Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Spatial miRNomics: towards the integration of microRNAs in spatial biology

Spatial transcriptomics tools enable the detection and localization of hundreds to thousands of transcripts in biological tissues. However, most technologies are not designed to detect microRNAs. Existing technologies should be expanded to incorporate these key molecular regulators and enable more-comprehensive transcriptomic studies that will shape the new field of spatial miRNomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Nemeth, K. et al. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat. Rev. Genet. 25, 211–232 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Rishik, S. et al. miRNATissueAtlas 2025: an update to the uniformly processed and annotated human and mouse non-coding RNA tissue atlas. Nucleic Acids Res. 53, D129–D137 (2025).

    Article  PubMed  Google Scholar 

  5. Yi, M. et al. The role of cancer-derived microRNAs in cancer immune escape. J. Hematol. Oncol. 13, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Telonis, A. G. et al. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 45, 2973–2985 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McKellar, D. et al. Spatial mapping of the total transcriptome by in situ polyadenylation. Nat. Biotechnol. 41, 513–520 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Bai, Z. et al. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 187, 6760–6779 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Pena, J. T. G. et al. miRNA in situ hybridization in formaldehyde and EDC - Fixed tissues. Nat. Methods 6, 139–141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Swedish Research Council (2024-02533) and Cancerfonden (24-3457). A. R.-R. thanks the Alfonso Martín Escudero Foundation for supporting his postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agustín Robles-Remacho or Mats Nilsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robles-Remacho, A., Nilsson, M. Spatial miRNomics: towards the integration of microRNAs in spatial biology. Nat Rev Genet 26, 291–292 (2025). https://doi.org/10.1038/s41576-025-00819-0

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00819-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing