Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Cis-regulatory elements at cellular resolution

Recent advances in single-cell profiling technologies now enable routine and scalable measurements of cis-regulatory element activity across diverse cell types, disease states and genetic backgrounds. It is time to coordinate a global effort to systematically map cis-regulatory element function at single-cell resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  2. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moody, J. et al. A single-cell atlas of transcribed cis-regulatory elements in the human genome. Preprint at bioRxiv https://doi.org/10.1101/2023.11.13.566791 (2023).

  4. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 184, 5985–6001.e19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474.e24 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Durrant, M. G. et al. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 630, 984–993 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Witte, I. P. et al. Programmable gene insertion in human cells with a laboratory-evolved CRISPR-associated transposase. Science 388, eadt5199 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation, Singapore, under its NRF Fellowship programme (T.S.; NRFF16-2024-0030) and NRF Investigatorship programme (J.W.S.; NRFI08-0022), and Genome Institute of Singapore, A*STAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay W. Shin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

See, Y.X., Stuart, T. & Shin, J.W. Cis-regulatory elements at cellular resolution. Nat Rev Genet 26, 653–654 (2025). https://doi.org/10.1038/s41576-025-00882-7

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00882-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing