Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Experimental evolution in an era of molecular manipulation

Abstract

Laboratory evolution experiments in microbial and viral populations have provided great insight into the dynamics and predictability of evolution. The rise of high-throughput sequencing technologies over the past two decades has driven a massive expansion in the scale and power of these experiments. However, until recently our abilities to connect genetic with phenotypic changes and analyse the molecular basis of adaptation have remained limited. Rapid technical advances to measure and manipulate both genotypes and phenotypes are now providing opportunities to investigate the genetic basis of phenotypic evolution and the forces that drive evolutionary dynamics. Here we review how these methodological advances are being used to predict and manipulate the course of laboratory evolution, analyse eco-evolutionary interactions, and how they are beginning to bridge the gap between laboratory and natural evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Barcoding, lineage tracking and high-throughput phenotyping methods.
Fig. 2: Construction and manipulation of genotypes.
Fig. 3: Examples of repeatability and predictability in evolution.
Fig. 4: Evolution of frequency-dependent interactions.

Similar content being viewed by others

References

  1. Monod, J. Chance and Necessity: an Essay on the Natural Philosophy of Modern Biology (Vintage Books, 1972).

  2. Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).

    Article  PubMed  Google Scholar 

  3. Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943). This foundational paper introduced the fluctuation test, providing the first experimental evidence that bacterial mutations arise randomly rather than in response to selective pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lederberg, J. & Lederberg, E. M. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63, 399–406 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Helling, R. B., Vargas, C. N. & Adams, J. Evolution of Escherichia coli during growth in a constant environment. Genetics 116, 349–358 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138, 1315–1341 (1991). This landmark paper reported the first results from the E. coli LTEE, now the longest-running evolution experiment, which has transformed our understanding of bacterial adaptation.

    Article  Google Scholar 

  7. Zamenhof, S. & Eichhorn, H. H. Study of microbial evolution through loss of biosynthetic functions: establishment of “defective” mutants. Nature 216, 456–458 (1967).

    Article  CAS  PubMed  Google Scholar 

  8. Lenski, R. E. & Levin, B. R. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585–602 (1985).

    Article  Google Scholar 

  9. Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536, 165–170 (2016). This study sequenced hundreds of clones isolated from the E.coli LTEE, revealing widespread parallelism in the targets of mutations across replicate populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. & Marx, C. J. Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F. Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332, 1193–1196 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rozen, D. E. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am. Nat. 155, 24–35 (2000). This study uncovered the spontaneous emergence of a simple two-ecotype ecosystem in the E. coli LTEE, driven by metabolic cross-feeding, which has persisted for tens of thousands of generations.

    Article  PubMed  Google Scholar 

  14. Rozen, D. E., Philippe, N., Arjan de Visser, J., Lenski, R. E. & Schneider, D. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol. Lett. 12, 34–44 (2009).

    Article  PubMed  Google Scholar 

  15. Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Miller, C. R., Joyce, P. & Wichman, H. A. Mutational effects and population dynamics during viral adaptation challenge current models. Genetics 187, 185 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Levin, B. R., Stewart, F. M. & Chao, L. Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am. Nat. 111, 3–24 (1977).

    Article  Google Scholar 

  19. Hegreness, M., Shoresh, N., Hartl, D. & Kishony, R. An equivalence principle for the incorporation of favorable mutations in asexual populations. Science 311, 1615–1617 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Jagdish, T. & Nguyen Ba, A. N. Microbial experimental evolution in a massively multiplexed and high-throughput era. Curr. Opin. Genet. Dev. 75, 101943 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Desai, M. M. Statistical questions in experimental evolution. J. Stat. Mech. Theory Exp. 2013, P01003 (2013).

    Article  Google Scholar 

  22. Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lang, G. I. et al. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500, 571–574 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017). This study performed time-resolved metagenomic sequencing on all 12 LTEE populations over 60,000 generations of evolution, revealing that most (9/12) populations showed signatures of multiple ecotypes coexisting over tens of thousands of generations.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015). This study introduced high-resolution lineage tracking using DNA barcoding, revolutionizing our ability to observe evolutionary dynamics in real time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wetmore, K. M. et al. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio 6, e00306–e00315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen Ba, A. N. et al. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature 575, 494–499 (2019). This work demonstrated the power of re-barcoding to maintain barcode diversity during evolution, allowing for the high-resolution observation of evolutionary dynamics beyond the first fixation event.

    Article  CAS  PubMed  Google Scholar 

  30. Price, M. N. et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Ang, R. M. L., Chen, S.-A. A., Kern, A. F., Xie, Y. & Fraser, H. B. Widespread epistasis among beneficial genetic variants revealed by high-throughput genome editing. Cell Genomics 3, 100260 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dadonaite, B. et al. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 631, 617–626 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, F., Salit, M. L. & Levy, S. F. Unbiased fitness estimation of pooled barcode or amplicon sequencing studies. Cell Syst. 7, 521–525.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Limdi, A. & Baym, M. Resolving deleterious and near-neutral effects requires different pooled fitness assay designs. J. Mol. Evol. 91, 325–333 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Jasinska, W. et al. Chromosomal barcoding of E. coli populations reveals lineage diversity dynamics at high resolution. Nat. Ecol. Evol. 4, 437–452 (2020).

    Article  PubMed  Google Scholar 

  36. Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith, A. M. et al. Quantitative phenotyping via deep barcode sequencing. Genome Res. 19, 1836–1842 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Ascensao, J. A., Wetmore, K. M., Good, B. H., Arkin, A. P. & Hallatschek, O. Quantifying the local adaptive landscape of a nascent bacterial community. Nat. Commun. 14, 248 (2023). This paper used a barcoded knockout approach to uncover how the ecological interactions between E. coli LTEE ecotypes impact evolutionary adaptability, revealing that community composition and other ecological conditions pervasively and predictably impact knockout fitness effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Couce, A. et al. Changing fitness effects of mutations through long-term bacterial evolution. Science 383, eadd1417 (2024). This study used a barcoded knockout approach to quantify how the distribution of fitness effects changed over time in the E. coli LTEE, revealing strong diminishing returns epistasis and shifting knockout fitness effects.

    Article  CAS  PubMed  Google Scholar 

  41. Loes, A. N. et al. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. J. Virol. 98, e00689–24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mutalik, V. K. et al. Dual-barcoded shotgun expression library sequencing for high-throughput characterization of functional traits in bacteria. Nat. Commun. 10, 308 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Johnson, M. S., Martsul, A., Kryazhimskiy, S. & Desai, M. M. Higher-fitness yeast genotypes are less robust to deleterious mutations. Science 366, 490–493 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peters, J. M. et al. Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi. Nat. Microbiol. 4, 244–250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hawkins, J. S. et al. Mismatch-CRISPRi reveals the co-varying expression–fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. Cell Syst. 11, 523–535.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell 175, 544–557.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, S.-A. A., Kern, A. F., Ang, R. M. L., Xie, Y. & Fraser, H. B. Gene-by-environment interactions are pervasive among natural genetic variants. Cell Genomics 3, 100273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, J. M. et al. Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. Proc. Natl. Acad. Sci. 115, E8276–E8285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bakerlee, C. W., Nguyen Ba, A. N., Shulgina, Y., Rojas Echenique, J. I. & Desai, M. M. Idiosyncratic epistasis leads to global fitness-correlated trends. Science 376, 630–635 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation in protein fitness landscapes is facilitated by indirect paths. eLife 5, e16965 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pokusaeva, V. O. et al. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet. 15, e1008079 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Faure, A. J. et al. Mapping the energetic and allosteric landscapes of protein binding domains. Nature 604, 175–183 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Kuo, S.-T. et al. Global fitness landscapes of the Shine–Dalgarno sequence. Genome Res. 30, 711–723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Domingo, J., Diss, G. & Lehner, B. Pairwise and higher-order genetic interactions during the evolution of a tRNA. Nature 558, 117–121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Papkou, A., Garcia-Pastor, L., Escudero, J. A. & Wagner, A. A rugged yet easily navigable fitness landscape. Science 382, eadh3860 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Phillips, A. M. et al. Binding affinity landscapes constrain the evolution of broadly neutralizing anti-influenza antibodies. eLife 10, e71393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Phillips, A. M. et al. Hierarchical sequence-affinity landscapes shape the evolution of breadth in an anti-influenza receptor binding site antibody. eLife 12, e83628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moulana, A. et al. Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1. Nat. Commun. 13, 7011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnston, K. E. et al. A combinatorially complete epistatic fitness landscape in an enzyme active site. Proc. Natl Acad. Sci. USA 121, e2400439121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Achaz, G., Rodriguez-Verdugo, A., Gaut, B. S. & Tenaillon, O. The reproducibility of adaptation in the light of experimental evolution with whole genome sequencing. Adv. Exp. Med. Biol. 781, 211–231 (2014).

    Article  PubMed  Google Scholar 

  63. Bergelson, J., Kreitman, M., Petrov, D. A., Sanchez, A. & Tikhonov, M. Functional biology in its natural context: a search for emergent simplicity. eLife 10, e67646 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lässig, M., Mustonen, V. & Walczak, A. M. Predicting evolution. Nat. Ecol. Evol. 1, 0077 (2017).

    Article  Google Scholar 

  65. Wright, S. Evolution in mendelian populations. Genetics 16, 97–159 (1931).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fisher, R. The Genetical Theory of Natural Selection (1930).

  67. Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013). This paper provided the first comprehensive analysis of fitness trajectories over 50,000 generations of the LTEE, revealing that fitness gains are largely parallel across replicate populations.

    Article  CAS  PubMed  Google Scholar 

  68. Láruson, Á. J., Yeaman, S. & Lotterhos, K. E. The importance of genetic redundancy in evolution. Trends Ecol. Evol. 35, 809–822 (2020).

    Article  PubMed  Google Scholar 

  69. Favate, J. S., Liang, S., Cope, A. L., Yadavalli, S. S. & Shah, P. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation. eLife 11, e81979 (2022). This study used high-throughput sequencing to measure changes in transcription and translation in E. coli LTEE populations, revealing widespread parallelism across populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grant, N. A., Abdel Magid, A., Franklin, J., Dufour, Y. & Lenski, R. E. Changes in cell size and shape during 50,000 generations of experimental evolution with Escherichia coli. J. Bacteriol. 203, e00469–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Card, K. J., Thomas, M. D., Graves, J. L., Barrick, J. E. & Lenski, R. E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2016886118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Favate, J. S. et al. Linking genotypic and phenotypic changes in the E. coli long-term evolution experiment using metabolomics. eLife 12, RP87039 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lukačišinová, M., Fernando, B. & Bollenbach, T. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nat. Commun. 11, 3105 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Reddy, G. & Desai, M. M. Global epistasis emerges from a generic model of a complex trait. eLife 10, e64740 (2021). This theoretical work developed a simple statistical model showing how genetic variants on the same background interact to influence trait values, demonstrating that diminishing returns and increasing costs epistasis naturally emerge from this model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blount, Z. D., Borland, C. Z. & Lenski, R. E. Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc. Natl Acad. Sci. USA 105, 7899–7906 (2008). This landmark study documented the evolution of citrate use in the E. coli LTEE, demonstrating how historical contingency can influence the emergence of evolutionary innovations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frenkel, E. M. et al. Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast populations. Proc. Natl Acad. Sci. USA 112, 11306–11311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kinnersley, M. A., Holben, W. E. & Rosenzweig, F. E unibus plurum: genomic analysis of an experimentally evolved polymorphism in Escherichia coli. PLoS Genet. 5, e1000713 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 12, e1006364 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ascensao, J. A. et al. Rediversification following ecotype isolation reveals hidden adaptive potential. Curr. Biol. 34, 855–867.e6 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Flohr, R. C. E., Blom, C. J., Rainey, Paul, B. & Beaumont, H. J. E. Founder niche constrains evolutionary adaptive radiation. Proc. Natl Acad. Sci. USA 110, 20663–20668 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lenski, R. E. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 11, 2181–2194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Johnson, M. S. et al. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. eLife 10, e63910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Turner, C. B., Blount, Z. D. & Lenski, R. E. Replaying evolution to test the cause of extinction of one ecotype in an experimentally evolved population. PLoS ONE 10, e0142050 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Großkopf, T. et al. Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment. BMC Evol. Biol. 16, 163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rozen, D. E., Schneider, D. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J. Mol. Evol. 61, 171–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Le Gac, M., Plucain, J., Hindré, T., Lenski, R. E. & Schneider, D. Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 109, 9487–9492 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Plucain, J. et al. Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343, 1366–1369 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Maddamsetti, R., Lenski, R. E. & Barrick, J. E. Adaptation, clonal interference, and frequency-dependent interactions in a long-term evolution experiment with Escherichia coli. Genetics 200, 619–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sousa, A. et al. Recurrent reverse evolution maintains polymorphism after strong bottlenecks in commensal gut bacteria. Mol. Biol. Evol. 34, 2879–2892 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).

    Article  Google Scholar 

  93. Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Louca, S. et al. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 1, 0015 (2016).

    Article  Google Scholar 

  95. Louca, S. et al. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions. Environ. Microbiol. 19, 3132–3151 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Marsland, R. et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ruiz, J. et al. Predictability of the community‐function landscape in wine yeast ecosystems. Mol. Syst. Biol. 19, e11613 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Diaz-Colunga, J., Skwara, A., Vila, J. C. C., Bajic, D. & Sanchez, A. Global epistasis and the emergence of function in microbial consortia. Cell 187, 3108–3119.e30 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Lopes, W., Amor, D. R. & Gore, J. Cooperative growth in microbial communities is a driver of multistability. Nat. Commun. 15, 4709 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hu, J., Amor, D. R., Barbier, M., Bunin, G. & Gore, J. Emergent phases of ecological diversity and dynamics mapped in microcosms. Science 378, 85–89 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Lee, H., Bloxham, B. & Gore, J. Resource competition can explain simplicity in microbial community assembly. Proc. Natl Acad. Sci. USA 120, e2212113120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Meroz, N. et al. Evolution in microbial microcosms is highly parallel, regardless of the presence of interacting species. Cell Syst. 15, 930–940.e5 (2024).

    Article  CAS  PubMed  Google Scholar 

  104. Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gerrish, P. & Lenski, R. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127–144 (1998).

    Article  PubMed  Google Scholar 

  106. Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Pepin, K. M. & Wichman, H. A. Experimental evolution and genome sequencing reveal variation in levels of clonal interference in large populations of bacteriophage phiX174. BMC Evol. Biol. 8, 85 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kvitek, D. J. & Sherlock, G. Whole genome, whole population sequencing reveals that loss of signaling networks is the major adaptive strategy in a constant environment. PLoS Genet. 9, e1003972 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Desai, M. M., Fisher, D. S. & Murray, A. W. The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17, 385–394 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wilson, B. A., Garud, N. R., Feder, A. F., Assaf, Z. J. & Pennings, P. S. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol. Ecol. 25, 42–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Eldholm, V. et al. Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol. 15, 490 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Strelkowa, N. & Lässig, M. Clonal interference in the evolution of influenza. Genetics 192, 671–682 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067.e18 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Muller, H. J. Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932).

    Article  Google Scholar 

  118. Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, Z. & Good, B. H. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol. 22, e3002472 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 17, e3000102 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ghalayini, M. et al. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl. Environ. Microbiol. 84, e02377–17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137–153 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. AACR Project GENIE Consortium. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 7, 818–831 (2017).

    Article  Google Scholar 

  124. Collisson, E. A. et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

    Article  CAS  Google Scholar 

  125. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shibata, H. et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278, 120–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. McFadden, D. G. et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sánchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nguyen, L. V. et al. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature 528, 267–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Bhang, H. C. et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440–448 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Rogers, Z. N. et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat. Methods 14, 737–742 (2017). This work pioneered Tuba-seq, enabling systematic quantification of tumour suppressor gene function in vivo and transforming our ability to study cancer evolution directly in living organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Winters, I. P. et al. Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nat. Commun. 8, 2053 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cai, H. et al. A functional taxonomy of tumor suppression in oncogenic KRAS-driven lung cancer. Cancer Discov. 11, 1754–1773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Foggetti, G. et al. Genetic determinants of EGFR-driven lung cancer growth and therapeutic response in vivo. Cancer Discov. 11, 1736–1753 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hebert, J. D. et al. Combinatorial in vivo genome editing identifies widespread epistasis and an accessible fitness landscape during lung tumorigenesis. Mol. Biol. Evol. 42, msaf023 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rogers, Z. N. et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483–486 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Martino, M. E. et al. Bacterial adaptation to the host’s diet is a key evolutionary force shaping drosophila-lactobacillus symbiosis. Cell Host Microbe 24, 109 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lebov, J. F., Schlomann, B. H., Robinson, C. D. & Bohannan, B. J. M. Phenotypic parallelism during experimental adaptation of a free-living bacterium to the zebrafish gut. mBio 11, e01519–e01520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Robinson, C. D. et al. Experimental bacterial adaptation to the zebrafish gut reveals a primary role for immigration. PLoS Biol. 16, e2006893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ekroth, A. K. E., Gerth, M., Stevens, E. J., Ford, S. A. & King, K. C. Host genotype and genetic diversity shape the evolution of a novel bacterial infection. ISME J. 15, 2146–2157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Barlow, J. T., Bogatyrev, S. R. & Ismagilov, R. F. A quantitative sequencing framework for absolute abundance measurements of mucosal and lumenal microbial communities. Nat. Commun. 11, 2590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Giraud, A. et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291, 2606–2608 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Yilmaz, B. et al. Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host Microbe 29, 650–663.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Barroso-Batista, J. et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10, e1004182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Barroso-Batista, J., Demengeot, J. & Gordo, I. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria. Nat. Commun. 6, 8945 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Barreto, H. C., Sousa, A. & Gordo, I. The landscape of adaptive evolution of a gut commensal bacteria in aging mice. Curr. Biol. 30, 1102–1109.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Lescat, M. et al. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin-treated mouse gut. Mol. Ecol. 26, 1802–1817 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Lam, L. H. & Monack, D. M. Intraspecies competition for niches in the distal gut dictate transmission during persistent salmonella infection. PLoS Pathog. 10, e1004527 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Vasquez, K. S. et al. High-resolution lineage tracking of within-host evolution and strain transmission in a human gut symbiont across ecological scales. Preprint at bioRxiv https://doi.org/10.1101/2024.02.17.580834 (2024).

  153. Vasquez, K. S. et al. Quantifying rapid bacterial evolution and transmission within the mouse intestine. Cell Host Microbe 29, 1454–1468.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wong, D. P. G. H. & Good, B. H. Quantifying the adaptive landscape of commensal gut bacteria using high-resolution lineage tracking. Nat. Commun. 15, 1605 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Maurano, M. T. et al. Sequencing identifies multiple early introductions of SARS-CoV-2 to the New York city region. Genome Res. 30, 1781–1788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Feder, A. F. et al. More effective drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1. eLife 5, e10670 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Roark, R. S. et al. Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science 371, eabd2638 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Dapa, T. et al. Within-host evolution of the gut microbiome. Curr. Opin. Microbiol. 71, 102258 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Good, B. H. & Rosenfeld, L. B. Eco-evolutionary feedbacks in the human gut microbiome. Nat. Commun. 14, 7146 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rego-Costa, A., Huang, I. T., Desai, M. M. & Gombert, A. K. Yeast population dynamics in Brazilian bioethanol production. G3 13, jkad104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Large, C. R. L. et al. Genomic stability and adaptation of beer brewing yeasts during serial repitching in the brewery. Preprint at bioRxiv https://doi.org/10.1101/2020.06.26.166157 (2020).

  164. Garge, R. K. et al. Systematic profiling of ale yeast protein dynamics across fermentation and repitching. G3 14, jkad293 (2024).

    Article  CAS  PubMed  Google Scholar 

  165. Bitter, M. C. et al. Continuously fluctuating selection reveals fine granularity of adaptation. Nature 634, 389–396 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bitter, M. C. et al. Pervasive fitness trade-offs revealed by rapid adaptation in large experimental populations of Drosophila melanogaster. Preprint at bioRxiv https://doi.org/10.1101/2024.10.28.620721 (2024).

  168. Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Kinsler, G., Geiler-Samerotte, K. & Petrov, D. A. Fitness variation across subtle environmental perturbations reveals local modularity and global pleiotropy of adaptation. eLife 9, e61271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael M. Desai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Gavin Sherlock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Background fitness

The overall fitness of a genetic background upon which additional mutations occur; it serves as a baseline for evaluating the fitness effects of new mutations.

Clonal interference

The competition between multiple beneficial mutations that arise in competing lineages within large asexual populations, ultimately slowing fixation rates. This phenomenon can substantially alter evolutionary trajectories by hindering the fixation of moderately beneficial alleles in favour of strongly beneficial ones.

Clonal microbial population

A population derived from a single progenitor cell, where all individuals initially have identical genotypes.

Cross-feeding

An ecological interaction where the metabolic by-products of one organism serve as resources for another organism.

Deep mutational scanning

A high-throughput technique that systematically quantifies the effects of single (and sometimes multiple) amino acid substitutions in a protein. This approach enables researchers to map protein fitness landscapes at high resolution and predict evolutionary trajectories.

Diminishing returns

A pattern of epistasis where beneficial mutations yield progressively smaller fitness gains when introduced into more fit genetic backgrounds. This phenomenon has been widely observed across experimental evolution systems and helps explain convergent fitness trajectories despite genetic divergence.

Directional selection

A form of natural selection that consistently favours traits at one extreme of the phenotypic distribution, driving evolutionary change in a specific direction.

Distribution of fitness effects

The statistical distribution describing the probability that a new mutation has a given fitness consequence. This fundamental property shapes evolutionary dynamics and can change depending on environmental conditions and genetic background.

dN/dS ratios

The ratio of non-synonymous substitutions per non-synonymous site (dN) to synonymous substitutions per synonymous site (dS), providing a measure of selection pressure on protein-coding genes. Values below one typically indicate purifying selection, whereas values above one suggest positive selection.

Effective population sizes

A measure of the strength of genetic drift in a population, often used to summarize genetic diversity in neutrally evolving populations. It is often smaller than the census population size owing to various factors including reproductive variance and population bottlenecks.

Epistasis

The phenomenon where the phenotypic effect of a mutation depends on the presence or absence of other genetic variants. Epistatic interactions can substantially shape evolutionary trajectories by making certain mutational pathways more accessible than others.

Fitness landscapes

A conceptual framework representing the relationship between genotype and fitness, where height on the landscape corresponds to fitness. Valleys represent low-fitness genotypes, peaks represent high-fitness genotypes and the topography influences evolutionary trajectories.

Fixation

The process by which a genetic variant increases in frequency until it is present in all individuals in a population, replacing all alternative variants (at that genetic locus).

Global epistasis

A pattern where the fitness effect of a mutation correlates primarily with the overall fitness of the genetic background, rather than with specific mutations in that background. This pattern enables the projection of complex epistatic interactions onto a simpler low-dimensional space.

Historical contingency

The dependency of future evolutionary trajectories on prior evolutionary history. This concept emphasizes how chance events and the specific sequence of mutations can substantially influence subsequent evolutionary possibilities.

Idiosyncratic interactions

Specific epistatic interactions between particular mutations that cannot be predicted from general patterns. These interactions form the underlying basis from which broader patterns (such as global epistasis) emerge.

Negative frequency-dependent selection

A form of selection where the fitness of a phenotype decreases as its frequency in the population increases. This selective pattern can maintain genetic diversity and lead to stable polymorphisms in evolving populations.

Niche partitioning

The process by which competing species or subpopulations use different resources or adopt different ecological strategies, reducing direct competition and enabling coexistence.

Purifying selection

A form of natural selection that removes deleterious mutations from a population, maintaining functional genetic sequences.

Resource partitioning

An ecological process where different lineages evolve to specialize on distinct components of available resources, reducing competition and enabling stable coexistence.

Selective sweeps

The process by which beneficial mutations increase in frequency and eventually reach fixation in a population, often eliminating genetic variation at linked sites.

Spatial niche construction

The process by which organisms modify their physical environment, creating or altering spatial niches that can be exploited by themselves or other organisms.

Standing genetic variation

The genetic diversity present within a population prior to a selective event, as opposed to variation arising from new mutations. This existing variation can provide an immediate substrate for adaptation to new environments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascensao, J.A., Desai, M.M. Experimental evolution in an era of molecular manipulation. Nat Rev Genet (2025). https://doi.org/10.1038/s41576-025-00867-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-025-00867-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing