Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical use of polygenic risk scores: current status, barriers and future directions

Abstract

Genome-wide association studies have identified thousands of single-nucleotide variants that are associated with complex traits, including cardiometabolic diseases, cancers and neurological disorders. Polygenic risk scores (PRSs), which aggregate the effects of these variants, can help to identify individuals who are at increased risk of developing such diseases. As PRSs are typically only weakly associated with conventional risk factors for these diseases, they have incremental predictive value and are beginning to be incorporated into clinical practice to guide early detection and preventive strategies. However, challenges to their use — such as suboptimal precision, poor transferability across diverse populations and low familiarity among patients and providers with the concept of polygenic risk — must be addressed before their broader clinical adoption. This Review explores the current state of the field, highlights key challenges and outlines future directions for the use of PRSs to improve risk prediction and to advance personalized prevention in clinical care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The influence of population and evolutionary genetics on polygenic risk scores.
Fig. 2: Potential sources of imprecision in a polygenic risk score for an individual.
Fig. 3: A framework for integrating polygenic risk scores into the electronic health record.

Similar content being viewed by others

References

  1. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007). A landmark study in human genetics, demonstrating the power of GWAS by identifying multiple novel genetic variants associated with seven common diseases. The study was an important step forward in understanding the genetic basis of common diseases and led to a subsequent surge in GWAS.

    Article  Google Scholar 

  3. Kullo, I. J. et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wray, N. R., Kemper, K. E., Hayes, B. J., Goddard, M. E. & Visscher, P. M. Complex trait prediction from genome data: contrasting EBV in livestock to PRS in humans: genomic prediction. Genetics 211, 1131–1141 (2019). This report provides a framework for understanding the similarities and differences between genomic prediction in livestock and humans. Livestock typically have large family sizes and a greater degree of relatedness within a breed, whereas humans have smaller family sizes and there is a focus on unrelated individuals for genetic analysis.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 339–433 (1918).

    Google Scholar 

  6. Hill, W. G. Can more be learned from selection experiments of value in animal breeding programmes? Or is it time for an obituary? J. Anim. Breed. Genet. 128, 87–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Okazaki, A., Yamazaki, S., Inoue, I. & Ott, J. Population genetics: past, present, and future. Hum. Genet. 140, 231–240 (2021).

    Article  PubMed  Google Scholar 

  8. Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 51, 319–337 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Kullo, I. J. & Ding, K. Mechanisms of disease: the genetic basis of coronary heart disease. Nat. Clin. Pract. Cardiovasc. Med. 4, 558–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996). A commentary that was pivotal in shifting the focus from linkage studies to association studies for uncovering the genetics of complex diseases. The authors argued that association studies, given sufficient sample sizes, would have far greater power to detect common variants influencing disease risk, which laid the conceptual groundwork for GWAS.

    Article  CAS  PubMed  Google Scholar 

  11. Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res. 17, 1520–1528 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi, S. W., Mak, T. S. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020). A comprehensive and practical guide for researchers to carry out PRS analyses, offering detailed protocols and best practices.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Visscher, P. M., Yengo, L., Cox, N. J. & Wray, N. R. Discovery and implications of polygenicity of common diseases. Science 373, 1468–1473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adeyemo, A. et al. Responsible use of polygenic risk scores in the clinic: potential benefits, risks and gaps. Nat. Med. 27, 1876–1884 (2021).

    Article  Google Scholar 

  18. Craig, J. E. et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat. Genet. 52, 160–166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J. et al. Polygenic risk score added to conventional case finding to identify undiagnosed chronic obstructive pulmonary disease. JAMA 333, 784–792 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Linder, J. E. et al. Prospective, multi-site study of healthcare utilization after actionable monogenic findings from clinical sequencing. Am. J. Hum. Genet. 110, 1950–1958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kullo, I. J. et al. The PRIMED consortium: reducing disparities in polygenic risk assessment. Am. J. Hum. Genet. 111, 2594–2606 (2024). A perspective on the PRIMED consortium, an initiative aimed at improving the accuracy and equity of polygenic risk assessment across diverse populations to address disparities in genomic medicine and make polygenic risk prediction more inclusive and clinically relevant for global populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denny, J. C. et al. The ‘All of Us’ research program. N. Engl. J. Med. 381, 668–676 (2019).

    Article  PubMed  Google Scholar 

  23. Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kullo, I. J. Promoting equity in polygenic risk assessment through global collaboration. Nat. Genet. 56, 1780–1787 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591, 211–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Sullivan, J. W. et al. Polygenic risk scores for cardiovascular disease: a scientific statement from the American heart association. Circulation 146, e93–e118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schunkert, H. et al. Clinical utility and implementation of polygenic risk scores for predicting cardiovascular disease: a clinical consensus statement of the ESC Council on Cardiovascular Genomics, the ESC Cardiovascular Risk Collaboration, and the European Association of Preventive Cardiology. Eur. Heart J. 46, 1372–1383 (2025).

    Article  CAS  PubMed  Google Scholar 

  30. Abu-El-Haija, A. et al. The clinical application of polygenic risk scores: a points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 25, 100803 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Majumder, M. A., Guerrini, C. J. & McGuire, A. L. Direct-to-consumer genetic testing: value and risk. Annu. Rev. Med. 72, 151–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Ndong Sima, C. A. A. et al. Methodologies underpinning polygenic risk scores estimation: a comprehensive overview. Hum. Genet. 143, 1265–1280 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Haddow, J. E. & Palomaki, G. E. in Human Genome Epidemiology: A Scientific Foundation for Using Genetic Information to Improve Health and Prevent Disease (eds Khoury, M. J., Little, J. & Burke, W.) 217–233 (Oxford Press, 2003).

  34. Nguyen, D. T. et al. A comprehensive evaluation of polygenic score and genotype imputation performances of human SNP arrays in diverse populations. Sci. Rep. 12, 17556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laurie, C. C. et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet. Epidemiol. 34, 591–602 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Goldfeder, R. L. et al. Medical implications of technical accuracy in genome sequencing. Genome Med. 8, 24 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zook, J. M. et al. An open resource for accurately benchmarking small variant and reference calls. Nat. Biotechnol. 37, 561–566 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, S. F. et al. Genotype imputation and variability in polygenic risk score estimation. Genome Med. 12, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Das, S., Abecasis, G. R. & Browning, B. L. Genotype imputation from large reference panels. Annu. Rev. Genomics Hum. Genet. 19, 73–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Kowalski, M. H. et al. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet. 15, e1008500 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sherman, R. M. et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat. Genet. 51, 30–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, Y. & Zhou, X. Genetic prediction of complex traits with polygenic scores: a statistical review. Trends Genet. 37, 995–1011 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores via penalized regression on summary statistics. Genet. Epidemiol. 41, 469–480 (2017).

    Article  PubMed  Google Scholar 

  45. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mackay, T. F. The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-standardized framework. PLoS Genet. 17, e1009021 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y., Tsuo, K., Kanai, M., Neale, B. M. & Martin, A. R. Challenges and opportunities for developing more generalizable polygenic risk scores. Annu. Rev. Biomed. Data Sci. 5, 293–320 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang, S. & Zhou, X. Accurate and scalable construction of polygenic scores in large Biobank data sets. Am. J. Hum. Genet. 106, 679–693 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lennon, N. J. et al. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat. Med. 30, 480–487 (2024). This paper from the eMERGE Network describes the process to optimize and validate PRSs for clinical implementation for 10 common chronic diseases across diverse populations in the USA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018). This study shows that genome-wide PRSs can identify individuals whose disease risk is comparable to that conferred by rare monogenic mutations, highlighting PRSs as tools for stratifying risk in the general population and catalysing broader clinical interest in the clinical use of PRSs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, D., Dey, R. & Lee, S. Fast and robust ancestry prediction using principal component analysis. Bioinformatics 36, 3439–3446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ruan, Y. et al. Leveraging genetic ancestry continuum information to interpolate PRS for admixed populations. Preprint at medRxiv https://doi.org/10.1101/2024.11.09.24316996 (2025).

  56. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Naderian, M., Norland, K., Schaid, D. J. & Kullo, I. J. Development and evaluation of a comprehensive prediction model for incident coronary heart disease using genetic, social, and lifestyle-psychological factors: a prospective analysis of the UK Biobank. Ann. Intern. Med. 178, 1–10 (2025).

    Article  PubMed  Google Scholar 

  59. Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49, 1304–1310 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yengo, L. et al. A saturated map of common genetic variants associated with human height from 5.4 million individuals of diverse ancestries. Nature 610, 704–712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koyama, S. et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat. Genet. 52, 1169–1177 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Norland, K., Schaid, D. J. & Kullo, I. J. A linear weighted combination of polygenic scores for a broad range of traits improves prediction of coronary heart disease. Eur. J. Hum. Genet. 32, 209–214 (2024).

    Article  PubMed  Google Scholar 

  65. Truong, B. et al. Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases. Cell Genom. 4, 100523 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krapohl, E. et al. Multi-polygenic score approach to trait prediction. Mol. Psychiatry 23, 1368–1374 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Abraham, G. et al. Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat. Commun. 10, 5819 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barnes, D. R. et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet. Med. 22, 1653–1666 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Harris, L. et al. Genome-wide association testing beyond SNPs. Nat. Rev. Genet. 26, 156–170 (2025).

    Article  CAS  PubMed  Google Scholar 

  70. Norland, K., Schaid, D. J. & Kullo, I. J. Enhancing polygenic scores for cardiometabolic traits through tissue- and cell type-specific functional annotations. HGG Adv. 6, 100427 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235–239 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Finer, S. et al. Cohort profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people. Int. J. Epidemiol. 49, 20–21 (2020).

    Article  PubMed  Google Scholar 

  73. Gallagher, C. S., Ginsburg, G. S. & Musick, A. Biobanking with genetics shapes precision medicine and global health. Nat. Rev. Genet. 26, 191–202 (2025).

    Article  CAS  PubMed  Google Scholar 

  74. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tan, T. & Atkinson, E. G. Strategies for the genomic analysis of admixed populations. Annu. Rev. Biomed. Data Sci. 6, 105–127 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Medina-Muñoz, S. G. et al. Demographic modeling of admixed Latin American populations from whole genomes. Am. J. Hum. Genet. 110, 1804–1816 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Marnetto, D. et al. Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals. Nat. Commun. 11, 1628 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Saadatagah, S. et al. Polygenic risk, rare variants, and family history: independent and additive effects on coronary heart disease. JACC Adv. 2, 100567 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mars, N. et al. Systematic comparison of family history and polygenic risk across 24 common diseases. Am. J. Hum. Genet. 109, 2152–2162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsoulaki, O. et al. Joint ABS–UKCGG–CanGene–CanVar consensus regarding the use of CanRisk in clinical practice. Br. J. Cancer 130, 2027–2036 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Smail, C. et al. Integration of rare expression outlier-associated variants improves polygenic risk prediction. Am. J. Hum. Genet. 109, 1055–1064 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Norland, K., Schaid, D. J., Naderian, M., Na, J. & Kullo, I. J. Associations of self-reported race, social determinants of health, and polygenic risk with coronary heart disease. J. Am. Coll. Cardiol. 84, 2157–2166 (2024). This analysis of the All of Us dataset highlights that increased cardiovascular disease risk in African Americans is owing to higher burden of adverse SDOH. Joint modelling of a SDOH score and PRS improved the prediction of adverse cardiovascular events.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Burke, W. et al. Genetic test evaluation: information needs of clinicians, policy makers, and the public. Am. J. Epidemiol. 156, 311–318 (2002).

    Article  PubMed  Google Scholar 

  87. National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Board on the Health of Select Populations; Committee on the Evidence Base for Genetic Testing. An Evidence Framework for Genetic Testing (National Academies Press, 2017).

  88. ACMG Board of Directors. Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genet. Med. 17, 505–507 (2015).

    Article  Google Scholar 

  89. Pitini, E. et al. How is genetic testing evaluated? A systematic review of the literature. Eur. J. Hum. Genet. 26, 605–615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walcott, S. E. et al. Measuring clinical utility in the context of genetic testing: a scoping review. Eur. J. Hum. Genet. 29, 378–386 (2021).

    Article  PubMed  Google Scholar 

  91. Peterson, J. F. et al. Building evidence and measuring clinical outcomes for genomic medicine. Lancet 394, 604–610 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McHugh, J. K. et al. Assessment of a polygenic risk score in screening for prostate cancer. N. Engl. J. Med. 392, 1406–1417 (2025). The study shows that incorporating a PRS can more effectively stratify men for prostate cancer risk, improving the detection of clinically relevant cancers while potentially reducing unnecessary screening and overdiagnosis. This work underscores the clinical utility of PRSs in tailoring cancer screening efforts for better outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mars, N. et al. The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nat. Commun. 11, 6383 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104, 21–34 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Kullo, I. J. et al. Incorporating a genetic risk score into coronary heart disease risk estimates: effect on low-density lipoprotein cholesterol levels (the MI-GENES Clinical Trial). Circulation 133, 1181–1188 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Broadstock, M., Michie, S. & Marteau, T. Psychological consequences of predictive genetic testing: a systematic review. Eur. J. Hum. Genet. 8, 731–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Sanderson, S. C. & Inouye, M. Psychological and behavioural considerations for integrating polygenic risk scores for disease into clinical practice. Nat. Hum. Behav. 9, 1098–1106 (2025).

    Article  PubMed  Google Scholar 

  98. Kiflen, M. et al. Cost-effectiveness of polygenic risk scores to guide statin therapy for cardiovascular disease prevention. Circ. Genom. Precis. Med. 15, e003423 (2022).

    Article  PubMed  Google Scholar 

  99. Martikainen, J. et al. Economic evaluation of using polygenic risk score to guide risk screening and interventions for the prevention of type 2 diabetes in individuals with high overall baseline risk. Front. Genet. 13, 880799 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu, Q. et al. Cost-effectiveness of polygenic risk profiling for primary open-angle glaucoma in the United Kingdom and Australia. Eye 37, 2335–2343 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Cenin, D. R. et al. Cost-effectiveness of personalized screening for colorectal cancer based on polygenic risk and family history. Cancer Epidemiol. Biomark. Prev. 29, 10–21 (2020).

    Article  Google Scholar 

  102. Pashayan, N., Morris, S., Gilbert, F. J. & Pharoah, P. D. P. Cost-effectiveness and benefit-to-harm ratio of risk-stratified screening for breast cancer: a life-table model. JAMA Oncol. 4, 1504–1510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Callender, T. et al. Polygenic risk-tailored screening for prostate cancer: a benefit–harm and cost-effectiveness modelling study. PLoS Med. 16, e1002998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Xia, C., Xu, Y., Li, H., He, S. & Chen, W. Benefits and harms of polygenic risk scores in organised cancer screening programmes: a cost-effectiveness analysis. Lancet Regional Health West. Pac. 44, 101012 (2024).

    Article  Google Scholar 

  105. Koch, S., Schmidtke, J., Krawczak, M. & Caliebe, A. Clinical utility of polygenic risk scores: a critical 2023 appraisal. J. Community Genet. 14, 471–487 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kumuthini, J. et al. The clinical utility of polygenic risk scores in genomic medicine practices: a systematic review. Hum. Genet. 141, 1697–1704 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Eklund, M. et al. The WISDOM personalized breast cancer screening trial: simulation study to assess potential bias and analytic approaches. JNCI Cancer Spectr. 2, pky067 (2018).

    Article  PubMed  Google Scholar 

  108. Naderian, M. et al. Effect of disclosing a polygenic risk score for coronary heart disease on adverse cardiovascular events: 10-year follow-up of the MI-GENES randomized clinical trial. Circ. Genom. Precis. Med. 18, e004968 (2025). In a 10-year follow-up of the MI-GENES trial, disclosing a PRS for CHD alongside a standard Framingham risk score was associated with a lower incidence of major adverse cardiovascular events. This positive effect was likely driven by earlier and longer statin use, leading to lower LDL-cholesterol levels in the group receiving the PRS.

    Article  CAS  PubMed  Google Scholar 

  109. Fuat, A. et al. A polygenic risk score added to a QRISK®2 cardiovascular disease risk calculator demonstrated robust clinical acceptance and clinical utility in the primary care setting. Eur. J. Prev. Cardiol. 31, 716–722 (2024).

    Article  PubMed  Google Scholar 

  110. Vassy, J. L. et al. The GenoVA study: equitable implementation of a pragmatic randomized trial of polygenic-risk scoring in primary care. Am. J. Hum. Genet. 110, 1841–1852 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Esserman, L. J. et al. The WISDOM study: breaking the deadlock in the breast cancer screening debate. npj Breast Cancer 3, 34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Knoppers, B. M., Bernier, A., Granados Moreno, P. & Pashayan, N. Of screening, stratification, and scores. J. Pers. Med. 11, 736 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Linder, J. E. et al. Returning integrated genomic risk and clinical recommendations: the eMERGE study. Genet. Med. 25, 100006 (2023). This paper describes how integrated genomic risk information that includes a PRS can be returned, alongside clinical recommendations, to patients in real-world healthcare settings, to guide prevention strategies. The study highlights challenges in implementation, providing crucial insights for integrating genomic risk assessment into routine clinical care.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Turnbull, C. et al. Population screening requires robust evidence — genomics is no exception. Lancet 403, 583–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Cook, M. B. et al. Our future health: a unique global resource for discovery and translational research. Nat. Med. 31, 728–730 (2025).

    Article  CAS  PubMed  Google Scholar 

  116. Howley, C. et al. The expanding global genomics landscape: converging priorities from national genomics programs. Am. J. Hum. Genet. 112, 751–763 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chapman, C. R. Ethical, legal, and social implications of genetic risk prediction for multifactorial disease: a narrative review identifying concerns about interpretation and use of polygenic scores. J. Community Genet. 14, 441–452 (2023).

    Article  PubMed  Google Scholar 

  118. Dikilitas, O. et al. Predictive utility of polygenic risk scores for coronary heart disease in three major racial and ethnic groups. Am. J. Hum. Genet. 106, 707–716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020). This study shows that PRSs can have variable prediction accuracy even among individuals within the same genetic ancestry group, owing to subtle differences in population structure and environmental exposures.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. National Academies of Sciences, Engineering, and Medicine et al. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field (National Academies Press, 2023).

  121. Khan, S. S. et al. Development and validation of the American Heart Association’s PREVENT equations. Circulation 149, 430–449 (2024).

    Article  PubMed  Google Scholar 

  122. Borrell, L. N. et al. Race and genetic ancestry in medicine — a time for reckoning with racism. N. Engl. J. Med. 384, 474–480 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Burke, W. Genetic tests: clinical validity and clinical utility. Curr. Protoc. Hum. Genet. 81, 9.15.11–19.15.18 (2014).

    Google Scholar 

  125. Botkin, J. R. et al. Outcomes of interest in evidence-based evaluations of genetic tests. Genet. Med. 12, 228–235 (2010).

    Article  PubMed  Google Scholar 

  126. Clarke, A. J. & van El, C. G. Genomics and justice: mitigating the potential harms and inequities that arise from the implementation of genomics in medicine. Hum. Genet. 141, 1099–1107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Turley, P. et al. Problems with using polygenic scores to select embryos. N. Engl. J. Med. 385, 78–86 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Slunecka, J. L. et al. Implementation and implications for polygenic risk scores in healthcare. Hum. Genom. 15, 46 (2021).

    Article  Google Scholar 

  129. Dar-Nimrod, I. & Heine, S. J. Genetic essentialism: on the deceptive determinism of DNA. Psychol. Bull. 137, 800–818 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Reid, N. J., Brockman, D. G., Elisabeth Leonard, C., Pelletier, R. & Khera, A. V. Concordance of a high polygenic score among relatives: implications for genetic counseling and cascade screening. Circ. Genom. Precis. Med. 14, e003262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lewis, A. C. F. & Green, R. C. Polygenic risk scores in the clinic: new perspectives needed on familiar ethical issues. Genome Med. 13, 14 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ross, L. F. et al. Technical report: ethical and policy issues in genetic testing and screening of children. Genet. Med. 15, 234–245 (2013).

    Article  PubMed  Google Scholar 

  133. Yanes, T. et al. Future implications of polygenic risk scores for life insurance underwriting. npj Genom. Med. 9, 25 (2024). This paper examines the potential impact of incorporating PRSs into life insurance underwriting processes. The paper also addresses ethical and regulatory concerns related to genetic discrimination and privacy that may arise from the use of genetic data in insurance settings.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Green, R. C., Lautenbach, D. & McGuire, A. L. GINA, genetic discrimination, and genomic medicine. N. Engl. J. Med. 372, 397–399 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Amendola, L. M. et al. Why patients decline genomic sequencing studies: experiences from the CSER Consortium. J. Genet. Couns. 27, 1220–1227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Andreoli, L., Peeters, H., Van Steen, K. & Dierickx, K. Taking the risk. A systematic review of ethical reasons and moral arguments in the clinical use of polygenic risk scores. Am. J. Med. Genet. A 194, e63584 (2024).

    Article  PubMed  Google Scholar 

  137. Wand, H. et al. Clinical genetic counseling and translation considerations for polygenic scores in personalized risk assessments: a practice resource from the National Society of Genetic Counselors. J. Genet. Couns. 32, 558–575 (2023).

    Article  PubMed  Google Scholar 

  138. Widén, E. et al. How communicating polygenic and clinical risk for atherosclerotic cardiovascular disease impacts health behavior: an observational follow-up study. Circ. Genom. Precis. Med. 15, e003459 (2022).

    Article  PubMed  Google Scholar 

  139. Hao, L. et al. Development of a clinical polygenic risk score assay and reporting workflow. Nat. Med. 28, 1006–1013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lewis, A. C. F. et al. Patient and provider perspectives on polygenic risk scores: implications for clinical reporting and utilization. Genome Med. 14, 114 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kerminen, S. et al. Geographic variation and bias in the polygenic scores of complex diseases and traits in Finland. Am. J. Hum. Genet. 104, 1169–1181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8, e39702 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Kamiza, A. B. et al. Transferability of genetic risk scores in African populations. Nat. Med. 28, 1163–1166 (2022). This study found significant variability in PRS performance within sub-Saharan Africa, noting differences between the South African Zulu and Ugandan cohorts, likely owing to genetic and environmental differences. The findings emphasize the need for increasing GWAS data sets in various regions of Africa to optimize polygenic risk prediction in African populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Abdellaoui, A., Dolan, C. V., Verweij, K. J. H. & Nivard, M. G. Gene–environment correlations across geographic regions affect genome-wide association studies. Nat. Genet. 54, 1345–1354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Smith, S. P. et al. A litmus test for confounding in polygenic scores. Preprint at bioRxiv https://doi.org/10.1101/2025.02.01.635985 (2025).

  146. Plomin, R. & von Stumm, S. Polygenic scores: prediction versus explanation. Mol. Psychiatry 27, 49–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Hou, K. et al. Calibrated prediction intervals for polygenic scores across diverse contexts. Nat. Genet. 56, 1386–1396 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jiang, X., Holmes, C. & McVean, G. The impact of age on genetic risk for common diseases. PLoS Genet. 17, e1009723 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Abramowitz, S. A. et al. Evaluating performance and agreement of coronary heart disease polygenic risk scores. JAMA 333, 60–70 (2025).

    Article  PubMed  Google Scholar 

  150. Ding, Y. et al. Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk stratification. Nat. Genet. 54, 30–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Misra, A. et al. Instability of high polygenic risk classification and mitigation by integrative scoring. Nat. Commun. 16, 1584 (2025). This paper examines the variability in classifying individuals as having high polygenic risk for complex diseases using different PRSs. The researchers propose an integrative scoring approach that combines multiple PRSs for a more robust and reliable risk classification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Urbut, S. M. et al. MSGene: a multistate model using genetic risk and the electronic health record applied to lifetime risk of coronary artery disease. Nat. Commun. 15, 4884 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kullo, I. J., Jarvik, G. P., Manolio, T. A., Williams, M. S. & Roden, D. M. Leveraging the electronic health record to implement genomic medicine. Genet. Med. 15, 270–271 (2013).

    Article  PubMed  Google Scholar 

  154. Dolin, R. H. et al. Introducing HL7 FHIR genomics operations: a developer-friendly approach to genomics-EHR integration. J. Am. Med. Inf. Assoc. 30, 485–493 (2022).

    Article  Google Scholar 

  155. Lambert, S. A. et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat. Genet. 53, 420–425 (2021). The paper introduces the PGS Catalog, a comprehensive open-access database to improve the reproducibility and systematic evaluation of PRSs. This resource provides standardized metadata and performance metrics for a wide range of PRSs, facilitating their comparison and application in diverse research and clinical settings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Becker, J. et al. Resource profile and user guide of the polygenic index repository. Nat. Hum. Behav. 5, 1744–1758 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Lambert, S. A. et al. Enhancing the polygenic score catalog with tools for score calculation and ancestry normalization. Nat. Genet. 56, 1989–1994 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Park, J. & Cohen, I. G. The regulation of polygenic risk scores. Harv. J. Law Technol. 38, 377–400 (2024).

    Google Scholar 

  159. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lee, A. et al. BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 21, 1708–1718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Saadatagah, S. et al. Genetic basis of hypercholesterolemia in adults. npj Genom. Med. 6, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nauffal, V. et al. Monogenic and polygenic contributions to QTc prolongation in the population. Circulation 145, 1524–1533 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Johnson, D. et al. A systematic review and analysis of the use of polygenic scores in pharmacogenomics. Clin. Pharmacol. Ther. 111, 919–930 (2022).

    Article  PubMed  Google Scholar 

  165. Gibson, G. On the utilization of polygenic risk scores for therapeutic targeting. PLoS Genet. 15, e1008060 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li, J. H. et al. A polygenic score for type 2 diabetes risk is associated with both the acute and sustained response to sulfonylureas. Diabetes 70, 293–300 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Klarin, D. & Natarajan, P. Clinical utility of polygenic risk scores for coronary artery disease. Nat. Rev. Cardiol. 19, 291–301 (2022).

    Article  PubMed  Google Scholar 

  168. Fahed, A. C., Philippakis, A. A. & Khera, A. V. The potential of polygenic scores to improve cost and efficiency of clinical trials. Nat. Commun. 13, 2922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Damask, A. et al. Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation 141, 624–636 (2020).

    Article  PubMed  Google Scholar 

  170. Mosley, J. D. et al. Clinical associations with a polygenic predisposition to benign lower white blood cell counts. Nat. Commun. 15, 3384 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Choi, S. W. et al. PRSet: pathway-based polygenic risk score analyses and software. PLoS Genet. 19, e1010624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Benton, M. L. et al. The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 22, 269–283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pereira, L., Mutesa, L., Tindana, P. & Ramsay, M. African genetic diversity and adaptation inform a precision medicine agenda. Nat. Rev. Genet. 22, 284–306 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Lencz, T. Reference Module in Life Sciences (Elsevier, 2024).

  175. Inouye, M. et al. Genomic risk prediction of coronary artery disease in 480,000 adults: implications for primary prevention. J. Am. Coll. Cardiol. 72, 1883–1893 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Tahir, U. A. & Gerszten, R. E. Omics and cardiometabolic disease risk prediction. Annu. Rev. Med. 71, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Joshi, A., Rienks, M., Theofilatos, K. & Mayr, M. Systems biology in cardiovascular disease: a multiomics approach. Nat. Rev. Cardiol. 18, 313–330 (2021).

    Article  PubMed  Google Scholar 

  179. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).

    Article  Google Scholar 

  180. Van Calster, B. et al. Calibration: the Achilles heel of predictive analytics. BMC Med. 17, 230 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Brockman, D. G. et al. Design and user experience testing of a polygenic score report: a qualitative study of prospective users. BMC Med. Genom. 14, 238 (2021).

    Article  Google Scholar 

  182. Lewis, A. C. F., Green, R. C. & Vassy, J. L. Polygenic risk scores in the clinic: translating risk into action. HGG Adv. 2, 100047 (2021).

    PubMed  PubMed Central  Google Scholar 

  183. Pal Choudhury, P. et al. iCARE: an R package to build, validate and apply absolute risk models. PLoS ONE 15, e0228198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the US National Human Genome Research Institute for the eMERGE Network; the PRIMED Consortium and the ClinGen Consortium. The author is additionally supported by the Mellowes Center for Genomic Sciences and Precision Medicine, the Cardiovascular Research Center and the Advancing a Healthier Wisconsin Endowment, Medical College of Wisconsin. The author thanks L. Wussow for help with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar J. Kullo.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Segun Fatumo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

1000 Genomes Project: https://www.internationalgenome.org/

All of Us: https://www.researchallofus.org/

Australian Genomics: https://www.australiangenomics.org.au/

ClinGen: https://clinicalgenome.org/

DNGC: https://www.eng.ngc.dk/

eMERGE: https://www.genome.gov/Funded-Programs-Projects/Electronic-Medical-Records-and-Genomics-Network-eMERGE

FinnGen: https://www.finngen.fi/en

Genes & Health: https://www.genesandhealth.org/

Genome Canada: https://genomecanada.ca/

GIRA: https://www.mayo.edu/research/emerge-genome-informed-risk-assessment/overview

Human Pangenome Project: https://humanpangenomeproject.org/

Our Future Health: https://ourfuturehealth.org.uk/

PGS Catalog: https://www.pgscatalog.org/

PRECISE: https://www.npm.sg/

QGP: https://www.ga4gh.org/driver_project/qatar-genome-program/

Social Science Genetic Association Consortium: https://www.thessgac.org/

TOPMed: https://topmed.nhlbi.nih.gov/

UK Biobank: https://www.ukbiobank.ac.uk/

Supplementary information

Glossary

Absolute risk

Refers to the actual probability or likelihood of an event occurring in a specific population over a defined time period. It is often expressed as a percentage or a proportion. By contrast, relative risk compares the risk of an event or outcome occurring in two different groups, typically those exposed to a certain factor versus those who are not exposed.

Clinical decision support

(CDS). Refers to various tools and systems designed to enhance the decision-making capabilities of healthcare professionals at the point of care. These tools provide clinicians with knowledge and patient-specific information to help them make informed decisions about patient care.

Disease liability

The unobserved, continuous measure of an individual’s predisposition to disease owing to both genetic and environmental factors, with disease manifesting only if liability exceeds a certain threshold.

Genetic ancestry groups

A set of individuals who share similar genetic ancestries based on quantitative measure(s) of genetic resemblance between individuals.

Genetic architecture

The genetic architecture of a quantitative trait or phenotype refers to the number of genetic variants affecting the trait or phenotype, the magnitude of the variants’ effects, allele frequencies of the variants and interactions of variants with each other and with the environment, all of which contribute to heritability. Most common diseases are highly polygenic or even ‘omnigenic’, whereby many thousands of genetic variants of modest effect sizes could have a cumulative effect on disease predisposition.

Heritability

A statistic that estimates the degree of the variation in a trait that is owing to genetic variation in a population. Broad-sense heritability represents the fraction of phenotypic variation explained by both additive and dominance effects; narrow-sense heritability considers additive effects only and is the proportion of phenotypic variation owing to additive effects of multiple genetic variants.

Linkage disequilibrium

The nonrandom association of alleles at two or more loci on the same chromosome.

Polygenic risk

Refers to the cumulative contribution of many genetic variants across the genome to an individual’s risk of developing a complex trait or disease. A polygenic risk score quantifies polygenic risk for an individual.

SNV heritability

A subset of narrow-sense heritability that refers to the proportion of the phenotypic variability that is explained by all single-nucleotide variants (SNVs) used in a genome-wide association study. SNV heritability sets a limit on the predictive accuracy of a polygenic risk score based on common variants.

Social Determinants of Health

(SDOH). These are environmental conditions in which people are born, grow, live, work and age. They include economic stability, education access and quality, healthcare access and quality, neighbourhood and built environment and social and community context.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kullo, I.J. Clinical use of polygenic risk scores: current status, barriers and future directions. Nat Rev Genet (2025). https://doi.org/10.1038/s41576-025-00900-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-025-00900-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing