Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Predicting the regulatory genome

Deep learning models have made impressive strides in decoding the regulatory genome, but key challenges remain unsolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning- based sequence model. Nat. Methods 12, 931–934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26, 990–999 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Avsec, Ž. et al. AlphaGenome: advancing regulatory variant effect prediction with a unified DNA sequence model. Preprint at bioRxiv https://doi.org/10.1101/2025.06.25.661532 (2025).

  4. Pampari, A. et al. ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants. Preprint at bioRxiv https://doi.org/10.1101/2024.12.25.630221 (2025).

  5. Karbalayghareh, A., Sahin, M. & Leslie, C. S. Chromatin interaction-aware gene regulatory modeling with graph attention networks. Genome Res. 32, 930–944 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Linder, J., Srivastava, D., Yuan, H., Agarwal, V. & Kelley, D. R. Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation. Nat. Genet. 57, 949–961 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, Z., Feng, F., Qiu, Y. & Liu, J. A generalizable framework to comprehensively predict epigenome, chromatin organization, and transcriptome. Nucleic Acids Res. 51, 5931–5947 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dalla-Torre, H. et al. Nucleotide Transformer: building and evaluating robust foundation models for human genomics. Nat. Methods 22, 287–297 (2025).

    Article  CAS  PubMed  Google Scholar 

  9. Tang, Z., Somia, N., Yu, Y. & Koo, P. K. Evaluating the representational power of pre- trained DNA language models for regulatory genomics. Genome Biol. 26, 203 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Benegas, G., Albors, C., Aw, A. J., Ye, C. & Song, Y. S. A DNA language model based on multispecies alignment predicts the effects of genome-wide variants. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02511-w (2025).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Ernst, S. Roy, D. Knowles, A. Kundaje and R. Singh for their helpful comments on this Comment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina S. Leslie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Karbalayghareh, A. & Leslie, C.S. Predicting the regulatory genome. Nat Rev Genet 26, 659–660 (2025). https://doi.org/10.1038/s41576-025-00887-2

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41576-025-00887-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing