Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Functional synonymous mutations and their evolutionary consequences

Abstract

Synonymous mutations are coding mutations that do not alter protein sequences. Commonly thought to have little to no functional consequence, synonymous mutations have been widely used in evolutionary analyses that require neutral markers, including those foundational for the neutral theory. However, recent studies suggest that synonymous mutations can influence nearly every step in the expression of genetic information and may often be strongly non-neutral. We review the extent and mechanisms of these phenotypic and fitness effects and discuss the implications of the functionality and non-neutrality of synonymous mutations for various analyses and conclusions pertinent to genetics, evolution, conservation and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multifaceted effects of synonymous mutations on the expression of genetic information in eukaryotes.
Fig. 2: Various patterns of codon usage bias and their causes.
Fig. 3: Fitness effects of synonymous and nonsynonymous mutations or polymorphisms in four systematic studies.

Similar content being viewed by others

References

  1. Agashe, D. in Single Nucleotide Polymorphisms (eds Sauna, Z. E. & Kimchi-Sarfaty, C.) 15–36 (Springer, 2022).

  2. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

  3. Zhang, J. in Evolution Since Darwin: The First 150 Years (eds Bell, M. A. et al.) 87–118 (Sinauer, 2010).

  4. Fiers, W. et al. A-protein gene of bacteriophage MS2. Nature 256, 273–278 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Air, G. M. et al. Gene F of bacteriophage X174. Correlation of nucleotide sequences from the DNA and amino acid sequences from the gene product. J. Mol. Biol. 107, 445–458 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Efstratiadis, A., Kafatos, F. C. & Maniatis, T. The primary structure of rabbit β-globin mRNA as determined from cloned DNA. Cell 10, 571–585 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Grantham, R., Gautier, C., Gouy, M., Mercier, R. & Pavé, A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 8, r49–r62 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151, 389–409 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Gouy, M. & Gautier, C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10, 7055–7074 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 19, 20–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Y., Yang, Q. & Zhao, F. Synonymous but not silent: the codon usage code for gene expression and protein folding. Annu. Rev. Biochem. 90, 375–401 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stergachis, A. B. et al. Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342, 1367–1372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Birnbaum, R. Y. et al. Coding exons function as tissue-specific enhancers of nearby genes. Genome Res. 22, 1059–1068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doolittle, W. F., Brunet, T. D., Linquist, S. & Gregory, T. R. Distinguishing between “function” and “effect” in genome biology. Genome Biol. Evol. 6, 1234–1237 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Agoglia, R. M. & Fraser, H. B. Disentangling sources of selection on exonic transcriptional enhancers. Mol. Biol. Evol. 33, 585–590 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Xing, K. & He, X. Reassessing the “duon” hypothesis of protein evolution. Mol. Biol. Evol. 32, 1056–1062 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, J. et al. Prevalent uses and evolution of exonic regulatory sequences in the human genome. Nat. Sci. 3, e20220058 (2023).

    Article  CAS  Google Scholar 

  18. Shen, X., Song, S., Li, C. & Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 606, 725–731 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodriguez, A. et al. Synonymous codon substitutions modulate transcription and translation of a divergent upstream gene by modulating antisense RNA production. Proc. Natl Acad. Sci. USA 121, e2405510121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sekinger, E. A., Moqtaderi, Z. & Struhl, K. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol. Cell 18, 735–748 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Tillo, D. & Hughes, T. R. G+C content dominates intrinsic nucleosome occupancy. BMC Bioinform. 10, 442 (2009).

    Article  Google Scholar 

  22. Zhou, Z. et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl Acad. Sci. USA 113, E6117–E6125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, F. et al. Genome-wide role of codon usage on transcription and identification of potential regulators. Proc. Natl Acad. Sci. USA 118, e2022590118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qian, W. & Zhang, J. Codon usage bias and nuclear mRNA concentration: correlation vs. causation. Proc. Natl Acad. Sci. USA 118, e2104714118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, Z., Dang, Y., Zhou, M., Yuan, H. & Liu, Y. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. eLife 7, e33569 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Savisaar, R. & Hurst, L. D. Exonic splice regulation imposes strong selection at synonymous sites. Genome Res. 28, 1442–1454 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7, 98–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Lan, Y. et al. Synonymous mutations promote tumorigenesis by disrupting m6A-dependent mRNA metabolism. Cell 188, 1828–1841.e15 (2025).

    Article  CAS  PubMed  Google Scholar 

  29. Courel, M. et al. GC content shapes mRNA storage and decay in human cells. eLife 8, e49708 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mordstein, C. et al. Codon usage and splicing jointly influence mRNA localization. Cell Syst. 10, 351–362.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zuckerman, B., Ron, M., Mikl, M., Segal, E. & Ulitsky, I. Gene architecture and sequence composition underpin selective dependency of nuclear export of long RNAs on NXF1 and the TREX complex. Mol. Cell 79, 251–267.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Savisaar, R. & Hurst, L. D. Both maintenance and avoidance of RNA-binding protein interactions constrain coding sequence evolution. Mol. Biol. Evol. 34, 1110–1126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, J. R., Chen, X. & Zhang, J. Codon-by-codon modulation of translational speed and accuracy via mRNA folding. PLoS Biol. 12, e1001910 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pop, C. et al. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 10, 770 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lai, W. C. et al. mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances. Nat. Commun. 9, 4328 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gaither, J. B. S. et al. Synonymous variants that disrupt messenger RNA structure are significantly constrained in the human population. GigaScience 10, giab023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Park, C., Chen, X., Yang, J. R. & Zhang, J. Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 110, E678–E686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shabalina, S. A., Ogurtsov, A. Y. & Spiridonov, N. A. A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res. 34, 2428–2437 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tuller, T., Waldman, Y. Y., Kupiec, M. & Ruppin, E. Translation efficiency is determined by both codon bias and folding energy. Proc. Natl Acad. Sci. USA 107, 3645–3650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gu, W., Zhou, T. & Wilke, C. O. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput. Biol. 6, e1000664 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gu, W., Wang, X., Zhai, C., Xie, X. & Zhou, T. Selection on synonymous sites for increased accessibility around miRNA binding sites in plants. Mol. Biol. Evol. 29, 3037–3044 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Barrington, C. L. et al. Synonymous codon usage regulates translation initiation. Cell Rep. 42, 113413 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, K., Kong, J., Zhang, S., Zhao, T. & Qian, W. Distance-dependent inhibition of translation initiation by downstream out-of-frame AUGs is consistent with a Brownian ratchet process of ribosome scanning. Genome Biol. 23, 254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, G. W., Oh, E. & Weissman, J. S. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484, 538–541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, C., Hockenberry, A. J., Jewett, M. C. & Amaral, L. A. N. Depletion of Shine-Dalgarno sequences within bacterial coding regions is expression dependent. G3 6, 3467–3474 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hockenberry, A. J., Jewett, M. C., Amaral, L. A. N. & Wilke, C. O. Within-gene Shine–Dalgarno sequences are not selected for function. Mol. Biol. Evol. 35, 2487–2498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Varenne, S., Buc, J., Lloubes, R. & Lazdunski, C. Translation is a non-uniform process. Effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol. 180, 549–576 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qian, W., Yang, J. R., Pearson, N. M., Maclean, C. & Zhang, J. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet. 8, e1002603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Charneski, C. A. & Hurst, L. D. Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol. 11, e1001508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hussmann, J. A., Patchett, S., Johnson, A., Sawyer, S. & Press, W. H. Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast. PLoS Genet. 11, e1005732 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Weinberg, D. E. et al. Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep. 14, 1787–1799 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Pelechano, V., Wei, W. & Steinmetz, L. M. Widespread co-translational RNA decay reveals ribosome dynamics. Cell 161, 1400–1412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bentele, K., Saffert, P., Rauscher, R., Ignatova, Z. & Bluthgen, N. Efficient translation initiation dictates codon usage at gene start. Mol. Syst. Biol. 9, 675 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475–479 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Sejour, R., Leatherwood, J., Yurovsky, A. & Futcher, B. Enrichment of rare codons at 5’ ends of genes is a spandrel caused by evolutionary sequence turnover and does not improve translation. eLife 12, RP89656 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bazzini, A. A. et al. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J. 35, 2087–2103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mishima, Y. & Tomari, Y. Codon usage and 3’ UTR length determine maternal mRNA stability in zebrafish. Mol. Cell 61, 874–885 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen, S. et al. Codon-resolution analysis reveals a direct and context-dependent impact of individual synonymous mutations on mRNA level. Mol. Biol. Evol. 34, 2944–2958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Boel, G. et al. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529, 358–363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Radhakrishnan, A. et al. The DEAD-box protein Dhh1p couples mRNA decay and translation by monitoring codon optimality. Cell 167, 122–132.e9 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buschauer, R. et al. The Ccr4-Not complex monitors the translating ribosome for codon optimality. Science 368, eaay6912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Veltri, A. J. et al. Distinct elongation stalls during translation are linked with distinct pathways for mRNA degradation. eLife 11, e76038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu, X., Cruz, V. E., Zhang, H., Erzberger, J. P. & Mendell, J. T. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 386, eadq8587 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, X. et al. Selection and mutation on microRNA target sequences during rice evolution. BMC Genomics 9, 454 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mordret, E. et al. Systematic detection of amino acid substitutions in proteomes reveals mechanistic basis of ribosome errors and selection for translation fidelity. Mol. Cell 75, 427–441 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Sun, M. & Zhang, J. Preferred synonymous codons are translated more accurately: proteomic evidence, among-species variation, and mechanistic basis. Sci. Adv. 8, eabl9812 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, X., Xu, M., Yang, J. R. & Lu, J. Genome-wide impact of codon usage bias on translation optimization in Drosophila melanogaster. Nat. Commun. 15, 8329 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma, A. K. & O’Brien, E. P. Non-equilibrium coupling of protein structure and function to translation-elongation kinetics. Curr. Opin. Struct. Biol. 49, 94–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Stein, K. C. & Frydman, J. The stop-and-go traffic regulating protein biogenesis: how translation kinetics controls proteostasis. J. Biol. Chem. 294, 2076–2084 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Moss, M. J., Chamness, L. M. & Clark, P. L. The effects of codon usage on protein structure and folding. Annu. Rev. Biophys. 53, 87–108 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Buhr, F. et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell 61, 341–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, G., Hubalewska, M. & Ignatova, Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat. Struct. Mol. Biol. 16, 274–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Arpat, A. B. et al. Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Res. 30, 985–999 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao, T. et al. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding. Genome Biol. 22, 16 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fernández-Calero, T. et al. The transcriptional activities and cellular localization of the human estrogen receptor alpha are affected by the synonymous Ala87 mutation. J. Steroid Biochem. Mol. Biol. 143, 99–104 (2014).

    Article  PubMed  Google Scholar 

  81. Hershberg, R. & Petrov, D. A. Selection on codon bias. Annu. Rev. Genet. 42, 287–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Callens, M., Pradier, L., Finnegan, M., Rose, C. & Bedhomme, S. Read between the lines: diversity of nontranslational selection pressures on local codon usage. Genome Biol. Evol. 13, evab097 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chen, S. L., Lee, W., Hottes, A. K., Shapiro, L. & McAdams, H. H. Codon usage between genomes is constrained by genome-wide mutational processes. Proc. Natl Acad. Sci. USA 101, 3480–3485 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hershberg, R. & Petrov, D. A. General rules for optimal codon choice. PLoS Genet. 5, e1000556 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 12, 640–649 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Duret, L. & Mouchiroud, D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl Acad. Sci. USA 96, 4482–4487 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pouyet, F., Mouchiroud, D., Duret, L. & Semon, M. Recombination, meiotic expression and human codon usage. eLife 6, e27344 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bulmer, M. The selection-mutation-drift theory of synonymous codon usage. Genetics 129, 897–907 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, F. et al. Dissimilation of synonymous codon usage bias in virus–host coevolution due to translational selection. Nat. Ecol. Evol. 4, 589–600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Andersson, S. G. & Kurland, C. G. Codon preferences in free-living microorganisms. Microbiol. Rev. 54, 198–210 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Akashi, H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136, 927–935 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Stoletzki, N. & Eyre-Walker, A. Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol. Biol. Evol. 24, 374–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, T., Weems, M. & Wilke, C. O. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol. Biol. Evol. 26, 1571–1580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Johansson, M., Zhang, J. & Ehrenberg, M. Genetic code translation displays a linear trade-off between efficiency and accuracy of tRNA selection. Proc. Natl Acad. Sci. USA 109, 131–136 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Akashi, H. Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139, 1067–1076 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lawrie, D. S., Messer, P. W., Hershberg, R. & Petrov, D. A. Strong purifying selection at synonymous sites in D. melanogaster. PLoS Genet. 9, e1003527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang, Y. F. & Siepel, A. Estimation of allele-specific fitness effects across human protein-coding sequences and implications for disease. Genome Res. 29, 1310–1321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dhindsa, R. S., Copeland, B. R., Mustoe, A. M. & Goldstein, D. B. Natural selection shapes codon usage in the human genome. Am. J. Hum. Genet. 107, 83–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Agashe, D., Martinez-Gomez, N. C., Drummond, D. A. & Marx, C. J. Good codons, bad transcript: large reductions in gene expression and fitness arising from synonymous mutations in a key enzyme. Mol. Biol. Evol. 30, 549–560 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Walsh, I. M., Bowman, M. A., Soto Santarriaga, I. F., Rodriguez, A. & Clark, P. L. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc. Natl Acad. Sci. USA 117, 3528–3534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Frumkin, I. et al. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc. Natl Acad. Sci. USA 115, E4940–E4949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kristofich, J. et al. Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genet. 14, e1007615 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Carlini, D. B. & Stephan, W. In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 163, 239–243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Agashe, D. et al. Large-effect beneficial synonymous mutations mediate rapid and parallel adaptation in a bacterium. Mol. Biol. Evol. 33, 1542–1553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lind, P. A., Berg, O. G. & Andersson, D. I. Mutational robustness of ribosomal protein genes. Science 330, 825–827 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Bailey, S. F., Alonso Morales, L. A. & Kassen, R. Effects of synonymous mutations beyond codon bias: the evidence for adaptive synonymous substitutions from microbial evolution experiments. Genome Biol. Evol. 13, evab141 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lebeuf-Taylor, E., McCloskey, N., Bailey, S. F., Hinz, A. & Kassen, R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. eLife 8, e45952 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Firnberg, E., Labonte, J. W., Gray, J. J. & Ostermeier, M. A comprehensive, high-resolution map of a gene’s fitness landscape. Mol. Biol. Evol. 31, 1581–1592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lind, P. A., Arvidsson, L., Berg, O. G. & Andersson, D. I. Variation in mutational robustness between different proteins and the predictability of fitness effects. Mol. Biol. Evol. 34, 408–418 (2017).

    CAS  PubMed  Google Scholar 

  114. Sane, M., Diwan, G. D., Bhat, B. A., Wahl, L. M. & Agashe, D. Shifts in mutation spectra enhance access to beneficial mutations. Proc. Natl Acad. Sci. USA 120, e2207355120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carrasco, P., de la Iglesia, F. & Elena, S. F. Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco etch virus. J. Virol. 81, 12979–12984 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Domingo-Calap, P., Cuevas, J. M. & Sanjuan, R. The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages. PLoS Genet. 5, e1000742 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Peris, J. B., Davis, P., Cuevas, J. M., Nebot, M. R. & Sanjuan, R. Distribution of fitness effects caused by single-nucleotide substitutions in bacteriophage f1. Genetics 185, 603–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sanjuan, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl Acad. Sci. USA 101, 8396–8401 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cuevas, J. M., Domingo-Calap, P. & Sanjuan, R. The fitness effects of synonymous mutations in DNA and RNA viruses. Mol. Biol. Evol. 29, 17–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Sane, M., Parveen, S. & Agashe, D. Mutation bias alters the distribution of fitness effects of mutations. Preprint at bioRxiv https://doi.org/10.1101/2024.03.24.586369 (2025).

  121. Kruglyak, L. et al. Insufficient evidence for non-neutrality of synonymous mutations. Nature 616, E8–E9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shen, X., Song, S., Li, C. & Zhang, J. Further evidence for strong nonneutrality of yeast synonymous mutations. Mol. Biol. Evol. 41, msae224 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, D. D., Rusch, L. M., Widney, K. A., Morgenthaler, A. B. & Copley, S. D. Synonymous edits in the Escherichia coli genome have substantial and condition-dependent effects on fitness. Proc. Natl Acad. Sci. USA 121, e2316834121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nyerges, A. et al. Synthetic genomes unveil the effects of synonymous recoding. Preprint at bioRxiv https://doi.org/10.1101/2024.06.16.599206 (2024).

  125. Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell 175, 544–557.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. She, R. & Jarosz, D. F. Mapping causal variants with single-nucleotide resolution reveals biochemical drivers of phenotypic change. Cell 172, 478–490.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hietpas, R. T., Jensen, J. D. & Bolon, D. N. Experimental illumination of a fitness landscape. Proc. Natl Acad. Sci. USA 108, 7896–7901 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Amorosi, C. J. et al. Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am. J. Hum. Genet. 108, 1735–1751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Weile, J. et al. A framework for exhaustively mapping functional missense variants. Mol. Syst. Biol. 13, 957 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Dhindsa, R. S. et al. A minimal role for synonymous variation in human disease. Am. J. Hum. Genet. 109, 2105–2109 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shen, X., Song, S., Li, C. & Zhang, J. On the fitness effects and disease relevance of synonymous mutations. Preprint at bioRxiv https://doi.org/10.1101/2022.08.22.504687 (2022).

  132. McGrath, K. M. et al. Fitness benefits of a synonymous substitution in an ancient EF-Tu gene depend on the genetic background. J. Bacteriol. 206, e0032923 (2024).

    Article  PubMed  Google Scholar 

  133. Zwart, M. P. et al. Unraveling the causes of adaptive benefits of synonymous mutations in TEM-1-β-lactamase. Heredity 121, 406–421 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Faheem, M., Zhang, C. J., Morris, M. N., Pleiss, J. & Oelschlaeger, P. Role of synonymous mutations in the evolution of TEM β-lactamase genes. Antimicrob. Agents Chemother. 65, e00018–e00021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bailey, S. F., Hinz, A. & Kassen, R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat. Commun. 5, 4076 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Chen, P. & Zhang, J. The loci of environmental adaptation in a model eukaryote. Nat. Commun. 15, 5672 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. King, J. L. & Jukes, T. H. Non-Darwinian evolution. Science 164, 788–798 (1969).

    Article  CAS  PubMed  Google Scholar 

  138. Miyata, T. & Yasunaga, T. Rapidly evolving mouse alpha-globin-related pseudo gene and its evolutionary history. Proc. Natl Acad. Sci. USA 78, 450–453 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Katju, V. & Bergthorsson, U. Old trade, new tricks: insights into the spontaneous mutation process from the partnering of classical mutation accumulation experiments with high-throughput genomic approaches. Genome Biol. Evol. 11, 136–165 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Hudson, R. R., Kreitman, M. & Aguade, M. A test of neutral molecular evolution based on nucleotide data. Genetics 116, 153–159 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    Article  CAS  PubMed  Google Scholar 

  142. Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, R., Davydov, E. V., Sirota, M. & Butte, A. J. Non-synonymous and synonymous coding SNPs show similar likelihood and effect size of human disease association. PLoS ONE 5, e13574 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of thousands of phenotypes in 394,841 UK biobank exomes. Cell Genom. 2, 100168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Takata, A., Ionita-Laza, I., Gogos, J. A., Xu, B. & Karayiorgou, M. De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron 89, 940–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Supek, F., Minana, B., Valcarcel, J., Gabaldon, T. & Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Sharma, Y. et al. A pan-cancer analysis of synonymous mutations. Nat. Commun. 10, 2569 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lu, J. & Wu, C. I. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proc. Natl Acad. Sci. USA 102, 4063–4067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Han, P. et al. Genome-wide survey of ribosome collision. Cell Rep. 31, 107610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Meydan, S. & Guydosh, N. R. Disome and trisome profiling reveal genome-wide targets of ribosome quality control. Mol. Cell 79, 588–602.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Guydosh, N. R. & Green, R. Dom34 rescues ribosomes in 3’ untranslated regions. Cell 156, 950–962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Aitken, C. E. & Puglisi, J. D. Following the intersubunit conformation of the ribosome during translation in real time. Nat. Struct. Mol. Biol. 17, 793–800 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rahman, S., Kosakovsky Pond, S. L., Webb, A. & Hey, J. Weak selection on synonymous codons substantially inflates dN/dS estimates in bacteria. Proc. Natl Acad. Sci. USA 118, e2023575118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang, J. & Yang, J. R. Determinants of the rate of protein sequence evolution. Nat. Rev. Genet. 16, 409–420 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chen, P. & Zhang, J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat. Ecol. Evol. 4, 461–469 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Bartoszewski, R. A. et al. A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. J. Biol. Chem. 285, 28741–28748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lazrak, A. et al. The silent codon change I507-ATC→ATT contributes to the severity of the ΔF508 CFTR channel dysfunction. FASEB J. 27, 4630–4645 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Richard, P. et al. A synonymous CHRNE mutation responsible for an aberrant splicing leading to congenital myasthenic syndrome. Neuromuscul. Disord. 17, 409–414 (2007).

    Article  PubMed  Google Scholar 

  159. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet. 39, 830–832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Brest, P. et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat. Genet. 43, 242–245 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Li, J. et al. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res. 46, 7793–7804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cheng, N. et al. Comparison and integration of computational methods for deleterious synonymous mutation prediction. Brief. Bioinform. 21, 970–981 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Lin, B. C., Katneni, U., Jankowska, K. I., Meyer, D. & Kimchi-Sarfaty, C. In silico methods for predicting functional synonymous variants. Genome Biol. 24, 126 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Livingstone, M. et al. Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants. Hum. Mutat. 38, 1336–1347 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Zhang, X. et al. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution. Hum. Genet. 136, 1279–1289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wang, L. et al. Deleterious synonymous mutation identification based on selective ensemble strategy. Brief. Bioinform. 24, bbac598 (2023).

    Article  PubMed  Google Scholar 

  167. Buske, O. J., Manickaraj, A., Mital, S., Ray, P. N. & Brudno, M. Identification of deleterious synonymous variants in human genomes. Bioinformatics 29, 1843–1850 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, T. et al. Syntool: a novel region-based intolerance score to single nucleotide substitution for synonymous mutations predictions based on 123,136 individuals. BioMed Res. Int. 2017, 5096208 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Gelfman, S. et al. Annotating pathogenic non-coding variants in genic regions. Nat. Commun. 8, 236 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 47, D886–D894 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Quang, D., Chen, Y. & Xie, X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics 31, 761–763 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Shihab, H. A. et al. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31, 1536–1543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Capriotti, E. & Fariselli, P. PhD-SNPg: a webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res. 45, W247–W252 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bendl, J. et al. PredictSNP2: a unified platform for accurately evaluating SNP effects by exploiting the different characteristics of variants in distinct genomic regions. PLoS Comput. Biol. 12, e1004962 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Song, S. Zhang and J. Kong for technical assistance, and members of our laboratories for valuable comments. J.Z. was supported by the U.S. National Institutes of Health (R35GM139484) and W.Q. was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28030402), the Biological Breeding-National Science and Technology Major Project (2023ZD04073) and Guangdong Provincial Key Laboratory of Synthetic Genomics (2023B1212060054).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the manuscript.

Corresponding authors

Correspondence to Jianzhi Zhang or Wenfeng Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Laurent Duret, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SynMICdb: http://SynMICdb.dkfz.de

Glossary

A-to-I editing

Enzymatic alteration of RNA molecules consisting of the conversion of adenosines (A) to inosines (I) at specific positions.

Clonal interference

Competition among genotypes with different beneficial mutations in an asexual population.

Coalescent theory

A mathematical theory of population genetics that traces all alleles of a gene sampled from a population to a single ancestral copy.

Codon usage bias

(CUB). The phenomenon in which synonymous codons of an amino acid are unequally used in a genome.

Cycloheximide

A fungicide often used to block eukaryotic translational elongation in experiments.

Deep mutational scanning

An experimental approach for measuring the effects of individual nucleotides in a DNA segment by creating many mutants of the DNA followed by high-throughput functional/fitness assays of the mutants.

Effective population size

(Ne). Number of individuals in an ideal (that is, Wright–Fisher) population that results in the same amount of genetic drift as in the actual population considered.

Fitness

A quantitative representation of the ability of an individual to pass its genome to the next generation.

Genome-wide association studies

Investigations of genome-wide sets of genetic variants in groups of individuals to find variants associated with traits of interest.

Kinetic proofreading

Mechanism that allows enzymes, particularly those involved in DNA replication, RNA transcription and protein synthesis, to enhance their fidelity by discriminating between correct and incorrect substrates. The accuracy of this process is higher than expected solely based on the difference in activation energy between forming correct products and incorrect products.

Linkage disequilibrium

Non-random association of alleles of different loci in a population.

m6A methylation

Methylation at the nitrogen-6 position of adenosines at specific positions in an RNA molecule.

MicroRNA

Single-stranded, non-coding RNA molecules of 21 to 23 nucleotides that bind to mRNAs to cause mRNA degradation or suppress mRNA translation.

Modern synthesis

Prevailing evolutionary theory developed in the 1930s to the 1940s by combining Darwin’s theory of evolution by natural selection with a population-oriented view of Mendelian genetics.

mRNA folding strength

Reduction in free energy of a folded mRNA molecule relative to its unfolded form.

Mutation accumulation

A genetic experiment in which a population of organisms is propagated through repeated population bottlenecks to minimize the impact of natural selection.

Mutation bias

A phenomenon in which some types of mutation occur more frequently than other types.

Near-cognate tRNAs

tRNAs carrying an amino acid that differs from that encoded by the codon of concern and whose anticodon does not pair with the codon at exactly one nucleotide position.

Neutral mutations

Genetic changes having selection coefficients that are smaller than the inverse of the effective population size.

Neutral theory

An evolutionary theory positing that most interspecific differences and intraspecific polymorphisms at the DNA or protein sequence level are selectively neutral rather than adaptive.

Nonsynonymous mutations

Point mutations in a coding sequence that alter the encoded protein sequence.

Nonsynonymous substitution rate

(dN). Number of nonsynonymous nucleotide substitutions per nonsynonymous site between two homologous coding sequences.

Nucleosome

The basic structural unit of DNA packaging in eukaryotes consisting of a segment of DNA wound around eight histone proteins.

Polyadenylation

Part of the process of mRNA maturation in which a nascent RNA transcript is cleaved at a particular site and subsequently becomes the object of the addition of a poly-A tail.

Preferred codons

Codons that are used more frequently than the average of all codons of the same amino acid in highly expressed genes of a genome.

Protospacer adjacent motif

A short DNA sequence of usually 2–6 nucleotides required for a Cas nuclease in the CRISPR system to cut; it is generally found 3–4 nucleotides downstream from the cut site.

Pseudogene

A nonfunctional segment of DNA that is derived from a previously functional gene.

Quantitative trait locus mapping

A method to determine the chromosomal regions or genetic variants affecting the variation of a quantitative trait among individuals of a species.

Ribosome E-site

5’-most of the three tRNA binding sites in a ribosome that allows a deacylated tRNA to exit. The 3’-most of the three tRNA binding sites in a ribosome that selects charged tRNA molecules during protein synthesis is known as A-site.

Ribosome P-site

Middle of the three tRNA binding sites in a ribosome that holds the tRNA linked to the nascent polypeptide chain.

Selection coefficient

(s). The difference in relative fitness between a mutant and the wild type.

Shine–Dalgarno sequence

Sequence motif in mRNA that recruits ribosomes through interaction with the anti-Shine–Dalgarno sequence in 16S ribosomal RNA of prokaryotes.

Site frequency spectrum

Distribution of the allele frequencies of a set of loci such as single-nucleotide polymorphisms in a population or sample of individuals.

Splicing

A step in pre-mRNA processing that removes introns and joins exons to form mature mRNAs.

Synonymous mutations

Point mutations in a coding sequence that do not alter the encoded protein sequence.

Synonymous substitution rate

(dS). Number of synonymous nucleotide substitutions per synonymous site between two homologous coding sequences.

Unpreferred codons

Codons that are used less frequently than the average of all codons of the same amino acid in highly expressed genes of a genome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qian, W. Functional synonymous mutations and their evolutionary consequences. Nat Rev Genet 26, 789–804 (2025). https://doi.org/10.1038/s41576-025-00850-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00850-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing