Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Beyond the black box with biologically informed neural networks

Machine learning models for multi-omics data often trade off predictive accuracy against biological interpretability. An emerging class of deep learning architectures structurally encode biological knowledge to improve both prediction and explainability. Opportunities and challenges remain for broader adoption.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A biologically informed neural network architecture.

References

  1. Wysocka, M., Wysocki, O., Zufferey, M., Landers, D. & Freitas, A. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinformatics 24, 198 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. van Hilten, A. et al. Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data. npj Syst. Biol. Appl. 10, 81 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuenzi, B. M. et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 38, 672–684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W. & Mostafavi, S. Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat. Rev. Genet. 24, 125–137 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348–352 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hao, J., Kim, Y., Mallavarapu, T., Oh, J. H. & Kang, M. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data. BMC Med. Genomics 12 (Suppl. 10), 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Seninge, L., Anastropoulos, I., Ding, H. & Stuart, J. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics. Nat. Commun. 12, 5684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou, Z., Leng, J., Yu, J., Xia, Z. & Wu, L. Y. PathExpSurv: pathway expansion for explainable survival analysis and disease gene discovery. BMC Bioinformatics 24, 434 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nguyen, T. et al. Optimal fusion of genotype and drug embeddings in predicting cancer drug response. Brief. Bioinform. 25, bbae227 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Molnar, C. et al. in xxAI – Beyond Explainable AI (eds Holzinger, A. et al.) 39–68 (Springer, 2022).

Download references

Acknowledgements

D.A.S. and S.J.V. acknowledge support from the German Federal Ministry of Education and Research within project curATime (03ZU1202JA). J.E. acknowledges support of the Sächsische Staatsministerium für Wissenschaft, Kultur und Tourismus under ERA PerMed (MIRACLE, 2021-055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Selby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selby, D.A., Sprang, M., Ewald, J. et al. Beyond the black box with biologically informed neural networks. Nat Rev Genet 26, 371–372 (2025). https://doi.org/10.1038/s41576-025-00826-1

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00826-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing