Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural variants in the 3D genome as drivers of disease

Abstract

The spatial organization of the genome within the nucleus — also known as genome architecture or 3D genome — is important to the regulation of gene expression. Disruption of the 3D genome, for example, by structural variation, can contribute to disease, including developmental disorders and cancer. Structural variants can rearrange higher-order chromatin structures, such as topologically associating domains, and disrupt interactions between cis-regulatory elements, which can lead to altered gene expression, a phenomenon known as position effects. New experimental and computational approaches are revealing the effect of structural variants on the 3D genome and gene expression and can help interpret their pathogenic potential, which has important implications for patients. Here, we review mechanisms of disease caused by position effects owing to disruptions of genome architecture, and more specifically topologically associating domains, as well as their consequences and clinical impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emergence of topologically associating domains by loop extrusion.
Fig. 2: Enhancer hijacking and topologically associating domain reorganization.
Fig. 3: Enhancer hijacking in deletions and tandem duplications involving topologically associating domain boundaries.
Fig. 4: Insertional duplications involving topologically associating domain boundaries.
Fig. 5: Translocations and inversions change topologically associating domain architecture.
Fig. 6: A schema to interpret the clinical relevance of a candidate structural variant.

Similar content being viewed by others

References

  1. Kaschta, D. et al. Evaluating genome sequencing strategies: trio, singleton, and standard testing in rare disease diagnosis. Preprint at medRxiv https://doi.org/10.1101/2024.12.20.24319228 (2024).

  2. Wojcik, M. H. et al. Genome sequencing for diagnosing rare diseases. N. Engl. J. Med. 390, 1985–1997 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hodder, A. et al. Benefits for children with suspected cancer from routine whole-genome sequencing. Nat. Med. 30, 1905–1912 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kerle, I. A. et al. Translational and clinical comparison of whole genome and transcriptome to panel sequencing in precision oncology. npj Precis. Oncol. 9, 9 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ellingford, J. M. et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 14, 73 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 100,000 Genomes Project Pilot Investigatorset al. 100,000 genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  Google Scholar 

  7. Nieboer, M. M., Nguyen, L. & de Ridder, J. Predicting pathogenic non-coding SVs disrupting the 3D genome in 1646 whole cancer genomes using multiple instance learning. Sci. Rep. 11, 14411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pagnamenta, A. T. et al. Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases. Genome Med. 15, 94 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huddleston, J. et al. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 27, 677–685 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Audano, P. A. et al. Characterizing the major structural variant alleles of the human genome. Cell 176, 663–675.e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fantes, J. et al. Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum. Mol. Genet. 4, 415–422 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Lettice, L. A. et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc. Natl Acad. Sci. USA 99, 7548–7553 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleinjan, D. J. & van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet. 7, 1611–1618 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Socha, M. et al. Position effects at the FGF8 locus are associated with femoral hypoplasia. Am. J. Hum. Genet. 108, 1725–1734 (2021). This study demonstrated the differences between gene dosage effects and position effects in individuals with limb malformation and mouse models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Kleinjan, D. A. et al. Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. Hum. Mol. Genet. 10, 2049–2059 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Velagaleti, G. V. et al. Position effects due to chromosome breakpoints that map ~900 Kb upstream and ~1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet. 76, 652–662 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tufarelli, C. et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34, 157–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Lupski, J. R. & Stankiewicz, P. T. Genomic Disorders: The Genomic Basis of Disease (Springer Science & Business Media, 2007).

  23. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015). This study introduced the concept of TADs as a useful unit to interpret position effects of SVs caused by altered 3D genome architecture in the context of rare diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, Z. et al. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. Science 380, 1070–1076 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Wu, H.-J. et al. Topological isolation of developmental regulators in mammalian genomes. Nat. Commun. 12, 4897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tan, L. et al. Lifelong restructuring of 3D genome architecture in cerebellar granule cells. Science 381, 1112–1119 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dehingia, B., Milewska, M., Janowski, M. & Pękowska, A. CTCF shapes chromatin structure and gene expression in health and disease. EMBO Rep. 23, e55146 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tchasovnikarova, I. A. et al. Gene silencing. Epigenetic silencing by the HUSH complex mediates position–effect variegation in human cells. Science 348, 1481–1485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davidson, I. F. & Peters, J.-M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, D., Lam, J. & Blobel, G. A. Engineering three-dimensional genome folding. Nat. Genet. 53, 602–611 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Dekker, C., Haering, C. H., Peters, J.-M. & Rowland, B. D. How do molecular motors fold the genome? Science 382, 646–648 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y. et al. Computational methods for analysing multiscale 3D genome organization. Nat. Rev. Genet. 25, 123–141 (2024).

    Article  CAS  PubMed  Google Scholar 

  37. Jerkovic, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Raca, G. et al. Points to consider in the detection of germline structural variants using next-generation sequencing: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100316 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Dubois, F., Sidiropoulos, N., Weischenfeldt, J. & Beroukhim, R. Structural variations in cancer and the 3D genome. Nat. Rev. Cancer 22, 533–546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arnould, C. & Legube, G. The secret life of chromosome loops upon DNA double-strand break. J. Mol. Biol. 432, 724–736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hill, L. et al. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 584, 142–147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajderkar, S. et al. Topologically associating domain boundaries are required for normal genome function. Commun. Biol. 6, 435 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oji, A. et al. Structure and dynamics of nuclear A/B compartments and subcompartments. Curr. Opin. Cell Biol. 90, 102406 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Jabbari, K., Chakraborty, M. & Wiehe, T. DNA sequence-dependent chromatin architecture and nuclear hubs formation. Sci. Rep. 9, 1–11 (2019).

    Article  CAS  Google Scholar 

  48. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). This paper first reported the identification and description of topologically associating domains from Hi-C maps.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015). This study convincingly established a link between the loop extrusion model and TADs based on engineered genomes and polymer-based computational modelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oldenkamp, R. & Rowland, B. D. A walk through the SMC cycle: from catching DNAs to shaping the genome. Mol. Cell 82, 1616–1630 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Valton, A.-L. et al. A cohesin traffic pattern genetically linked to gene regulation. Nat. Struct. Mol. Biol. 29, 1239–1251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arnould, C. et al. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature 590, 660–665 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dequeker, B. J. H. et al. MCM complexes are barriers that restrict cohesin-mediated loop extrusion. Nature 606, 197–203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nanni, L., Ceri, S. & Logie, C. Spatial patterns of CTCF sites define the anatomy of TADs and their boundaries. Genome Biol. 21, 1–25 (2020).

    Article  Google Scholar 

  61. Pradhan, B. et al. SMC complexes can traverse physical roadblocks bigger than their ring size. Cell Rep. 41, 111491 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Beagan, J. A. & Phillips-Cremins, J. E. On the existence and functionality of topologically associating domains. Nat. Genet. 52, 8–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science 347, 1017–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rao, S. S. P. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320.e24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hsieh, T.-H. S. et al. Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat. Genet. 54, 1919–1932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rinzema, N. J. et al. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nat. Struct. Mol. Biol. 29, 563–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kane, L. et al. Cohesin is required for long-range enhancer action at the Shh locus. Nat. Struct. Mol. Biol. 29, 891–897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dong, P. et al. Cohesin prevents cross-domain gene coactivation. Nat. Genet. 56, 1654–1664 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Katainen, R. et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47, 818–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, T. et al. Enhancer coamplification and hijacking promote oncogene expression in liposarcoma. Cancer Res. 83, 1517–1530 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao, S. G. et al. Integrated analyses highlight interactions between the three-dimensional genome and DNA, RNA and epigenomic alterations in metastatic prostate cancer. Nat. Genet. 56, 1689–1700 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Soto, D. C. et al. Genomic structural variation: a complex but important driver of human evolution. Am. J. Biol. Anthropol. 181, 118–144 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yoo, D. et al. Complete sequencing of ape genomes. Nature 641, 401–418 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grimes, K. et al. Cell-type-specific consequences of mosaic structural variants in hematopoietic stem and progenitor cells. Nat. Genet. 56, 1134–1146 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Sano, Y. et al. Likely pathogenic structural variants in genetically unsolved patients with retinitis pigmentosa revealed by long-read sequencing. J. Med. Genet. 59, 1133–1138 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Pagnamenta, A. T. et al. The impact of inversions across 33,924 families with rare disease from a national genome sequencing project. Am. J. Hum. Genet. 111, 1140–1164 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bardoni, B. et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7, 497–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Dong, Y. et al. Targeted next-generation sequencing identification of mutations in patients with disorders of sex development. BMC Med. Genet. 17, 23 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Holder-Espinasse, M. et al. Duplication of 10q24 locus: broadening the clinical and radiological spectrum. Eur. J. Hum. Genet. 27, 525–534 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Si, N. et al. Duplications involving the long range HMX1 enhancer are associated with human isolated bilateral concha-type microtia. J. Transl. Med. 18, 244 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, Y. et al. Germline intergenic duplications at Xq26.1 underlie Bazex–Dupré–Christol basal cell carcinoma susceptibility syndrome. Br. J. Dermatol. 187, 948–961 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Yumiceba, V. & Spielmann, M. When too much is too much: noncoding duplications in skin disorders. Br. J. Dermatol. 188, e2–e3 (2023).

    Article  PubMed  Google Scholar 

  87. Pagnamenta, A. T. et al. Conclusion of diagnostic odysseys due to inversions disrupting GLI3 and FBN1. J. Med. Genet. 60, 505–510 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, B., Jiang, R., Xie, B., Wu, W. & Zhao, Y. Fusion genes in gynecologic tumors: the occurrence, molecular mechanism and prospect for therapy. Cell Death Dis. 12, 783 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gryder, B. E. et al. Miswired enhancer logic drives a cancer of the muscle lineage. iScience 23, 101103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Baxter, J. S. et al. Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. Am. J. Hum. Genet. 108, 1190–1203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ibn-Salem, J. et al. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol. 15, 423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lettice, L. A. et al. Enhancer-adoption as a mechanism of human developmental disease. Hum. Mutat. 32, 1492–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Gröschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 157, 369–381 (2014).

    Article  PubMed  Google Scholar 

  94. Redin, C. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat. Genet. 49, 36–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Dimartino, P. et al. Structural variants at the LMNB1 locus: deciphering pathomechanisms in autosomal dominant adult-onset demyelinating leukodystrophy. Ann. Neurol. 96, 855–870 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Baudic, M. et al. TAD boundary deletion causes PITX2-related cardiac electrical and structural defects. Nat. Commun. 15, 3380 (2024). These authors showed that deletion of a TAD boundary — identified to be the minimal critical region across seven families with congenital heart defects — leads to enhancer hijacking and altered differentiation during heart development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Salnikov, P. et al. Structural variants in the Epb41l4a locus: TAD disruption and Nrep gene misregulation as hypothetical drivers of neurodevelopmental outcomes. Sci. Rep. 14, 5288 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hirsch, N. et al. HDAC9 structural variants disrupting TWIST1 transcriptional regulation lead to craniofacial and limb malformations. Genome Res. 32, 1242–1253 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weischenfeldt, J. et al. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. Nat. Genet. 49, 65–74 (2017). This report first described the importance of enhancer hijacking in cancer owing to somatic CNVs.

    Article  CAS  PubMed  Google Scholar 

  101. Wang, X. et al. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. Nat. Methods 18, 661–668 (2021). This paper reported a computational tool to identify enhancer hijacking events from patient-derived Hi-C maps and its visual representation in the reconstructed genome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Flöttmann, R. et al. Noncoding copy-number variations are associated with congenital limb malformation. Genet. Med. 20, 599–607 (2018).

    Article  PubMed  Google Scholar 

  103. Newman, S., Hermetz, K. E., Weckselblatt, B. & Rudd, M. K. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am. J. Hum. Genet. 96, 208–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Franke, M. et al. Duplications disrupt chromatin architecture and rewire GPR101–enhancer communication in X-linked acrogigantism. Am. J. Hum. Genet. 109, 553–570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database 2017, bax028 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  107. de Bruijn, S. E. et al. Structural variants create new topological-associated domains and ectopic retinal enhancer–gene contact in dominant retinitis pigmentosa. Am. J. Hum. Genet. 107, 802–814 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Meinel, J. A. et al. Disruption of the topologically associated domain at Xp21.2 is related to 46,XY gonadal dysgenesis. J. Med. Genet. 60, 469–476 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Veyt, N., Van Buggenhout, G., Devriendt, K., Van Den Bogaert, K. & Brison, N. Expanding the phenotype of copy number variations involving NR0B1 (DAX1). Eur. J. Hum. Genet. 32, 421–425 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gardner, J. C. et al. Inter-chromosomal insertions at Xq27.1 associated with retinal dystrophy induce dysregulation of LINC00632 and CDR1as/ciRS-7. Am. J. Hum. Genet. 112, 523–536 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Melo, U. S. et al. Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation. Nat. Commun. 14, 2034 (2023). This study found that enhancer hijacking resulted in a striking phenotype of ossification of connective tissue with postnatal disease onset.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramisch, A. et al. CRUP: a comprehensive framework to predict condition-specific regulatory units. Genome Biol. 20, 227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Le Caignec, C. et al. Fryns type mesomelic dysplasia of the upper limbs caused by inverted duplications of the HOXD gene cluster. Eur. J. Hum. Genet. 28, 324–332 (2020).

    Article  PubMed  Google Scholar 

  114. Lonfat, N. & Duboule, D. Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett. 589, 2869–2876 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Sun, W. et al. Altered chromatin topologies caused by balanced chromosomal translocation lead to central iris hypoplasia. Nat. Commun. 15, 5048 (2024). This team identified a translocation-led enhancer hijacking by APCDD1 in the developing iris as the molecular diagnosis of central iris hypoplasia in several individuals from a large family.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Damián, A. et al. Long-read genome sequencing identifies cryptic structural variants in congenital aniridia cases. Hum. Genomics 17, 45 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yang, L. et al. 3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nat. Commun. 12, 3708 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Laugsch, M. et al. Modeling the pathological long-range regulatory effects of human structural variation with patient-specific hiPSCs. Cell Stem Cell 24, 736–752.e12 (2019). This study found that pericentric inversion entails topologically associating domain shuffling and enhancer disconnection, leading to species-specific haploinsufficiency and branchio-oculo-facial syndrome.

    Article  CAS  PubMed  Google Scholar 

  121. Milunsky, J. M. et al. TFAP2A mutations result in branchio-oculo-facial syndrome. Am. J. Hum. Genet. 82, 1171–1177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, J. et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381, 238–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Schorle, H., Meier, P., Buchert, M., Jaenisch, R. & Mitchell, P. J. Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381, 235–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  124. Chandrasekhar, A. et al. Genome sequencing detects a balanced pericentric inversion with breakpoints that impact the DMD and upstream region of POU3F4 genes. Am. J. Med. Genet. A 194, e63462 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Schöpflin, R. et al. Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes. Nat. Commun. 13, 6470 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Despang, A. et al. Functional dissection of the Sox9-Kcnj2 locus identifies nonessential and instructive roles of TAD architecture. Nat. Genet. 51, 1263–1271 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Rodríguez-Carballo, E. et al. The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev. 31, 2264–2281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ge, X. et al. Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation. Nat. Commun. 14, 8101 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mohajeri, K. et al. Transcriptional and functional consequences of alterations to MEF2C and its topological organization in neuronal models. Am. J. Hum. Genet. 109, 2049–2067 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kang, J., Kim, Y. W., Park, S., Kang, Y. & Kim, A. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer–promoter interaction in the β-globin locus. FASEB J. 35, e21768 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Chang, L.-H. et al. Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and topologically associating domain boundaries. Nat. Commun. 14, 5615 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kabirova, E. et al. TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene. Nat. Commun. 15, 4521 (2024). This paper describes the tissue specificity of enhancer hijacking and gene misexpression upon boundary deletions based on the interplay among loop extrusion, transcription machinery and compensatory CTCF motifs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Huang, H. et al. CTCF mediates dosage- and sequence-context-dependent transcriptional insulation by forming local chromatin domains. Nat. Genet. 53, 1064–1074 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Banigan, E. J. et al. Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc. Natl Acad. Sci. USA 120, e2210480120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Botten, G. A. et al. Structural variation cooperates with permissive chromatin to control enhancer hijacking-mediated oncogenic transcription. Blood 142, 336–351 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Chakraborty, S. et al. Enhancer–promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat. Genet. 55, 280–290 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Barshad, G. et al. RNA polymerase II dynamics shape enhancer–promoter interactions. Nat. Genet. 55, 1370–1380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bolt, C. C. et al. Context-dependent enhancer function revealed by targeted inter-TAD relocation. Nat. Commun. 13, 3488 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Winick-Ng, W. et al. Cell-type specialization is encoded by specific chromatin topologies. Nature 599, 684–691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tian, W. et al. Single-cell DNA methylation and 3D genome architecture in the human brain. Science 382, eadf5357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kraft, K. et al. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21, 305–310 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Stadhouders, R. et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat. Genet. 50, 238–249 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, J. et al. Phase separation of OCT4 controls TAD reorganization to promote cell fate transitions. Cell Stem Cell 28, 1868–1883.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Szabo, Q. et al. Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nat. Genet. 52, 1151–1157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mensah, M. A. et al. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564–571 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kragesteen, B. K., Brancati, F., Digilio, M. C., Mundlos, S. & Spielmann, M. H2AFY promoter deletion causes PITX1 endoactivation and Liebenberg syndrome. J. Med. Genet. 56, 246–251 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Monteagudo-Sánchez, A., Richard, A. J., Scarpa, M., Noordermeer, D. & Greenberg, M. V. C. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res. 52, 10934–10950 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hung, T.-C., Kingsley, D. M. & Boettiger, A. N. Boundary stacking interactions enable cross-TAD enhancer–promoter communication during limb development. Nat. Genet. 56, 306–314 (2024). This work presents a revised perspective on the function of TAD boundaries, highlighting their dual role in both facilitating and restricting cis-regulatory interactions.

    Article  CAS  PubMed  Google Scholar 

  152. Yokoshi, M., Segawa, K. & Fukaya, T. Visualizing the role of boundary elements in enhancer–promoter communication. Mol. Cell 78, 224–235.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Davidson, I. F. et al. CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion. Nature 616, 822–827 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen, Z. et al. Increased enhancer–promoter interactions during developmental enhancer activation in mammals. Nat. Genet. 56, 675–685 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Beccari, L. et al. Dbx2 regulation in limbs suggests interTAD sharing of enhancers. Dev. Dyn. 250, 1280–1299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, X. et al. GAGA-associated factor fosters loop formation in the Drosophila genome. Mol. Cell 83, 1519–1526.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hu, Y. et al. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 186, 5269–5289.e22 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Boyle, S. et al. A central role for canonical PRC1 in shaping the 3D nuclear landscape. Genes Dev. 34, 931–949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Pachano, T., Crispatzu, G. & Rada-Iglesias, A. Polycomb proteins as organizers of 3D genome architecture in embryonic stem cells. Brief. Funct. Genomics 18, 358–366 (2019).

    CAS  PubMed  Google Scholar 

  160. Weiner, D. J. et al. Statistical and functional convergence of common and rare genetic influences on autism at chromosome 16p. Nat. Genet. 54, 1630–1639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Loviglio, M. N. et al. Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes. Mol. Psychiatry 22, 836–849 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Zhang, X. et al. Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. Nat. Commun. 9, 5356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Konrad, E. D. H. et al. CTCF variants in 39 individuals with a variable neurodevelopmental disorder broaden the mutational and clinical spectrum. Genet. Med. 21, 2723–2733 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gregor, A. et al. De novo mutations in the genome organizer CTCF cause intellectual disability. Am. J. Hum. Genet. 93, 124–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, J. et al. CTCF mutation at R567 causes developmental disorders via 3D genome rearrangement and abnormal neurodevelopment. Nat. Commun. 15, 5524 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Krantz, I. D. et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet. 36, 631–635 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen, W. et al. Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites. Nucleic Acids Res. 52, 8086–8099 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  169. Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021).

    CAS  PubMed  Google Scholar 

  170. Quinodoz, M. et al. De novo and inherited dominant variants in U4 and U6 snRNAs cause retinitis pigmentosa. Preprint at medRxiv https://doi.org/10.1101/2025.01.06.24317169 (2025).

  171. Chen, Y. et al. De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome. Nature 632, 832–840 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. FitzPatrick, D. R. et al. Transcriptome analysis of human autosomal trisomy. Hum. Mol. Genet. 11, 3249–3256 (2002).

    Article  CAS  PubMed  Google Scholar 

  173. Meharena, H. S. et al. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell 29, 116–130.e7 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. He, S. et al. The role of cardiomyocyte senescence in cardiovascular diseases: a molecular biology update. Eur. J. Pharmacol. 983, 176961 (2024).

    Article  CAS  PubMed  Google Scholar 

  175. Mahmood, S. R. et al. β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat. Commun. 12, 5240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Battirossi, E. et al. Assessment of the cytoskeletal impact of beta-actin mutations leading to non-muscle actinopathies by means of dual laser optical tweezers (DLOT). Biophys. J. 122, 195a (2023).

    Article  Google Scholar 

  177. Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).

    Article  PubMed  Google Scholar 

  178. McArthur, E. & Capra, J. A. Topologically associating domain boundaries that are stable across diverse cell types are evolutionarily constrained and enriched for heritability. Am. J. Hum. Genet. 108, 269–283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang, S., Übelmesser, N., Barbieri, M. & Papantonis, A. Enhancer–promoter contact formation requires RNAPII and antagonizes loop extrusion. Nat. Genet. 55, 832–840 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  181. Nieboer, M. M. & de Ridder, J. svMIL: predicting the pathogenic effect of TAD boundary-disrupting somatic structural variants through multiple instance learning. Bioinformatics 36, i692–i699 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Hertzberg, J., Mundlos, S., Vingron, M. & Gallone, G. TADA — a machine learning tool for functional annotation-based prioritisation of pathogenic CNVs. Genome Biol. 23, 67 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sharo, A. G., Hu, Z., Sunyaev, S. R. & Brenner, S. E. StrVCTVRE: a supervised learning method to predict the pathogenicity of human genome structural variants. Am. J. Hum. Genet. 109, 195–209 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xu, Z., Li, Q., Marchionni, L. & Wang, K. PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants. Nat. Commun. 14, 7805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Geoffroy, V. et al. AnnotSV and knotAnnotSV: a web server for human structural variations annotations, ranking and analysis. Nucleic Acids Res. 49, W21–W28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Fino, J., Marques, B., Dong, Z. & David, D. SVInterpreter: a comprehensive topologically associated domain-based clinical outcome prediction tool for balanced and unbalanced structural variants. Front. Genet. 12, 757170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Requena, F. et al. CNVxplorer: a web tool to assist clinical interpretation of CNVs in rare disease patients. Nucleic Acids Res. 49, W93–W103 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang, L. et al. X-CNV: genome-wide prediction of the pathogenicity of copy number variations. Genome Med. 13, 132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kleinert, P. & Kircher, M. A framework to score the effects of structural variants in health and disease. Genome Res. 32, 766–777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Spector, J. D. & Wiita, A. P. ClinTAD: a tool for copy number variant interpretation in the context of topologically associated domains. J. Hum. Genet. 64, 437–443 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Poszewiecka, B. et al. TADeus2: a web server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure. Nucleic Acids Res. 50, W744–W752 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sánchez-Gaya, V. & Rada-Iglesias, A. POSTRE: a tool to predict the pathological effects of human structural variants. Nucleic Acids Res. 51, e54 (2023). This report presented a computational tool for prioritizing a list of SVs, which considers both linear and 3D genome effects in a tissue-specific manner based on clinical phenotype.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zhou, J. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale. Nat. Genet. 54, 725–734 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Melo, U. S. et al. Hi-C identifies complex genomic rearrangements and TAD-shuffling in developmental diseases. Am. J. Hum. Genet. 106, 872–884 (2020). This study introduced Hi-C as a diagnostic tool for analysing clinical samples from various tissues, including blood, amnion and fibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Beagrie, R. A. et al. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C. Nat. Methods 20, 1037–1047 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Zhong, J.-Y. et al. High-throughput pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhou, T. et al. GAGE-seq concurrently profiles multiscale 3D genome organization and gene expression in single cells. Nat. Genet. 56, 1701–1711 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chang, L. et al. Droplet Hi-C enables scalable, single-cell profiling of chromatin architecture in heterogeneous tissues. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02447-1 (2024).

  199. Yang, R. et al. Epiphany: predicting Hi-C contact maps from 1D epigenomic signals. Genome Biol. 24, 134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Abbas, A. et al. ChIPr: accurate prediction of cohesin-mediated 3D genome organization from 2D chromatin features. Genome Biol. 25, 15 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Schuette, G., Lao, Z. & Zhang, B. ChromoGen: diffusion model predicts single-cell chromatin conformations. Sci. Adv. 11, eadr8265 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang, S. et al. The 3D genome and its impacts on human health and disease. Life Med. 2, lnad012 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Hoy, S. M. Exagamglogene autotemcel: first approval. Mol. Diagn. Ther. 28, 133–139 (2024).

    Article  CAS  PubMed  Google Scholar 

  204. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Ye, L. et al. Genome editing using CRISPR–Cas9 to create the HPFH genotype in HSPCs: an approach for treating sickle cell disease and β-thalassemia. Proc. Natl Acad. Sci. USA 113, 10661–10665 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Himadewi, P. et al. 3’HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression. eLife 10, e70557 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Pinglay, S. et al. Multiplex generation and single-cell analysis of structural variants in mammalian genomes. Science 387, eado5978 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Koeppel, J. et al. Randomizing the human genome by engineering recombination between repeat elements. Science 387, eado3979 (2025). Together with Pinglay et al. (2025), this paper used high-throughput technology for multiplexed testing of SVs in mammalian genomes.

    Article  CAS  PubMed  Google Scholar 

  209. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gao, Y. et al. A pangenome reference of 36 Chinese populations. Nature 619, 112–121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. All of Us Research Program Genomics Investigators. Genomic data in the All of Us research program. Nature 627, 340–346 (2024).

    Article  Google Scholar 

  212. Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. 19, 151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kosicki, M. et al. VISTA Enhancer browser: an updated database of tissue-specific developmental enhancers. Nucleic Acids Res. 53, D324–D330 (2024). This study reports the most extensive collection of experimentally validated tissue-specific enhancers in transgenic mice.

    Article  PubMed Central  Google Scholar 

  215. Mills, C., Marconett, C. N., Lewinger, J. P. & Mi, H. PEACOCK: a machine learning approach to assess the validity of cell type-specific enhancer–gene regulatory relationships. npj Syst. Biol. Appl. 9, 9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Li, M. et al. Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity. Nat. Commun. 13, 1293 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zepeda-Mendoza, C. J. & Morton, C. C. The iceberg under water: unexplored complexity of chromoanagenesis in congenital disorders. Am. J. Hum. Genet. 104, 565–577 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Dileep, V. et al. Neuronal DNA double-strand breaks lead to genome structural variations and 3D genome disruption in neurodegeneration. Cell 186, 4404–4421.e20 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Simovic-Lorenz, M. & Ernst, A. Chromothripsis in cancer. Nat. Rev. Cancer 25, 79–92 (2025).

    Article  CAS  PubMed  Google Scholar 

  227. Xie, T. et al. Pervasive structural heterogeneity rewires glioblastoma chromosomes to sustain patient-specific transcriptional programs. Nat. Commun. 15, 3905 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Helmsauer, K. et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat. Commun. 11, 5823 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sarni, D. et al. 3D genome organization contributes to genome instability at fragile sites. Nat. Commun. 11, 3613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sidiropoulos, N. et al. Somatic structural variant formation is guided by and influences genome architecture. Genome Res. 32, 643–655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).

    Article  CAS  PubMed  Google Scholar 

  232. Anderson, N. D. et al. Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors. Science 361, eaam8419 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Tamura, T. et al. Breakpoint analysis for cytogenetically balanced translocation revealed unexpected complex structural abnormalities and suggested the position effect for MEF2C. Am. J. Med. Genet. Part A 191, 1632–1638 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Middelkamp, S. et al. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med. 9, 9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Ordulu, Z. et al. Structural chromosomal rearrangements require nucleotide-level resolution: lessons from next-generation sequencing in prenatal diagnosis. Am. J. Hum. Genet. 99, 1015–1033 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Melo, U. S. et al. Complete lung agenesis caused by complex genomic rearrangements with neo-TAD formation at the SHH locus. Hum. Genet. 140, 1459–1469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Song, F., Xu, J., Dixon, J. & Yue, F. Analysis of Hi-C data for discovery of structural variations in cancer. Methods Mol. Biol. 2301, 143–161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Dixon, J. R. et al. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet. 50, 1388–1398 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of the Spielmann Lab for discussions and suggestions. M.S. is a DZHK principal investigator and is supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (SP1532/3-2, SP1532/13-1, SP1532/4-1, SP1532/5-1, 515637292 (SFB 1665)) and the CRC 1665, the Max Planck Society and the Deutsches Zentrum für Luft- und Raumfahrt (DLR 01GM1925).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Malte Spielmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasan, V.K.A., Yumiceba, V. & Spielmann, M. Structural variants in the 3D genome as drivers of disease. Nat Rev Genet 26, 742–760 (2025). https://doi.org/10.1038/s41576-025-00862-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00862-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing