Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Tracing the evolution of sequencing into the era of genomic medicine

Abstract

Accelerated discovery in biomedical science is typically punctuated by technological advances, and the past decade has been exemplary regarding breakthroughs in our genomic understanding of human biology in health and disease. This phenomenon was facilitated by the availability of a human genome reference sequence and the development and continuous improvement of next-generation and single-molecule sequencing technologies, accompanied by advances in computational analytics. These fundamental tools have driven the emergence of innovative methods that capture different aspects of human cell biology, with exquisite detail genome wide, in a sequence-based readout. The resulting expansion of knowledge has poised these approaches for clinical adoption, fulfilling the original intention of decoding the human genome and ushering in the era of genomic medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Milestones in sequencing technology advances and projects.
Fig. 2: Human sequence variation types detected by NGS.
Fig. 3: Long-read, single-molecule sequencing platforms.
Fig. 4: From bulk to single-cell and spatial sequencing.
Fig. 5: Genomic medicine workflows in the paediatric and adult settings.

Similar content being viewed by others

References

  1. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    Article  Google Scholar 

  4. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McKernan, K. J. et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 19, 1527–1541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide alignment program. Bioinformatics 24, 713–714 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Smith, A. D., Xuan, Z. & Zhang, M. Q. Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics 9, 128 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schatz, M. C. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 25, 1363–1369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krawitz, P. et al. Microindel detection in short-read sequence data. Bioinformatics 26, 722–729 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Quinlan, A. R., Stewart, D. A., Strömberg, M. P. & Marth, G. T. Pyrobayes: an improved base caller for SNP discovery in pyrosequences. Nat. Methods 5, 179–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Koboldt, D. C. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gibbs, R. A. The Human Genome Project changed everything. Nat. Rev. Genet. 21, 575–576 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hillier, L. W. et al. Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5, 183–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Garber, M. et al. Closing gaps in the human genome using sequencing by synthesis. Genome Biol. 10, R60 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 10, 206 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  20. Cheung, M. K., Au, C. H., Chu, K. H., Kwan, H. S. & Wong, C. K. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J. 4, 1053–1059 (2010).

    Article  PubMed  Google Scholar 

  21. Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Parchman, T. L., Geist, K. S., Grahnen, J. A., Benkman, C. W. & Buerkle, C. A. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11, 180 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang, G. et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 20, 646–654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber, A. P. M., Weber, K. L., Carr, K., Wilkerson, C. & Ohlrogge, J. B. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin, H. et al. Transcriptome analysis for caenorhabditis elegans based on novel expressed sequence tags. BMC Biol. 6, 30 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bainbridge, M. N. et al. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7, 246 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Wheeler, D. A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bainbridge, M. N. et al. Whole exome capture in solution with 3 Gbp of data. Genome Biol. 11, R62 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye, K., Schulz, M. H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Selvaraj, S., Schmitt, A. D., Dixon, J. R. & Ren, B. Complete haplotype phasing of the MHC and KIR loci with targeted HaploSeq. BMC Genomics 16, 900 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mose, L. E., Wilkerson, M. D., Hayes, D. N., Perou, C. M. & Parker, J. S. ABRA: improved coding indel detection via assembly-based realignment. Bioinformatics 30, 2813–2815 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ritz, A., Paris, P. L., Ittmann, M. M., Collins, C. & Raphael, B. J. Detection of recurrent rearrangement breakpoints from copy number data. BMC Bioinformatics 12, 114 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Griffith, M. et al. Optimizing cancer genome sequencing and analysis. Cell Syst. 1, 210–223 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, J. et al. SOAPfusion: a robust and effective computational fusion discovery tool for RNA-seq reads. Bioinformatics 29, 2971–2978 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Rustagi, N. et al. ITD assembler: an algorithm for internal tandem duplication discovery from short-read sequencing data. BMC Bioinformatics 17, 188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, K. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38, e178 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. International HapMap Consortium The International Hapmap Project. Nature 426, 789–796 (2003).

    Article  Google Scholar 

  46. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  Google Scholar 

  47. Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Korbel, J. O. et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 10, R23 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hormozdiari, F., Alkan, C., Eichler, E. E. & Sahinalp, S. C. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 19, 1270–1278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bamshad, M. J. et al. The centers for Mendelian genomics: a new large-scale initiative to identify the genes underlying rare Mendelian conditions. Am. J. Med. Genet. A 158A, 1523–1525 (2012).

    Article  PubMed  Google Scholar 

  52. Baxter, S. M. et al. Centers for Mendelian genomics: a decade of facilitating gene discovery. Genet. Med. 24, 784–797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burgess, D. J. The TOPMed genomic resource for human health. Nat. Rev. Genet. 22, 200 (2021).

    PubMed  Google Scholar 

  54. All of Us Research Program Genomics Investigators Genomic data in the all of us research program. Nature 627, 340–346 (2024).

    Article  Google Scholar 

  55. Conroy, M. C. et al. UK Biobank: a globally important resource for cancer research. Br. J. Cancer 128, 519–527 (2023).

    Article  PubMed  Google Scholar 

  56. Mullard, A. The UK Biobank at 20. Nat. Rev. Drug Discov. 21, 628–629 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. 100,000 Genomes Project Pilot Investigators et al. 100,000 genomes pilot on rare-disease diagnosis in health care — preliminary report. N. Engl. J. Med. 385, 1868–1880 (2021).

    Article  Google Scholar 

  58. Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cancer Genome Atlas Research Network et al. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed Central  Google Scholar 

  60. International Cancer Genome Consortium et al. International network of cancer genome projects. Nature 464, 993–998 (2010).

    Article  Google Scholar 

  61. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  62. Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  PubMed  Google Scholar 

  63. Downing, J. R. et al. The pediatric cancer genome project. Nat. Genet. 44, 619–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Creasy, H. H. et al. HMPDACC: a human microbiome project multi-omic data resource. Nucleic Acids Res. 49, D734–D742 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Integrative HMP (iHMP) Research Network Consortium The Integrative Human Microbiome Project. Nature 569, 641–648 (2019).

    Article  Google Scholar 

  66. Waters, A. J. et al. Saturation genome editing of BAP1 functionally classifies somatic and germline variants. Nat. Genet. 56, 1434–1445 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Funk, J. S. et al. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat. Genet. 57, 140–153 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sahu, S. et al. Saturation genome editing-based clinical classification of BRCA2 variants. Nature 638, 538–545 (2025).

    Article  CAS  PubMed  Google Scholar 

  69. Beltran, A., Jiang, X., Shen, Y. & Lehner, B. Site-saturation mutagenesis of 500 human protein domains. Nature 637, 885–894 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, H. et al. Functional evaluation and clinical classification of BRCA2 variants. Nature 638, 528–537 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Pulcu, G. S., Mikhailova, E., Choi, L.-S. & Bayley, H. Continuous observation of the stochastic motion of an individual small-molecule walker. Nat. Nanotechnol. 10, 76–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Huang, S., Romero-Ruiz, M., Castell, O. K., Bayley, H. & Wallace, M. I. High-throughput optical sensing of nucleic acids in a nanopore array. Nat. Nanotechnol. 10, 986–991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 106, 7702–7707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Simpson, J. T. et al. Detecting DNA cytosine methylation using Nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Rand, A. C. et al. Mapping DNA methylation with high-throughput Nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat. Methods 19, 823–826 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Park, S. Y., Faraci, G., Ward, P. M., Emerson, J. F. & Lee, H. Y. High-precision and cost-efficient sequencing for real-time COVID-19 surveillance. Sci. Rep. 11, 13669 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chaisson, M. J. P. et al. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517, 608–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Pauper, M. et al. Long-read trio sequencing of individuals with unsolved intellectual disability. Eur. J. Hum. Genet. 29, 637–648 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Showpnil, I. A. et al. Long-read genome sequencing resolves complex genomic rearrangements in rare genetic syndromes. npj Genom. Med. 9, 66 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rangan, A. et al. Improved characterization of complex β-globin gene cluster structural variants using long-read sequencing. J. Mol. Diagn. 23, 1732–1740 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Sano, Y. et al. Likely pathogenic structural variants in genetically unsolved patients with retinitis pigmentosa revealed by long-read sequencing. J. Med. Genet. 59, 1133–1138 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Au, C. H. et al. Rapid detection of chromosomal translocation and precise breakpoint characterization in acute myeloid leukemia by Nanopore long-read sequencing. Cancer Genet. 239, 22–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hitz, B. C. et al. The ENCODE uniform analysis pipelines. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3111932/v1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  94. ENCODE Project Consortium A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

    Article  Google Scholar 

  95. ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  Google Scholar 

  96. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grindberg, R. V. et al. RNA-sequencing from single nuclei. Proc. Natl Acad. Sci. USA 110, 19802–19807 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 10, 645 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Trombetta, J. J. et al. Preparation of single-cell RNA-seq libraries for next generation sequencing. Curr. Protoc. Mol. Biol. 107, 4.22.1–4.22.17 (2014).

    Article  PubMed  Google Scholar 

  102. Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gohil, S. H., Iorgulescu, J. B., Braun, D. A., Keskin, D. B. & Livak, K. J. Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 244–256 (2021).

    Article  PubMed  Google Scholar 

  107. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Regev, A. et al. The Human Cell Atlas. eLife 6, (2017).

  109. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  110. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 38, 586–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Zollinger, D. R., Lingle, S. E., Sorg, K., Beechem, J. M. & Merritt, C. R. GeoMx RNA assay: high multiplex, digital, spatial analysis of RNA in FFPE tissue. Methods Mol. Biol. 2148, 331–345 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Kulasinghe, A., Berrell, N., Donovan, M. L. & Nilges, B. S. Spatial-omics methods and applications. Methods Mol. Biol. 2880, 101–146 (2025).

    Article  PubMed  Google Scholar 

  115. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kernohan, K. D. & Boycott, K. M. The expanding diagnostic toolbox for rare genetic diseases. Nat. Rev. Genet. 25, 401–415 (2024).

    Article  CAS  PubMed  Google Scholar 

  117. Schuetz, R. J. et al. CAVaLRi: an algorithm for rapid identification of diagnostic germline variation. Hum. Mutat. 2024, 6411444 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics 35, 4851–4853 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Slavotinek, A. et al. Predicting genes from phenotypes using Human Phenotype Ontology (HPO) terms. Hum. Genet. 141, 1749–1760 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Stark, Z. & Scott, R. H. Genomic newborn screening for rare diseases. Nat. Rev. Genet. 24, 755–766 (2023).

    Article  CAS  PubMed  Google Scholar 

  121. Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dimmock, D. et al. Project baby bear: rapid precision care incorporating rWGS in 5 California children’s hospitals demonstrates improved clinical outcomes and reduced costs of care. Am. J. Hum. Genet. 108, 1231–1238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Köhler, S. et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    Article  PubMed  Google Scholar 

  124. Wanders, R. J. A. et al. Translational metabolism: a multidisciplinary approach towards precision diagnosis of inborn errors of metabolism in the omics era. J. Inherit. Metab. Dis. 42, 197–208 (2019).

    Article  PubMed  Google Scholar 

  125. Dragojlovic, N. et al. The cost and diagnostic yield of exome sequencing for children with suspected genetic disorders: a benchmarking study. Genet. Med. 20, 1013–1021 (2018).

    Article  PubMed  Google Scholar 

  126. Tarailo-Graovac, M. et al. Exome sequencing and the management of neurometabolic disorders. N. Engl. J. Med. 374, 2246–2255 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Rehm, H. L. et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Boycott, K. M., Azzariti, D. R., Hamosh, A. & Rehm, H. L. Seven years since the launch of the matchmaker exchange: the evolution of genomic matchmaking. Hum. Mutat. 43, 659–667 (2022).

    CAS  PubMed  Google Scholar 

  131. Vollger, M. R. et al. Synchronized long-read genome, methylome, epigenome and transcriptome profiling resolve a Mendelian condition. Nat. Genet. 57, 469–479 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gorzynski, J. E. et al. Ultrarapid Nanopore genome sequencing in a critical care setting. N. Engl. J. Med. 386, 700–702 (2022).

    Article  PubMed  Google Scholar 

  133. Cheng, D. T. et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Suehnholz, S. P. et al. Quantifying the expanding landscape of clinical actionability for patients with cancer. Cancer Discov. 14, 49–65 (2024).

    Article  CAS  PubMed  Google Scholar 

  135. Mechahougui, H., Gutmans, J., Colarusso, G., Gouasmi, R. & Friedlaender, A. Advances in personalized oncology. Cancers 16, 2862 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Edsjö, A. et al. Current and emerging sequencing-based tools for precision cancer medicine. Mol. Asp. Med. 96, 101250 (2024).

    Article  Google Scholar 

  137. Steen, C. B., Liu, C. L., Alizadeh, A. A. & Newman, A. M. Profiling cell type abundance and expression in bulk tissues with CIBERSORTx. Methods Mol. Biol. 2117, 135–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ho, H.-Y., Chung, K.-S. K., Kan, C.-M. & Wong, S.-C. C. Liquid biopsy in the clinical management of cancers. Int. J. Mol. Sci. 25, 8594 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mazzone, P. J. et al. Clinical validation of a cell-free DNA fragmentome assay for augmentation of lung cancer early detection. Cancer Discov. 14, 2224–2242 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wong, D. et al. Early cancer detection in Li-Fraumeni syndrome with cell-free DNA. Cancer Discov. 14, 104–119 (2024).

    Article  CAS  PubMed  Google Scholar 

  142. van der Pol, Y. et al. Real-time analysis of the cancer genome and fragmentome from plasma and urine cell-free DNA using nanopore sequencing. EMBO Mol. Med. 15, e17282 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Capper, D. et al. DNA methylation-based classification of central nervous system tumours. Nature 555, 469–474 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Djirackor, L. et al. Intraoperative DNA methylation classification of brain tumors impacts neurosurgical strategy. Neurooncol Adv. 3, vdab149 (2021).

    PubMed  PubMed Central  Google Scholar 

  145. Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. O’Neill, K. et al. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. Cell Genom. 4, 100674 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bedrosian, T. A. et al. Detection of brain somatic variation in epilepsy-associated developmental lesions. Epilepsia 63, 1981–1997 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Miller, K. E. et al. Post-zygotic rescue of meiotic errors causes brain mosaicism and focal epilepsy. Nat. Genet. 55, 1920–1928 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Miller, K. E. et al. Somatic mosaicism correlates with clinical findings in epilepsy brain tissue. Neurol. Genet. 6, e460 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Koboldt, D. C. et al. PTEN somatic mutations contribute to spectrum of cerebral overgrowth. Brain 144, 2971–2978 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cottrell, C. E. et al. Somatic PIK3R1 variation as a cause of vascular malformations and overgrowth. Genet. Med. 23, 1882–1888 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Siegel, D. H. et al. Analyzing the genetic spectrum of vascular anomalies with overgrowth via cancer genomics. J. Invest. Dermatol. 138, 957–967 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Irtyuga, O. et al. The role of NOTCH pathway genes in the inherited susceptibility to aortic stenosis. J. Cardiovasc. Dev. Dis. 11, 226 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Usoltsev, D. et al. Complex trait susceptibilities and population diversity in a sample of 4,145 Russians. Nat. Commun. 15, 6212 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Skitchenko, R. et al. CR1 variants contribute to FSGS susceptibility across multiple populations. iScience 28, 112234 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bocher, O., Willer, C. J. & Zeggini, E. Unravelling the genetic architecture of human complex traits through whole genome sequencing. Nat. Commun. 14, 3520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Artomov, M., Loboda, A. A., Artyomov, M. N. & Daly, M. J. Public platform with 39,472 exome control samples enables association studies without genotype sharing. Nat. Genet. 56, 327–335 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Malhotra, Y. et al. Advancements in protein structure prediction: a comparative overview of AlphaFold and its derivatives. Comput. Biol. Med. 188, 109842 (2025).

    Article  CAS  PubMed  Google Scholar 

  160. Collins, R. L. & Talkowski, M. E. Diversity and consequences of structural variation in the human genome. Nat. Rev. Genet. 26, 443–462 (2025).

    Article  CAS  PubMed  Google Scholar 

  161. Sedlazeck, F. J. et al. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 19, 329–346 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge K. Miller and A. Miller for their review of the manuscript, M. Artomov for input regarding polygenic risk scoring and D. Koboldt for insights on ClinGen, ClinVar and Matchmaker Exchange.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Elaine R. Mardis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Madhuri Hegde, Kathryn N. North and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinGen: https://clinicalgenome.org/

ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/intro/

Integrative Genomics Viewer: https://igv.org/

Matchmaker Exchange: https://www.matchmakerexchange.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardis, E.R., Wilson, R.K. Tracing the evolution of sequencing into the era of genomic medicine. Nat Rev Genet 26, 719–734 (2025). https://doi.org/10.1038/s41576-025-00884-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00884-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing