Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Regulatory genome annotation

Large-scale annotation efforts over the past two decades have identified regulatory regions and networks through functional genomics and evolutionary analyses. The challenge now will be to incorporate the many ‘heterogeneities’ of gene regulation — across cell types, developmental stages and individuals — into regulatory annotation based on new experimental and computational approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of current and future genome-annotation efforts.

References

  1. Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. The ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  Google Scholar 

  3. Gong, D., Arbesfeld-Qiu, J. M., Perrault, E., Bae, J. W. & Hwang, W. L. Spatial oncology: translating contextual biology to the clinic. Cancer Cell 42, 1653–1675 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Coorens, T. H. H. et al. The human and non-human primate developmental GTEx projects. Nature 637, 557–564 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rozowsky, J. et al. The EN-TEx resource of multi-tissue personal epigenomes & variant-impact models. Cell 186, 1493–1511.e40 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schreiber, J. M. et al. The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles. Genome Biol. 24, 79 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cui, H. et al. Towards multimodal foundation models in molecular cell biology. Nature 640, 623–633 (2025).

    Article  CAS  PubMed  Google Scholar 

  8. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sushant Kumar or Mark Gerstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Gerstein, M. Regulatory genome annotation. Nat Rev Genet 26, 661–662 (2025). https://doi.org/10.1038/s41576-025-00885-4

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00885-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing