Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomics of host–microbiome interactions in humans

Abstract

The human microbiome is a complex ecosystem of microorganisms that inhabit the human body and have a crucial role in human health. Microbiome composition is shaped by its interaction with many factors, including human genetics. Advances in genomic technologies are improving the ability to quantify the effect of human genetics on the microbiome through improved heritability studies and microbiome genome-wide association studies (GWAS). Complementary studies using transcriptomic analyses are providing a more comprehensive view of the bidirectional relationship between host gene expression and the microbiome. The resulting insights into the genetic mechanisms driving host–microbiome interactions will ultimately contribute to the development of personalized medicine and targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of microbiome GWAS and their conceptual framework.
Fig. 2: Overview of microbiome heritability results.
Fig. 3: Overview of genetic loci identified in gut microbiome GWAS.
Fig. 4: Conceptual framework for characterizing associations between host gene expression and microbiome.
Fig. 5: Overview of associations between the microbiome and host gene expression and pathways in humans.

Similar content being viewed by others

References

  1. Valdes, A. M., Walter, J., Segal, E. & Spector, T. D. Role of the gut microbiota in nutrition and health. BMJ 361, k2179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tarracchini, C. et al. Exploring the vitamin biosynthesis landscape of the human gut microbiota. mSystems 9, e0092924 (2024).

    Article  PubMed  Google Scholar 

  4. de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

    Article  PubMed  Google Scholar 

  5. Geng, J., Ni, Q., Sun, W., Li, L. & Feng, X. The links between gut microbiota and obesity and obesity related diseases. Biomed. Pharmacother. 147, 112678 (2022).

    Article  PubMed  CAS  Google Scholar 

  6. Van Hul, M. & Cani, P. D. The gut microbiota in obesity and weight management: microbes as friends or foe? Nat. Rev. Endocrinol. 19, 258–271 (2023).

    Article  PubMed  Google Scholar 

  7. Kandalai, S., Li, H., Zhang, N., Peng, H. & Zheng, Q. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol. Ther. 24, 2240084 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vivarelli, S. et al. Gut microbiota and cancer: from pathogenesis to therapy. Cancers 11, 38 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Amato, K. R. et al. The human gut microbiome and health inequities. Proc. Natl Acad. Sci. USA 118, e2017947118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11, 2862 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: from association to modulation. Cell 172, 1198–1215 (2018).

    Article  PubMed  CAS  Google Scholar 

  13. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl Acad. Sci. USA 107, 18933–18938 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014). This important early study uses data from twins to estimate gut microbiome heritability.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Davenport, E. R. et al. Genome-wide association studies of the human gut microbiota. PLoS One 10, e0140301 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Samuel, B. S. et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc. Natl Acad. Sci. USA 104, 10643–10648 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ignatyeva, O. et al. Christensenella minuta, a new candidate next-generation probiotic: current evidence and future trajectories. Front. Microbiol. 14, 1241259 (2023).

    Article  PubMed  Google Scholar 

  22. Rothschild D et al. Environment dominates over host genetics in shaping human gut microbiota. Yearb. Pediatr. Endocrinol. https://doi.org/10.1530/ey.15.14.5 (2018). This key study argues that microbiome heritability is low and that environment is stronger than genetics in shaping the gut microbiome.

  23. Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079–1087 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang, J. et al. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative. Microbiome 6, 101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Boulund, U. et al. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell. Host. Microbe 30, 1464–1480.e6 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article  PubMed  CAS  Google Scholar 

  28. Zhernakova, D. V. et al. Host genetic regulation of human gut microbial structural variation. Nature 625, 813–821 (2024). This study investigates the heritability of structural variation in the gut microbiome.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Beaumont, M. et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol. 17, 189 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Blekhman, R. et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16, 191 (2015). This important early study demonstrates the feasibility of testing for genome-wide host genetic associations with gut microbiome measurements as quantitative traits.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grieneisen, L. et al. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373, 181–186 (2021). This article describes a large study of microbiome heritability in wild primates.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hejazi, J., Amiri, R., Nozarian, S., Tavasolian, R. & Rahimlou, M. Genetic determinants of food preferences: a systematic review of observational studies. BMC Nutr. 10, 24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vandeputte, D. et al. Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nat. Commun. 12, 6740 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Org, E. et al. Genetic and environmental control of host–gut microbiota interactions. Genome Res. 25, 1558–1569 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen, C. et al. Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs. Front. Microbiol. 9, 2626 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Doms, S. et al. Key features of the genetic architecture and evolution of host–microbe interactions revealed by high-resolution genetic mapping of the mucosa-associated gut microbiome in hybrid mice. eLife 11, e75419 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. McKnite, A. M. et al. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 7, e39191 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Leamy, L. J. et al. Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biol. 15, 552 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    Article  PubMed  CAS  Google Scholar 

  41. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016). This paper describes an early study on the effects of host genetics on the gut microbiome.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016). This early microbiome GWAS finds associations with the gene encoding for the vitamin D receptor.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ishida, S. et al. Genome-wide association studies and heritability analysis reveal the involvement of host genetics in the Japanese gut microbiota. Commun. Biol. 3, 686 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rühlemann, M. C. et al. Genome-wide association study in 8956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 53, 147–155 (2021). This large GWAS identifies effects of the ABO blood group on the human gut microbiome.

    Article  PubMed  Google Scholar 

  45. Liu, X. et al. A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases. Cell Discov. 7, 9 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu, X. et al. Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome. Nat. Genet. 54, 52–61 (2022).

    Article  PubMed  CAS  Google Scholar 

  47. Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 143–151 (2022). This large GWAS of the human gut microbiome validates the association of variants at the LCT locus and finds that the association is modulated by lactose intake.

    Article  PubMed  CAS  Google Scholar 

  48. Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 54, 134–142 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kolde, R. et al. Host genetic variation and its microbiome interactions within the human microbiome project. Genome Med. 10, 6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Scepanovic, P. et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 7, 130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tomofuji, Y. et al. Analysis of gut microbiome, host genetics, and plasma metabolites reveals gut microbiome–host interactions in the Japanese population. Cell Rep. 42, 113324 (2023).

    Article  PubMed  CAS  Google Scholar 

  52. Moitinho-Silva, L. et al. Host genetic factors related to innate immunity, environmental sensing and cellular functions are associated with human skin microbiota. Nat. Commun. 13, 6204 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Liu, X. et al. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun. Biol. 7, 139 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fang, Z. Y. et al. Networks of human milk microbiota are associated with host genomics, childhood asthma, and allergic sensitization. Cell Host Microbe 32, 1838–1852.e5 (2024).

    Article  PubMed  CAS  Google Scholar 

  55. Enattah, N. S. et al. Identification of a variant associated with adult-type hypolactasia. Nat. Genet. 30, 233–237 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. Rasinperä, H. et al. Transcriptional downregulation of the lactase (LCT) gene during childhood. Gut 54, 1660–1661 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Garrido, D., Barile, D. & Mills, D. A. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv. Nutr. 3, 415S–421S (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Itan, Y., Jones, B. L., Ingram, C. J. E., Swallow, D. M. & Thomas, M. G. A worldwide correlation of lactase persistence phenotype and genotypes. BMC Evol. Biol. 10, 36 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jajosky, R. P. et al. ABO blood group antigens and differential glycan expression: perspective on the evolution of common human enzyme deficiencies. iScience 26, 105798 (2023).

    Article  PubMed  CAS  Google Scholar 

  60. Mäkivuokko, H. et al. Association between the ABO blood group and the human intestinal microbiota composition. BMC Microbiol. 12, 94 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rausch, P. et al. Multigenerational influences of the Fut2 gene on the dynamics of the gut microbiota in mice. Front. Microbiol. 8, 991 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Folseraas, T. et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J. Hepatol. 57, 366–375 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl Acad. Sci. USA 108, 19030–19035 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Wacklin, P. et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6, e20113 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 8, 2193–2206 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yang, H. et al. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs. Nature 606, 358–367 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ségurel, L. et al. The ABO blood group is a trans-species polymorphism in primates. Proc. Natl Acad. Sci. USA 109, 18493–18498 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Burgess, S. et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open. Res. 4, 186 (2019).

    Article  PubMed  Google Scholar 

  69. Davey Smith, G. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  Google Scholar 

  70. Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Prim. 2, 6 (2022).

    Article  CAS  Google Scholar 

  71. Sanna, S. et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51, 600–605 (2019). Together with Liu et al. (2022), this work exemplifies the use of Mendelian randomization to identify potential causal effects of the microbiome on human health.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Arora, T. & Tremaroli, V. Therapeutic potential of butyrate for treatment of type 2 diabetes. Front. Endocrinol. 12, 761834 (2021).

    Article  Google Scholar 

  73. Stender, S., Gellert-Kristensen, H. & Smith, G. D. Reclaiming Mendelian randomization from the deluge of papers and misleading findings. Lipids Health Dis. 23, 286 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wade, K. H. & Hall, L. J. Improving causality in microbiome research: can human genetic epidemiology help? Wellcome Open. Res. 4, 199 (2019).

    Article  PubMed  Google Scholar 

  75. Morgan, X. C. et al. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol. 16, 67 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Häsler, R. et al. Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease. Gut 66, 2087–2097 (2017).

    Article  PubMed  Google Scholar 

  77. Omar Al-Hassi, H., Ng, O. & Brookes, M. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 67, 395 (2018).

    Article  PubMed  Google Scholar 

  78. Bennet, S. M. P. et al. Altered intestinal antibacterial gene expression response profile in irritable bowel syndrome is linked to bacterial composition and immune activation: XXXX. Neurogastroenterol. Motil. 30, e13468 (2018).

    Article  PubMed  Google Scholar 

  79. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019). Together with Morgan et al. (2015), this key paper describes associations between the gut microbiome and host gene regulation in IBD.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dayama, G., Priya, S., Niccum, D. E., Khoruts, A. & Blekhman, R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med. 12, 12 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mars, R. A. T. et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 182, 1460–1473.e17 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chang, H. et al. Unveiling the links between microbial alteration and host gene disarray in Crohn’s disease via TAHMC. Adv. Biol. 8, e2400064 (2024).

    Article  Google Scholar 

  83. Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A. & Petersen, A. M. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 32, e00060-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xu, S. et al. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn’s disease: a multi-omics Mendelian randomization study. BMC Med. 21, 179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Priya, S. et al. Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration. Nat. Microbiol. 7, 780–795 (2022). This important study elucidates patterns of host gene–microbiome interactions across diseases.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fyhrquist, N. et al. Microbe–host interplay in atopic dermatitis and psoriasis. Nat. Commun. 10, 4703 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Edfeldt, G. et al. Distinct cervical tissue-adherent and luminal microbiome communities correlate with mucosal host gene expression and protein levels in Kenyan sex workers. Microbiome 11, 67 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang, Z. et al. Airway host–microbiome interactions in chronic obstructive pulmonary disease. Respir. Res. 20, 113 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yan, Z. et al. Multi-omics analyses of airway host–microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat. Microbiol. 7, 1361–1375 (2022).

    Article  PubMed  CAS  Google Scholar 

  90. Johnson, K. E. et al. Human milk variation is shaped by maternal genetics and impacts the infant gut microbiome. Cell Genom. 4, 100638 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yang, Y. et al. Exploratory multi-omics analysis reveals host–microbe interactions associated with disease severity in psoriatic skin. EBioMedicine 105, 105222 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhu, B. et al. Characteristics of vaginal microbes and classification of the vaginal microbiome. Preprint at bioRxiv https://doi.org/10.1101/2023.08.16.553525 (2023).

  93. Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Cai, L. et al. Integrative analysis reveals associations between oral microbiota dysbiosis and host genetic and epigenetic aberrations in oral cavity squamous cell carcinoma. NPJ Biofilms Microbiomes 10, 39 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Camp, J. G. et al. Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape. Genome Res. 24, 1504–1516 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sommer, F., Nookaew, I., Sommer, N., Fogelstrand, P. & Bäckhed, F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol. 16, 62 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pan, W.-H. et al. Exposure to the gut microbiota drives distinct methylome and transcriptome changes in intestinal epithelial cells during postnatal development. Genome Med. 10, 27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Davison, J. M. et al. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor hepatocyte nuclear factor 4ɑ. Genome Res. 27, 1195–1206 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Richards, A. L. et al. Gut microbiota has a widespread and modifiable effect on host gene regulation. mSystems 4, e00323–18 (2019). Together with Davison et al. (2017), this key paper investigates the mechanisms of host gene–microbiome cross-talk.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Semenkovich, N. P. et al. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc. Natl Acad. Sci. USA 113, 14805–14810 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Dirksen, P. et al. CeMbio—the Caenorhabditis elegans microbiome resource. G3 10, 3025–3039 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yang, W. et al. The inducible response of the nematode Caenorhabditis elegans to members of its natural microbiota across development and adult life. Front. Microbiol. 10, 1793 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Loomis, K. H. et al. A mixed community of skin microbiome representatives influences cutaneous processes more than individual members. Microbiome 9, 22 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Brusilovsky, M. et al. Host–microbiota interactions in the esophagus during homeostasis and allergic inflammation. Gastroenterology 162, 521–534.e8 (2022).

    Article  PubMed  CAS  Google Scholar 

  105. Meisel, J. S. et al. Commensal microbiota modulate gene expression in the skin. Microbiome 6, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ansari, I. et al. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat. Microbiol. 5, 610–619 (2020).

    Article  PubMed  CAS  Google Scholar 

  107. Krautkramer, K. A. et al. Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64, 982–992 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kuang, Z. et al. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365, 1428–1434 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ryan, F. J. et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat. Commun. 11, 1512 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Nshanian, M. et al. Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression. Nat. Metab. 7, 196–211 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Muehlbauer, A. L. et al. Interspecies variation in hominid gut microbiota controls host gene regulation. Cell Rep. 37, 110057 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Qin, Y. et al. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol. 19, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Drayman, N., Patel, P., Vistain, L. & Tay, S. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. eLife 8, e46339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lötstedt, B., Stražar, M., Xavier, R., Regev, A. & Vickovic, S. Spatial host–microbiome sequencing reveals niches in the mouse gut. Nat. Biotechnol. 42, 1394–1403 (2024). Together with Galeano Niño et al. (2022), this notable paper describes spatial profiling of host–microbiome interactions.

    Article  PubMed  Google Scholar 

  115. Massaquoi, M. S. et al. Cell-type-specific responses to the microbiota across all tissues of the larval zebrafish. Cell Rep. 42, 112095 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Willms, R. J., Jones, L. O., Hocking, J. C. & Foley, E. A cell atlas of microbe-responsive processes in the zebrafish intestine. Cell Rep. 38, 110311 (2022).

    Article  PubMed  CAS  Google Scholar 

  117. Puschhof, J. et al. Intestinal organoid cocultures with microbes. Nat. Protoc. 16, 4633–4649 (2021).

    Article  PubMed  CAS  Google Scholar 

  118. Williamson, I. A. et al. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell. Mol. Gastroenterol. Hepatol. 6, 301–319 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sanna, S., Kurilshikov, A., van der Graaf, A., Fu, J. & Zhernakova, A. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat. Genet. 54, 100–106 (2022).

    Article  PubMed  CAS  Google Scholar 

  120. Xu, L., Paterson, A. D., Turpin, W. & Xu, W. Assessment and selection of competing models for zero-inflated microbiome data. PLoS One 10, e0129606 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS One 9, e102451 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Weissbrod, O., Rothschild, D., Barkan, E. & Segal, E. Host genetics and microbiome associations through the lens of genome wide association studies. Curr. Opin. Microbiol. 44, 9–19 (2018).

    Article  PubMed  CAS  Google Scholar 

  123. Sham, P. C. & Purcell, S. M. Statistical power and significance testing in large-scale genetic studies. Nat. Rev. Genet. 15, 335–346 (2014).

    Article  PubMed  CAS  Google Scholar 

  124. Chetty, A. & Blekhman, R. Multi-omic approaches for host–microbiome data integration. Gut Microbes 16, 2297860 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lynch, J. et al. HOMINID: a framework for identifying associations between host genetic variation and microbiome composition. Gigascience 6, 1–7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Mills, R. H. et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat. Microbiol. 7, 262–276 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D. & Konstantinidis, K. T. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 9, e93827 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Durazzi, F. et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11, 3030 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sharafutdinov, I. et al. A single-nucleotide polymorphism in Helicobacter pylori promotes gastric cancer development. Cell Host Microbe 31, 1345–1358.e6 (2023).

    Article  PubMed  CAS  Google Scholar 

  130. Berthenet, E. et al. A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biol. 16, 84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sczyrba, A. et al. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Meisel, J. S. et al. Skin microbiome surveys are strongly influenced by experimental design. J. Invest. Dermatol. 136, 947–956 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Deissová, T. et al. 16S rRNA gene primer choice impacts off-target amplification in human gastrointestinal tract biopsies and microbiome profiling. Sci. Rep. 13, 12577 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Elie, C. et al. Comparison of DNA extraction methods for 16S rRNA gene sequencing in the analysis of the human gut microbiome. Sci. Rep. 13, 10279 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Allaband, C. et al. Time of sample collection is critical for the replicability of microbiome analyses. Nat. Metab. 6, 1282–1293 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Nishijima, S. et al. Fecal microbial load is a major determinant of gut microbiome variation and a confounder for disease associations. Cell 188, 222–236.e15 (2025).

    Article  PubMed  CAS  Google Scholar 

  137. Pallister, T. et al. Food preference patterns in a UK twin cohort. Twin Res. Hum. Genet. 18, 793–805 (2015).

    Article  PubMed  Google Scholar 

  138. Fildes, A. et al. Nature and nurture in children’s food preferences. Am. J. Clin. Nutr. 99, 911–917 (2014).

    Article  PubMed  CAS  Google Scholar 

  139. Goodrich, J. K., Davenport, E. R., Waters, J. L., Clark, A. G. & Ley, R. E. Cross-species comparisons of host genetic associations with the microbiome. Science 352, 532–535 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Corrêa, R. O. et al. Inulin diet uncovers complex diet–microbiota–immune cell interactions remodeling the gut epithelium. Microbiome 11, 90 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Shinn, L. M. et al. Fecal metagenomics to identify biomarkers of food intake in healthy adults: findings from randomized, controlled, nutrition trials. J. Nutr. 154, 271–283 (2024).

    Article  PubMed  CAS  Google Scholar 

  142. Diener, C. et al. Metagenomic estimation of dietary intake from human stool. Nat. Metab. 7, 617–630 (2025).

    Article  PubMed  Google Scholar 

  143. Zuppinger, C. et al. Performance of the digital dietary assessment tool MyFoodRepo. Nutrients 14, 635 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Abdill, R. J., Adamowicz, E. M. & Blekhman, R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 20, e3001536 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 1080 (2019).

    Article  PubMed  CAS  Google Scholar 

  146. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  PubMed  CAS  Google Scholar 

  147. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  PubMed  CAS  Google Scholar 

  148. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Xu, F. et al. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome 8, 145 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded human microbiome project. Nature 550, 61–66 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Luca, F., Kupfer, S. S., Knights, D., Khoruts, A. & Blekhman, R. Functional genomics of host–microbiome interactions in humans. Trends Genet. 34, 30–40 (2018).

    Article  PubMed  CAS  Google Scholar 

  154. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Vilgalys, R. Abdill and members of the Blekhman laboratory for their valuable feedback. R.B. acknowledges funding from National Institutes of Health (NIH) grants R35-GM128716 and R01-HD109830. K.J. acknowledges funding from NIH grants K99-HD113834 and R01-HD109830. S.P. acknowledges funding from the Duchossois Family Institute Fellowship (Chicago Fellows programme) at the University of Chicago.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ran Blekhman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Peer review

Peer review information

Nature Reviews Genetics thanks Andre Franke, John Rawls and Rafael Valdes-Mas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

16S rRNA gene amplicon sequencing

A targeted sequencing approach that amplifies and sequences regions of the 16S ribosomal RNA gene, which is present in the genomes of all bacteria. This method enables taxonomic profiling of microbial communities without sequencing entire genomes, allowing for a cost-effective way to characterize the taxonomic composition of microbiome samples.

Alpha diversity

A measure of microbial community complexity within a single sample, quantifying the number of different species and their relative abundances. Alpha-diversity metrics can be used to assess how factors such as genetics, diet and disease affect the ecological structure of microbial communities.

Beta diversity

A measure of the difference in microbial community composition between two or more samples. Beta-diversity metrics quantify how samples differ from each other in terms of which microorganisms are present and their relative abundances, allowing the quantification of microbiome variation across conditions, environments and host factors.

Heritability

The proportion of phenotypic variation in a population that can be attributed to genetic differences; heritability is expressed as a value between 0 and 1, where 0 indicates that none of the observed variation is due to genetic factors and 1 indicates that all variation is genetic.

Quantitative trait locus

A specific region of DNA that contributes to variation in a measurable characteristic or quantitative trait, such as height, blood pressure or disease susceptibility. In microbiome research, quantitative trait locus mapping identifies host genetic regions that influence microbial community features, revealing how host genetic variation shapes microbiome composition.

Shotgun metagenomic sequencing

A comprehensive sequencing technique that sequences all DNA found in a microbiome sample, which enables the capture of genomic information from bacteria, archaea, viruses and fungi found in a microbial community. Unlike 16S rRNA amplicon sequencing, shotgun metagenomic sequencing provides information on not only the taxonomic composition but also the functional potential, gene composition and genetic variation within microbial communities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferretti, P., Johnson, K., Priya, S. et al. Genomics of host–microbiome interactions in humans. Nat Rev Genet (2025). https://doi.org/10.1038/s41576-025-00849-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-025-00849-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research