Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Emerging roles of transcriptional condensates as temporal signal integrators

Abstract

Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal decoding through signalling feedback.
Fig. 2: Signal adaptation through condensate-mediated negative feedback.
Fig. 3: Condensate-mediated pulse generator and change detector.
Fig. 4: Optogenetic tools to probe temporal decoding through condensates.
Fig. 5: Chemogenetic tools for the control of condensate dynamics.

Similar content being viewed by others

References

  1. Pearson, S., Sroczynska, P., Lacaud, G. & Kouskoff, V. The stepwise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to Bmp4, activin A, bFGF and VEGF. Development 135, 1525–1535 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Kang, M., Garg, V. & Hadjantonakis, A.-K. Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41, 496–510.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Molotkov, A., Mazot, P., Brewer, J. R., Cinalli, R. M. & Soriano, P. Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev. Cell 41, 511–526.e4 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yamanaka, Y., Lanner, F. & Rossant, J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137, 715–724 (2010).

    Article  PubMed  CAS  Google Scholar 

  5. Lee, R. E. C., Walker, S. R., Savery, K., Frank, D. A. & Gaudet, S. Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. Mol. Cell 53, 867–879 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Murphy, L. O., Smith, S., Chen, R.-H., Fingar, D. C. & Blenis, J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4, 556–564 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. Murphy, L. O., MacKeigan, J. P. & Blenis, J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol. Cell. Biol. 24, 144–153 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lahav, G. et al. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nat. Genet. 36, 147–150 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Nelson, D. E. Oscillations in NF-kB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. Goentoro, L. & Kirschner, M. W. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol. Cell 36, 872–884 (2009). This study showed that cells read out relative changes (instead of absolute levels) of β-catenin concentrations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. Muzzey, D., Gómez-Uribe, C. A., Mettetal, J. T. & van Oudenaarden, A. A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138, 160–171 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ryu, H. et al. Frequency modulation of ERK activation dynamics rewires cell fate. Mol. Syst. Biol. 12, 866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Batchelor, E., Loewer, A., Mock, C. & Lahav, G. Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol. 7, 488 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Purvis, J. E. et al. p53 Dynamics control cell fate. Science 336, 1440–1444 (2012). This paper reported that cells leverage p53 dynamics to differentially control downstream programs involved in DNA repair and cellular senescence.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Heasley, L. E. & Johnson, G. L. The β-PDGF receptor induces neuronal differentiation of PC12 cells. Mol. Biol. Cell 3, 545–553 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Toettcher, J. E., Weiner, O. D. & Lim, W. A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Traverse, S. et al. EGF triggers neuronal differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4, 694–701 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. Traverse, S., Gomez, N., Paterson, H., Marshall, C. & Cohen, P. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem. J. 288, 351–355 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cohen-Saidon, C., Cohen, A. A., Sigal, A., Liron, Y. & Alon, U. Dynamics and variability of ERK2 response to EGF in individual living cells. Mol. Cell 36, 885–893 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Santos, S. D. M., Verveer, P. J. & Bastiaens, P. I. H. Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. Sasagawa, S., Ozaki, Y.-I., Fujita, K. & Kuroda, S. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat. Cell Biol. 7, 365–373 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. Cai, L., Dalal, C. K. & Elowitz, M. B. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455, 485–490 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225.e24 (2021). This paper demonstrated evidence for RNA-mediated feeback for the control of Mediator condensate formation and dissolution.

    Article  PubMed  CAS  Google Scholar 

  27. Meyer, K. et al. YAP charge patterning mediates signal integration through transcriptional co-condensates. Preprint at bioRxiv https://doi.org/10.1101/2024.08.10.607443 (2024).

  28. Huang, W. Y. C. et al. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 363, 1098–1103 (2019). This study demonstrated that a phase transition is involved in kinetic proofreading in receptor-mediated activation of Ras.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sun, S., GrandPre, T., Limmer, D. T. & Groves, J. T. Kinetic frustration by limited bond availability controls the LAT protein condensation phase transition on membranes. Sci. Adv. 8, eabo5295 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sweeney, K. & McClean, M. N. Transcription factor localization dynamics and DNA binding drive distinct promoter interpretations. Cell Rep. 42, 112426 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Adler, M. & Alon, U. Fold-change detection in biological systems. Curr. Opin. Syst. Biol. 8, 81–89 (2018).

    Article  Google Scholar 

  32. Ferrell, J. E. Jr. Perfect and near-perfect adaptation in cell signaling. Cell Syst. 2, 62–67 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Zhang, C., Tsoi, R., Wu, F. & You, L. Processing oscillatory signals by incoherent feedforward loops. PLoS Comput. Biol. 12, e1005101 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goentoro, L., Shoval, O., Kirschner, M. W. & Alon, U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell 36, 894–899 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).

    Article  PubMed  CAS  Google Scholar 

  39. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-kB-dependent transcription. Science 324, 242–246 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IkB–NF-kB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. Hansen, A. S. & O’Shea, E. K. Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression. Mol. Syst. Biol. 9, 704 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040.e19 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Cinar, H. et al. Temperature, hydrostatic pressure, and osmolyte effects on liquid–liquid phase separation in protein condensates: physical chemistry and biological implications. Chemistry 25, 13049–13069 (2019).

    Article  PubMed  CAS  Google Scholar 

  46. Mittag, T. & Parker, R. Multiple modes of protein-protein interactions promote RNP granule assembly. J. Mol. Biol. 430, 4636–4649 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Cabral, S. E., Otis, J. P. & Mowry, K. L. Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes. iScience 25, 104811 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kahn, J. D., Lemke, E. A. & Pappu, R. V. Faces, facets, and functions of biomolecular condensates driven by multivalent proteins and nucleic acids. Biophys. J. 120, E1–E4 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  50. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163, 108–122 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhang, Y. et al. The exchange dynamics of biomolecular condensates. eLife 12, RP91680 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Taylor, N. O., Wei, M.-T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Shen, Y. et al. The liquid-to-solid transition of FUS is promoted by the condensate surface. Proc. Natl Acad. Sci. USA 120, e2301366120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. Kar, S. et al. The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis. Curr. Biol. 35, 315–332.e7 (2025).

    Article  PubMed  CAS  Google Scholar 

  60. Boke, E. et al. Amyloid-like self-assembly of a cellular compartment. Cell 166, 637–650 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Linsenmeier, M. et al. Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity. Nat. Commun. 13, 3030 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Folkmann, A. W., Putnam, A., Lee, C. F. & Seydoux, G. Regulation of biomolecular condensates by interfacial protein clusters. Science 373, 1218–1224 (2021). This study suggested that Pickering agents tune condensate–cytoplasmic exchange of biomolecular condensates.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pullara, P., Alshareedah, I. & Banerjee, P. R. Temperature-dependent reentrant phase transition of RNA–polycation mixtures. Soft Matter 18, 1342–1349 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Krainer, G. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat. Commun. 12, 1085 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhang, H. et al. RNA controls PolyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Maharana, S. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360, 918–921 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lee, C.-Y. S. et al. Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins. eLife 9, e52896 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Milin, A. N. & Deniz, A. A. Reentrant phase transitions and non-equilibrium dynamics in membraneless organelles. Biochemistry 57, 2470–2477 (2018).

    Article  PubMed  CAS  Google Scholar 

  69. Banerjee, P. R., Milin, A. N., Moosa, M. M., Onuchic, P. L. & Deniz, A. A. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. Int. Ed. Engl. 129, 11512–11517 (2017).

    Article  Google Scholar 

  70. Schede, H. H., Natarajan, P., Chakraborty, A. K. & Shrinivas, K. A model for organization and regulation of nuclear condensates by gene activity. Nat. Commun. 14, 4152 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lin, A. Z. et al. Dynamical control enables the formation of demixed biomolecular condensates. Nat. Commun. 14, 7678 (2023). This paper reported that compositional identities of condensates can be achieved through dynamical control.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Meyer, K., Lammers, N. C., Bugaj, L. J., Garcia, H. G. & Weiner, O. D. Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation. Nat. Commun. 14, 6929 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 176, 1518 (2019).

    Article  PubMed  CAS  Google Scholar 

  74. Quail, T. et al. Force generation by protein–DNA co-condensation. Nat. Phys. 17, 1007–1012 (2021). This study showed that the interaction between condensates and DNA generates forces.

    Article  CAS  Google Scholar 

  75. Nguyen, T. et al. Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA. Nat. Commun. 13, 3988 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Renger, R. et al. Co-condensation of proteins with single- and double-stranded DNA. Proc. Natl Acad. Sci. USA 119, e2107871119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).

    Article  PubMed  CAS  Google Scholar 

  78. Strom, A. R. et al. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 187, 5282–5297.e20 (2024). This paper reported that biomolecular condensates generate capillary forces at targeted DNA loci, which were sufficient to reposition genomic loci.

    Article  PubMed  CAS  Google Scholar 

  79. Alam, S. G. et al. The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. Sci. Rep. 6, 38063 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Carley, E. et al. The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation. eLife 10, e58541 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Morrison, S. J. et al. Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101, 499–510 (2000).

    Article  PubMed  CAS  Google Scholar 

  82. Gunne-Braden, A. et al. GATA3 mediates a fast, irreversible commitment to BMP4-driven differentiation in human embryonic stem cells. Cell Stem Cell 26, 693–706.e9 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wang, J., Xu, L., Wang, E. & Huang, S. The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys. J. 99, 29–39 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Iglesias, N. et al. Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability. Nature 560, 504–508 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA–protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article  PubMed  CAS  Google Scholar 

  86. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Du, M. et al. Direct observation of a condensate effect on super-enhancer controlled gene bursting. Cell 187, 2595–2598 (2024).

    Article  PubMed  CAS  Google Scholar 

  88. Christie, J. M., Salomon, M., Nozue, K., Wada, M. & Briggs, W. R. LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc. Natl Acad. Sci. USA 96, 8779–8783 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Harper, S. M., Neil, L. C. & Gardner, K. H. Structural basis of a phototropin light switch. Science 301, 1541–1544 (2003).

    Article  PubMed  CAS  Google Scholar 

  90. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Liu, H. et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535–1539 (2008).

    Article  PubMed  CAS  Google Scholar 

  93. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bugaj, L. J., Choksi, A. T., Mesuda, C. K., Kane, R. S. & Schaffer, D. V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods 10, 249–252 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Ni, M., Tepperman, J. M. & Quail, P. H. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400, 781–784 (1999).

    Article  PubMed  CAS  Google Scholar 

  96. Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044 (2002).

    Article  PubMed  CAS  Google Scholar 

  97. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Shaaya, M. et al. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. eLife 9, e60647 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Krueger, D. et al. Principles and applications of optogenetics in developmental biology. Development 146, dev175067 (2019).

    Article  PubMed  CAS  Google Scholar 

  100. Tischer, D. & Weiner, O. D. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol. 15, 551–558 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lee, S. et al. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods 11, 633–636 (2014).

    Article  PubMed  CAS  Google Scholar 

  102. Niopek, D., Wehler, P., Roensch, J., Eils, R. & Di Ventura, B. Optogenetic control of nuclear protein export. Nat. Commun. 7, 10624 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kögler, A. C. et al. Extremely rapid and reversible optogenetic perturbation of nuclear proteins in living embryos. Dev. Cell 56, 2348–2363.e8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Niopek, D. et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat. Commun. 5, 4404 (2014).

    Article  PubMed  CAS  Google Scholar 

  105. Yumerefendi, H. et al. Control of protein activity and cell fate specification via light-mediated nuclear translocation. PLoS ONE 10, e0128443 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen, S. Y. et al. Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics. Cell Syst. 11, 336–353.e24 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Zimmerman, S. P., Kuhlman, B. & Yumerefendi, H. Engineering and application of LOV2-based photoswitches. Methods Enzymol. 580, 169–190 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wilson, M. Z., Ravindran, P. T., Lim, W. A. & Toettcher, J. E. Tracing information flow from Erk to target gene induction reveals mechanisms of dynamic and combinatorial control. Mol. Cell 67, 757–769.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14 (2017). This paper introduced an optogenetic platform (optoDroplets) that uses light to activate IDR-mediated phase transitions in living cells.

    Article  PubMed  CAS  Google Scholar 

  110. Bracha, D. et al. Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 176, 407 (2019).

    Article  PubMed  CAS  Google Scholar 

  111. Kim, Y. J. et al. Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. Sci. Adv. 9, eadg1123 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Dine, E., Gil, A. A., Uribe, G., Brangwynne, C. P. & Toettcher, J. E. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst. 6, 655–663.e5 (2018). This study demonstrated spatial memory of phase-separated compartments.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Brumbaugh-Reed, E. H., Gao, Y., Aoki, K. & Toettcher, J. E. Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag. Nat. Commun. 15, 6717 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  PubMed  CAS  Google Scholar 

  115. Lee, M. et al. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions. Nat. Commun. 15, 3216 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Taylor, P. Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 75, 107–163 (1998).

    Article  CAS  Google Scholar 

  117. Chung, C.-I., Yang, J. & Shu, X. Chemogenetic minitool for dissecting the roles of protein phase separation. ACS Cent. Sci. 9, 1466–1479 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Chung, C.-I. et al. Phase separation of YAP–MAML2 differentially regulates the transcriptome. Proc. Natl Acad. Sci. USA 121, e2310430121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Yang, J. et al. MYC phase separation selectively modulates the transcriptome. Nat. Struct. Mol. Biol. 31, 1567–1579 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Wagh, K., Stavreva, D. A., Upadhyaya, A. & Hager, G. L. Transcription factor dynamics: one molecule at a time. Annu. Rev. Cell Dev. Biol. 39, 277–305 (2023).

    Article  PubMed  CAS  Google Scholar 

  121. Hager, G. L., McNally, J. G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Gebhardt, J. C. M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Loffreda, A. et al. Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat. Commun. 8, 313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hao, S. et al. YAP condensates are highly organized hubs. iScience 27, 109927 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Berrocal, A., Lammers, N. C., Garcia, H. G. & Eisen, M. B. Unified bursting strategies in ectopic and endogenous even-skipped expression patterns. eLife 12, RP88671 (2023).

    Article  Google Scholar 

  127. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Joo, C. & Ha, T. Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb. Protoc. 2012, db.top072058 (2012).

    Article  Google Scholar 

  129. Graham, T. G. W., Ferrie, J. J., Dailey, G. M., Tjian, R. & Darzacq, X. Correction: detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA). eLife 13, e97099 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shoval, O. et al. Fold-change detection and scalar symmetry of sensory input fields. Proc. Natl Acad. Sci. USA 107, 15995–16000 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Nandi, S. K., Österle, D., Heidenreich, M., Levy, E. D. & Safran, S. A. Affinity and valence impact the extent and symmetry of phase separation of multivalent proteins. Phys. Rev. Lett. 129, 128102 (2022).

    Article  PubMed  CAS  Google Scholar 

  133. Farag, M., Borcherds, W. M., Bremer, A., Mittag, T. & Pappu, R. V. Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions. Nat. Commun. 14, 5527 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Monahan, Z. et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Aumiller, W. M. Jr & Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).

    Article  PubMed  CAS  Google Scholar 

  136. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 156, 374 (2014).

    Article  CAS  Google Scholar 

  137. Sanders, D. W. et al. Competing protein–RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346–361.e17 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Kirstin Meyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aggregate

State of proteins in which irreversible intermolecular interactions are established.

Chemotaxis

The directed movement of a cell in response to a chemical stimulus.

Demixing

The process of a mixture spontaneously separating into its constituent components owing to physical properties.

Osmo-responses

The response of cells to changes in solute concentration of their environment. It is primarily driven by the flux of water across the cellular membrane to balance solute concentrations inside and outside the cell.

Phase separation

The process by which a homogeneous mixture of molecules segregates into distinct phases with different properties.

Surfactant

Amphiphilic molecules that decrease the surface tension or interfacial tension between two liquids.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, K., Huang, B. & Weiner, O.D. Emerging roles of transcriptional condensates as temporal signal integrators. Nat Rev Genet 26, 559–570 (2025). https://doi.org/10.1038/s41576-025-00837-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00837-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing