829–1830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bray, F., Laversanne, M., Weiderpass, E. & Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127, 3029–3030 (2021).

    Article  PubMed  Google Scholar 

  3. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).

    Article  PubMed  Google Scholar 

  4. Zavala, V. A. et al. Cancer health disparities in racial/ethnic minorities in the United States. Br. J. Cancer 124, 315–332 (2021).

    Article  PubMed  Google Scholar 

  5. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  PubMed  Google Scholar 

  6. Sung, H., Wiese, D., Jatoi, I. & Jemal, A. State variation in racial and ethnic disparities in incidence of triple-negative breast cancer among US women. JAMA Oncol. 9, 700–704 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. American Cancer Society. Colorectal cancer facts & figures 2017–2019. cancer.org https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/colorectal-cancer-facts-and-figures/colorectal-cancer-facts-and-figures-2017-2019.pdf (2017).

  8. Zimpelman, G. L. et al. Cancer in Alaska Native people: 1969–2018, the 50-year report (Alaska Native Tribal Health Consortium, Epidemiology Center, 2021).

  9. Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A. & Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 73, 233–254 (2023).

    Article  PubMed  Google Scholar 

  10. Crenshaw, K. Demarginalizing the intersection of race and sex: a black feminist critique of antidiscrimination doctrine, feminist theory and antiracist policies. Univ. Chic. Leg. Forum 1989, 8 (1989).

    Google Scholar 

  11. Peters, U. & Tomlinson, I. Utilizing human genetics to develop chemoprevention for cancer—too good an opportunity to be missed. Cancer Prev. Res. 17, 7–12 (2024).

    Article  CAS  Google Scholar 

  12. Islami, F. et al. American Cancer Society’s report on the status of cancer disparities in the United States, 2021. CA Cancer J. Clin. 72, 112–143 (2022).

    Article  PubMed  Google Scholar 

  13. Khan, A. T. et al. Recommendations on the use and reporting of race, ethnicity, and ancestry in genetic research: experiences from the NHLBI TOPMed program. Cell Genomics 2, 100155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Popejoy, A. B. Too many scientists still say Caucasian. Nature 596, 463 (2021).

    Article  CAS  Google Scholar 

  15. Rambachan, A. Overcoming the racial hierarchy: the history and medical consequences of “Caucasian”. J. Racial Ethn. Health Disparities 5, 907–912 (2018).

    Article  PubMed  Google Scholar 

  16. Mucci, L. A. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 315, 68–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Barry, C.-J. S. et al. How to estimate heritability: a guide for genetic epidemiologists. Int. J. Epidemiol. 52, 624–632 (2023).

    Article  PubMed  Google Scholar 

  19. Hur, Y.-M. et al. Twin family registries worldwide: an important resource for scientific research. Twin Res. Hum. Genet. 22, 427–437 (2019).

    Article  PubMed  Google Scholar 

  20. Chan, T. F. et al. Estimating heritability explained by local ancestry and evaluating stratification bias in admixture mapping from summary statistics. Am. J. Hum. Genet. 110, 1853–1862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vinkhuyzen, A. A. E., Wray, N. R., Yang, J., Goddard, M. E. & Visscher, P. M. Estimation and partition of heritability in human populations using whole-genome analysis methods. Annu. Rev. Genet. 47, 75–95 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McClellan, J. & King, M.-C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Li, M., He, Z., Tong, X., Witte, J. S. & Lu, Q. Detecting rare mutations with heterogeneous effects using a family-based genetic random field method. Genetics 210, 463–476 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tung, N. M. & Garber, J. E. BRCA1/2 testing: therapeutic implications for breast cancer management. Br. J. Cancer 119, 141–152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Couch, F. J., Nathanson, K. L. & Offit, K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science 343, 1466–1470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soewito, S. et al. Disparities in cancer genetic testing and variants of uncertain significance in the hispanic population of South Texas. JCO Oncol. Pract. 18, e805–e813 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chrysafi, P. et al. Prevalence of variants of uncertain significance in patients undergoing genetic testing for hereditary breast and ovarian cancer and Lynch syndrome. Cancers 15, 5762 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chern, J. Y., Lee, S. S., Frey, M. K., Lee, J. & Blank, S. V. The influence of BRCA variants of unknown significance on cancer risk management decision-making. J. Gynecol. Oncol. 30, e60 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Caswell-Jin, J. L. et al. Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk. Genet. Med. 20, 234–239 (2018).

    Article  PubMed  Google Scholar 

  30. Marlin, R. et al. Mutation HOXB13 c.853delT in Martinican prostate cancer patients. Prostate 80, 463–470 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Akbari, M. R. et al. Association between germline HOXB13 G84E mutation and risk of prostate cancer. J. Natl Cancer Inst. 104, 1260–1262 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Darst, B. F. et al. A rare germline HOXB13 variant contributes to risk of prostate cancer in men of African ancestry. Eur. Urol. 81, 458–462 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Na, R. et al. The HOXB13 variant X285K is associated with clinical significance and early age at diagnosis in African American prostate cancer patients. Br. J. Cancer 126, 791–796 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Oddoux, C. et al. The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat. Genet. 14, 188–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Neuhausen, S. et al. Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer. Nat. Genet. 13, 126–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Struewing, J. P. et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N. Engl. J. Med. 336, 1401–1408 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  38. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strand, S. H. et al. The Human Tumor Atlas Network (HTAN) breast precancer atlas: a multi-omic integrative analysis of ductal carcinoma in situ with clinical outcomes. SSRN J. https://doi.org/10.2139/ssrn.3874170 (2021).

  40. Srivastava, S., Ghosh, S., Kagan, J., Mazurchuk, R. & National Cancer Institute’s HTAN Implementation. The making of a precancer atlas: promises, challenges, and opportunities. Trends Cancer 4, 523–536 (2018).

    Article  PubMed  Google Scholar 

  41. Tong, Y. et al. Cumulative evidence of relationships between multiple variants in 8q24 region and cancer incidence. Medicine 99, e20716 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Conti, D. V. et al. Two novel susceptibility loci for prostate cancer in men of African ancestry. J. Natl Cancer Inst. 109, djx084 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Darst, B. F. et al. A germline variant at 8q24 contributes to familial clustering of prostate cancer in men of African ancestry. Eur. Urol. 78, 316–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walavalkar, K. et al. A rare variant of African ancestry activates 8q24 lncRNA hub by modulating cancer associated enhancer. Nat. Commun. 11, 3598 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laken, S. J. et al. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat. Genet. 17, 79–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Liang, J. et al. APC polymorphisms and the risk of colorectal neoplasia: a HuGE review and meta-analysis. Am. J. Epidemiol. 177, 1169–1179 (2013).

    Article  PubMed  Google Scholar 

  47. Hu, C. et al. A population-based study of genes previously implicated in breast cancer. N. Engl. J. Med. 384, 440–451 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Breast Cancer Association Consortium et al. Breast cancer risk genes—association analysis in more than 113,000 women. N. Engl. J. Med. 384, 428–439 (2021).

    Article  Google Scholar 

  49. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MacArthur, J. et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Novembre, J. et al. Addressing the challenges of polygenic scores in human genetic research. Am. J. Hum. Genet. 109, 2095–2100 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Caliebe, A. et al. Including diverse and admixed populations in genetic epidemiology research. Genet. Epidemiol. 46, 347–371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Micheletti, S. J. et al. Genetic consequences of the transatlantic slave trade in the Americas. Am. J. Hum. Genet. 107, 265–277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ongaro, L. et al. The genomic impact of European colonization of the Americas. Curr. Biol. 29, 3974–3986.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fejerman, L. et al. Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US Latinas. Hum. Mol. Genet. 21, 1907–1917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Freedman, M. L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl Acad. Sci. USA 103, 14068–14073 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruiz-Narváez, E. A. et al. Admixture mapping of African-American women in the AMBER consortium identifies new loci for breast cancer and estrogen-receptor subtypes. Front. Genet. 7, 170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fejerman, L. et al. Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25. Nat. Commun. 5, 5260 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, M. S., Patel, K. P., Teng, A. K., Berens, A. J. & Lachance, J. Genetic disease risks can be misestimated across global populations. Genome Biol. 19, 179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Carlson, C. S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 11, e1001661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fernández-Rhodes, L. et al. Trans-ethnic fine-mapping of genetic loci for body mass index in the diverse ancestral populations of the Population Architecture using Genomics and Epidemiology (PAGE) Study reveals evidence for multiple signals at established loci. Hum. Genet. 136, 771–800 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bien, S. A. et al. Transethnic insight into the genetics of glycaemic traits: fine-mapping results from the Population Architecture using Genomics and Epidemiology (PAGE) consortium. Diabetologia 60, 2384–2398 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hodonsky, C. J. et al. Generalization and fine mapping of red blood cell trait genetic associations to multi-ethnic populations: the PAGE Study. Am. J. Hematol. 93, 1061–1073 (2018).

    Article  Google Scholar 

  70. Yoneyama, S. et al. Generalization and fine mapping of European ancestry-based central adiposity variants in African ancestry populations. Int. J. Obes. 41, 324–331 (2017).

    Article  CAS  Google Scholar 

  71. Fachal, L. et al. Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nat. Genet. 52, 56–73 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dadaev, T. et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nat. Commun. 9, 2256 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zheng, Y. et al. Fine mapping of breast cancer genome-wide association studies loci in women of African ancestry identifies novel susceptibility markers. Carcinogenesis 34, 1520–1528 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Han, Y. et al. Prostate cancer susceptibility in men of African ancestry at 8q24. J. Natl Cancer Inst. 108, djv431 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Conrad, D. F. et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat. Genet. 38, 1251–1260 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Freedman, M. L. et al. Principles for the post-GWAS functional characterization of cancer risk loci. Nat. Genet. 43, 513–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Long, E. et al. Massively parallel reporter assays and variant scoring identified functional variants and target genes for melanoma loci and highlighted cell-type specificity. Am. J. Hum. Genet. 109, 2210–2229 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi, S. W., Mak, T. S.-H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 97, 576–592 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Darst, B. F. et al. Evaluating approaches for constructing polygenic risk scores for prostate cancer in men of African and European ancestry. Am. J. Hum. Genet. 110, 1200–1206 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Conti, D. V. et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat. Genet. 53, 65–75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hughes, E. et al. Development and validation of a breast cancer polygenic risk score on the basis of genetic ancestry composition. JCO Precis. Oncol. 6, e2200084 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lambert, S. A., Abraham, G. & Inouye, M. Towards clinical utility of polygenic risk scores. Hum. Mol. Genet. 28, R133–R142 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 50, 928–936 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104, 21–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Spaeth, E. L., Dite, G. S., Hopper, J. L. & Allman, R. Validation of an abridged breast cancer risk prediction model for the general population. Cancer Prev. Res. 16, 281–291 (2023).

    Article  Google Scholar 

  88. Mabey, B. et al. Validation of a clinical breast cancer risk assessment tool combining a polygenic score for all ancestries with traditional risk factors. Genet. Med. 26, 101128 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Busby, G. B. et al. Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments. Nat. Commun. 14, 7105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hou, K. et al. Calibrated prediction intervals for polygenic scores across diverse contexts. Nat. Genet. 56, 1386–1396 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Esserman, L. J., WISDOM Study and Athena Investigators. The WISDOM Study: breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer 3, 34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shieh, Y. et al. Breast cancer screening in the precision medicine era: risk-based screening in a population-based trial. J. Natl Cancer Inst. 109, djw290 (2017).

    Article  Google Scholar 

  93. European Commision. International randomized study comparing personalized, risk-stratified to standard breast cancer screening in women aged 40-70. CORDIS https://cordis.europa.eu/project/rcn/212694/factsheet/en (2018).

  94. Lennon, N. J. et al. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat. Med. 30, 480–487 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Linder, J. E. et al. Returning integrated genomic risk and clinical recommendations: the eMERGE study. Genet. Med. 25, 100006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Buskermolen, M. et al. Modeling in colorectal cancer screening: assessing external and predictive validity of MISCAN-colon microsimulation model using NORCCAP trial results. Med. Decis. Mak. 38, 917–929 (2018).

    Article  Google Scholar 

  97. van den Puttelaar, R. et al. Risk-stratified screening for colorectal cancer using genetic and environmental risk factors: a cost-effectiveness analysis based on real-world data. Clin. Gastroenterol. Hepatol. 21, 3415–3423.e29 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hsiehchen, D., Espinoza, M., Valero, C., Ahn, C. & Morris, L. G. T. Impact of tumor mutational burden on checkpoint inhibitor drug eligibility and outcomes across racial groups. J. Immunother. Cancer 9, e003683 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  99. DeSantis, C. E. et al. Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–451 (2019).

    Article  PubMed  Google Scholar 

  100. Costa, R. L. B. & Gradishar, W. J. Triple-negative breast cancer: current practice and future directions. J. Oncol. Pract. 13, 301–303 (2017).

    Article  PubMed  Google Scholar 

  101. Martini, R. et al. African ancestry-associated gene expression profiles in triple-negative breast cancer underlie altered tumor biology and clinical outcome in women of African descent. Cancer Discov. 12, 2530–2551 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ashktorab, H. et al. A meta-analysis of MSI frequency and race in colorectal cancer. Oncotarget 7, 34546–34557 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zaidi, S. H. et al. Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival. Nat. Commun. 11, 3644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kearney, D. E. et al. Increasing incidence of left-sided colorectal cancer in the young: age is not the only factor. J. Gastrointest. Surg. 24, 2416–2422 (2020).

    Article  PubMed  Google Scholar 

  105. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nik-Zainal, S. et al. The genome as a record of environmental exposure. Mutagenesis 30, 763–770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zapatka, M. et al. The landscape of viral associations in human cancers. Nat. Genet. 52, 320–330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Severson, P. L., Vrba, L., Stampfer, M. R. & Futscher, B. W. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutat. Res. Genet. Toxicol. Env. Mutagen. 775–776, 48–54 (2014).

    Article  Google Scholar 

  109. Huang, M. N. et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 27, 1475–1486 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mimaki, S. et al. Hypermutation and unique mutational signatures of occupational cholangiocarcinoma in printing workers exposed to haloalkanes. Carcinogenesis 37, 817–826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lison, D., van den Brule, S. & Van Maele-Fabry, G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit. Rev. Toxicol. 48, 522–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Das, S. et al. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat. Rev. Cancer 22, 576–591 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Grollman, A. P. Aristolochic acid nephropathy: harbinger of a global iatrogenic disease. Env. Mol. Mutagen. 54, 1–7 (2013).

    Article  CAS  Google Scholar 

  114. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks + E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dziubańska-Kusibab, P. J. et al. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat. Med. 26, 1063–1069 (2020).

    Article  PubMed  Google Scholar 

  116. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, eabl9283 (2022).

    Article  CAS  Google Scholar 

  119. Perdomo, S. et al. The Mutographs biorepository: a unique genomic resource to study cancer around the world. Cell Genomics 4, 100500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Senkin, S. et al. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature 629, 910–918 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Moody, S. et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat. Genet. 53, 1553–1563 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Kodros, J. K. et al. Unequal airborne exposure to toxic metals associated with race, ethnicity, and segregation in the USA. Nat. Commun. 13, 6329 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bell, M. L. & Ebisu, K. Environmental inequality in exposures to airborne particulate matter components in the United States. Env. Health Perspect. 120, 1699–1704 (2012).

    Article  CAS  Google Scholar 

  124. Miranda, M. L., Edwards, S. E., Keating, M. H. & Paul, C. J. Making the environmental justice grade: the relative burden of air pollution exposure in the United States. Int. J. Env. Res. Public. Health 8, 1755–1771 (2011).

    Article  Google Scholar 

  125. Tao, M.-H., Liu, J.-L., & Nguyen, U-SDT. Trends in diet quality by race/ethnicity among adults in the United States for 2011–2018. Nutrients 14, 4178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yazici, C. et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 66, 1983–1994 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Brooks, A. W., Priya, S., Blekhman, R. & Bordenstein, S. R. Gut microbiota diversity across ethnicities in the United States. PLoS Biol. 16, e2006842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Riva, L. et al. The mutational signature profile of known and suspected human carcinogens in mice. Nat. Genet. 52, 1189–1197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kemp, C. J. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years. Cold Spring Harb. Protoc. 2015, 865–874 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Carrot-Zhang, J. et al. Genetic ancestry contributes to somatic mutations in lung cancers from admixed Latin American populations. Cancer Discov. 11, 591–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Gomez, F., Griffith, M. & Griffith, O. L. Genetic ancestry correlations with driver mutations suggest complex interactions between somatic and germline variation in cancer. Cancer Discov. 11, 534–536 (2021).

    Article  PubMed  Google Scholar 

  133. Houlahan, K. E. et al. Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity. Science 384, eadh8697 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Carrot-Zhang, J. et al. Comprehensive analysis of genetic ancestry and its molecular correlates in cancer. Cancer Cell 37, 639–654.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu, Y., Gusev, A., Heng, Y. J., Alexandrov, L. B. & Kraft, P. Somatic mutational profiles and germline polygenic risk scores in human cancer. Genome Med. 14, 14 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Namba, S. et al. Common germline risk variants impact somatic alterations and clinical features across cancers. Cancer Res. 83, 20–27 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cruz-Tapias, P., Castiblanco, J. & Anaya, J.-M. in Autoimmunity: From Bench to Bedside (eds Anaya, J. M. et al.) Ch. 10 (El Rosario Univ. Press, 2013).

  140. Williams, T. M. Human leukocyte antigen gene polymorphism and the histocompatibility laboratory. J. Mol. Diagn. 3, 98–104 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Traherne, J. A. Human MHC architecture and evolution: implications for disease association studies. Int. J. Immunogenet. 35, 179–192 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gourraud, P.-A. et al. HLA diversity in the 1000 Genomes dataset. PLoS ONE 9, e97282 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Doherty, P. C. & Zinkernagel, R. M. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256, 50–52 (1975).

    Article  CAS  PubMed  Google Scholar 

  144. Tsai, Y.-Y. et al. Heterozygote advantage at HLA class I and II loci and reduced risk of colorectal cancer. Front. Immunol. 14, 1268117 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Krishna, C. et al. An immunogenetic basis for lung cancer risk. Science 383, eadi3808 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Warabi, M., Kitagawa, M. & Hirokawa, K. Loss of MHC class II expression is associated with a decrease of tumor-infiltrating T cells and an increase of metastatic potential of colorectal cancer: immunohistological and histopathological analyses as compared with normal colonic mucosa and adenomas. Pathol. Res. Pract. 196, 807–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Lyu, L. et al. Overexpressed pseudogene HLA-DPB2 promotes tumor immune infiltrates by regulating HLA-DPB1 and indicates a better prognosis in breast cancer. Front. Oncol. 10, 1245 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Sconocchia, G. et al. HLA class II antigen expression in colorectal carcinoma tumors as a favorable prognostic marker. Neoplasia 16, 31–42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cabrera, T. et al. High frequency of altered HLA class I phenotypes in invasive colorectal carcinomas. Tissue Antigens 52, 114–123 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Karnes, J. H. et al. Comparison of HLA allelic imputation programs. PLoS ONE 12, e0172444 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hosomichi, K., Shiina, T., Tajima, A. & Inoue, I. The impact of next-generation sequencing technologies on HLA research. J. Hum. Genet. 60, 665–673 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mayor, N. P. et al. Recipients receiving better HLA-matched hematopoietic cell transplantation grafts, uncovered by a novel HLA typing method, have superior survival: a retrospective study. Biol. Blood Marrow Transpl. 25, 443–450 (2019).

    Article  Google Scholar 

  153. Treem, J. W., Schneider, M., Zender, R. L. & Sorkin, D. H. Exploring the potential role of community engagement in evaluating clinical and translational science grant proposals. J. Clin. Transl. Sci. 2, 139–146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cyril, S., Smith, B. J., Possamai-Inesedy, A. & Renzaho, A. M. N. Exploring the role of community engagement in improving the health of disadvantaged populations: a systematic review. Glob. Health Action. 8, 29842 (2015).

    Article  PubMed  Google Scholar 

  155. Cohen, J. C. et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc. Natl Acad. Sci. USA 103, 1810–1815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Holt, C. L., Hussain, A., Wachbroit, R. & Scott, J. Precision medicine across the cancer continuum: implementation and implications for cancer disparities. JCO Precis Oncol. 1, PO.17.00102 (2017).

    Google Scholar 

  157. Freimuth, V. S. & Quinn, S. C. The contributions of health communication to eliminating health disparities. Am. J. Public Health 94, 2053–2055 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Rebbeck, T. R., Mahal, B., Maxwell, K. N., Garraway, I. P. & Yamoah, K. The distinct impacts of race and genetic ancestry on health. Nat. Med. 28, 890–893 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. National Academies of Sciences, Engineering, and Medicine et al. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field. Consensus Study Report (National Academies Press, 2023).

  160. Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Flanagin, A., Frey, T., Christiansen, S. L. & AMA Manual of Style Committee. Updated guidance on the reporting of race and ethnicity in medical and science journals. JAMA 326, 621–627 (2021).

    Article  PubMed  Google Scholar 

  162. Krainc, T. & Fuentes, A. Genetic ancestry in precision medicine is reshaping the race debate. Proc. Natl Acad. Sci. USA 119, e2203033119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Borrell, L. N. et al. Race and genetic ancestry in medicine—a time for reckoning with racism. N. Engl. J. Med. 384, 474–480 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Adigbli, G. Race, science and (im)precision medicine. Nat. Med. 26, 1675–1676 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Bryc, K., Durand, E. Y., Macpherson, J. M., Reich, D. & Mountain, J. L. The genetic ancestry of African Americans, Latinos, and European Americans across the United States. Am. J. Hum. Genet. 96, 37–53 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Belbin, G. M. et al. Toward a fine-scale population health monitoring system. Cell 184, 2068–2083.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Benn Torres, J. Anthropological perspectives on genomic data, genetic ancestry, and race. Am. J. Phys. Anthropol. 171, 74–86 (2020).

    Article  PubMed  Google Scholar 

  168. Batai, K., Hooker, S. & Kittles, R. A. Leveraging genetic ancestry to study health disparities. Am. J. Phys. Anthropol. 175, 363–375 (2021).

    Article  PubMed  Google Scholar 

  169. Oni-Orisan, A., Mavura, Y., Banda, Y., Thornton, T. A. & Sebro, R. Embracing genetic diversity to improve black health. N. Engl. J. Med. 384, 1163–1167 (2021).

    Article  PubMed  Google Scholar 

  170. Gonzalez-Pons, M. & Cruz-Correa, M. Colorectal cancer biomarkers: where are we now? Biomed. Res. Int. 2015, 149014 (2015).

    Google Scholar 

  171. Afrăsânie, V.-A. et al. KRAS, NRAS, BRAF, HER2 and microsatellite instability inmetastatic colorectal cancer—practical implications for the clinician. Radiol. Oncol. 53, 265–274 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Li, J., Ma, X., Chakravarti, D., Shalapour, S. & DePinho, R. A. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 35, 787–820 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bai, Z. et al. Tumor-infiltrating lymphocytes in colorectal cancer: the fundamental indication and application on immunotherapy. Front. Immunol. 12, 808964 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Lech, G., Słotwiński, R., Słodkowski, M. & Krasnodębski, I. W. Colorectal cancertumour markers and biomarkers: recent therapeutic advances. World J.Gastroenterol. 22, 1745–1755 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Myer, P. A. et al. The genomics of colorectal cancer in populations with African and Europeanancestry. Cancer Discov. 12, 1282–1293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gutierrez, C., Ogino, S., Meyerhardt, J. A. & Iorgulescu, J. B. The prevalence and prognosis of microsatellite instability-high/mismatch repair-deficient colorectal adenocarcinomas in the United States. JCO Precis Oncol. 7, e2200179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. R. Huyghe for thoughtful review of the manuscript and B. F. Darst for scientific input and suggested references.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ulrike Peters.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Gail Tomlinson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

American Cancer Society recommendations: https://www.cancer.org/cancer/types/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html

Confluence Project: https://confluence.cancer.gov/#home

dbSNP: https://www.ncbi.nlm.nih.gov/snp/

Genomic Data Commons Portal: https://portal.gdc.cancer.gov

Mutographs project: https://www.mutographs.org/

TOPMed: https://topmed.nhlbi.nih.gov/

US Census: www.census.gov

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, C.E., Peters, U. Genomic landscape of cancer in racially and ethnically diverse populations. Nat Rev Genet 26, 336–349 (2025). https://doi.org/10.1038/s41576-024-00796-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-024-00796-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer